1
|
Ali R, Nazeer S, Elahi MMS, Idu EG, Zhang H, Mahmoudvand H, Khan SN, Yang J. Global distribution and definitive host range of Echinococcus species and genotypes: A systematic review. Vet Parasitol 2024; 331:110273. [PMID: 39116549 DOI: 10.1016/j.vetpar.2024.110273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/02/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
Echinococcus species (spp.) are regarded as neglected cestodes causing several potential zoonoses of global public health. This systematic review critically appraises the worldwide distribution of Echinococcus spp. and genotypes (Echinococcus spp.: recognized species in the genus; genotypes: variants identified within E. granulosus sensu lato.) in definitive hosts. We analyzed 82 studies from major databases, comprising 24 individual host species, including canids, felids, and a hyenid species. Canids, particularly dogs, were the most studied group among the host species, with E. granulosus sensu stricto (G1-G3) being the most frequently reported. E. granulosus s.s. was distributed across five major continents, while other Echinococcus spp. and genotypes exhibited an uneven continental distribution. The highest overlap of species existed among Asia, Europe, and Africa. Among the reported host species, 4.2 % were endangered (e.g. Lycaon pictus), 12.5 % species were vulnerable (e.g. Panthera leo, Panthera pardus, and Acinonyx jubatus), and 4.2 % were near threatened (e.g. Speothos venaticus). Overall, our review highlights the significance of canids, particularly dogs, as the core focus of scientific investigations, with E. granulosus s.s. being the most widely distributed species across five major continents, emphasizing the urgent need for continued research and public health efforts.
Collapse
Affiliation(s)
- Rehman Ali
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Molecular Parasitology and Virology Laboratory, Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa 26000, Pakistan
| | - Shahid Nazeer
- Molecular Parasitology and Virology Laboratory, Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa 26000, Pakistan
| | - Malik Muhammad Sohail Elahi
- Molecular Parasitology and Virology Laboratory, Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa 26000, Pakistan
| | - Emmanuel Gideon Idu
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongteng Zhang
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hossein Mahmoudvand
- Department of Medical Parasitology and Mycology, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Shahid Niaz Khan
- Molecular Parasitology and Virology Laboratory, Department of Zoology, Faculty of Biological Sciences, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa 26000, Pakistan.
| | - Jun Yang
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
2
|
Shams M, Khazaei S, Naserifar R, Shariatzadeh SA, Anvari D, Montazeri F, Pirestani M, Majidiani H. Global distribution of Echinococcus granulosus genotypes in domestic and wild canids: a systematic review and meta-analysis. Parasitology 2022; 149:1147-1159. [PMID: 35591776 PMCID: PMC11010506 DOI: 10.1017/s0031182022000658] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 11/06/2022]
Abstract
The current systematic review and meta-analysis demonstrate the genotypic distribution of canine echinococcosis worldwide. Studies published from the inception until 21 May 2021 were screened, relevant articles were selected and the random-effect model was used to draw forest plots with 95% confidence intervals (CIs). Totally, 44 articles were included, mostly examined dogs (37 records), followed by wolf (8 records), jackal (7 records), fox (3 records), pump fox (3 records) and coyote (1 record). Echinococcus granulosus sensu stricto (G1–G3) and G6/7 cluster of Echinococcus canadensis were the most common genotypes among canids. Most studies were conducted in Asia and Europe with 17 and 15 datasets, respectively. Exclusively, Iran possessed the highest number of studies (10 records). Meta-analysis showed that the pooled molecular prevalence of echinococcosis was 33.82% (95% CI 24.50–43.83%). Also, the highest and lowest prevalence of canine echinococcosis was calculated for South America (66.03%; 95% CI 25.67–95.85%) and Europe (19.01%; 95% CI 9.95–30.16%). Additionally, there were statistically significant differences between the global prevalence of echinococcosis in canines and publication year, continent, country, sample type, host and molecular test. These findings will elevate our knowledge on the poorly known canine echinococcosis worldwide.
Collapse
Affiliation(s)
- Morteza Shams
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
| | - Sasan Khazaei
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Razi Naserifar
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Seyyed Ali Shariatzadeh
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Davood Anvari
- School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Fattaneh Montazeri
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Pirestani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamidreza Majidiani
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
3
|
Manterola C, Totomoch-Serra A, Rojas C, Riffo-Campos ÁL, García-Méndez N. Echinococcus granulosus sensu lato Genotypes in Different Hosts Worldwide: A Systematic Review. Acta Parasitol 2022; 67:161-185. [PMID: 34264444 DOI: 10.1007/s11686-021-00439-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The aim of this study was to develop a synthesis of the evidence available regarding verified E. granulosus sensu lato (s.l.) genotypes in different species worldwide. MATERIAL AND METHODS A systematic review was performed including studies concerning genotypes of E. granulosus s.l. without language or genotyped method restriction, published between 1990 and 2020. A systematic search was carried out in Trip Database, BIREME, SciELO, LILACS, IBECS, PAHO-WHO, EMBASE, PubMed, Scopus, and WoS. Variables of interest were year of publication, country, number of samples, and hosts; genotypes, molecular marker, haplotypes and molecular biology techniques used. Descriptive statistics were applied. RESULTS 2411 articles were analyzed, however 135 met the selection criteria, representing 8643 liver and lung samples. Of the samples selected 24% were human, the remaining samples pertained to non-human animal hosts; cattle and sheep prevailed with 28.6% and 26.6% of the studied samples, respectively. The reported evidence is mainly from Iran, Turkey, Argentina, China and Chile; with 50, 11, 6, 6 and 5 studies, respectively, published between 1992 and 2020 [most frequently during 2015-2020 (76/135 studies; 56.3%)]. The mitochondrial gene cox1 was generally sequenced and informative (91.8%). Genotypes most frequently identified were E. granulosus sensu stricto (s.s.) (83.2%). CONCLUSIONS Based on this overall evidence, it can be concluded that publications related to genotypes of E. granulosus s.l. are heterogeneous. E. granulosus ss accounts for the vast majority of the global burden of E. granulosus s.l. worldwide. Further studies including larger number of cases and adequate internal validity are required to specify the distribution of genotypes in various host species. TRIAL REGISTRATION PROSPERO CRD42018099827.
Collapse
|
4
|
Laurimäe T, Kinkar L, Romig T, Umhang G, Casulli A, Omer RA, Sharbatkhori M, Mirhendi H, Ponce-Gordo F, Lazzarini LE, Soriano SV, Varcasia A, Rostami-Nejad M, Andresiuk V, Maravilla P, González LM, Dybicz M, Gawor J, Šarkūnas M, Šnábel V, Kuzmina T, Kia EB, Saarma U. Analysis of nad2 and nad5 enables reliable identification of genotypes G6 and G7 within the species complex Echinococcus granulosus sensu lato. INFECTION GENETICS AND EVOLUTION 2019; 74:103941. [PMID: 31247339 DOI: 10.1016/j.meegid.2019.103941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/13/2019] [Accepted: 06/23/2019] [Indexed: 10/26/2022]
Abstract
The larval stages of tapeworms in the species complex Echinococcus granulosus sensu lato cause a zoonotic disease known as cystic echinococcosis (CE). Within this species complex, genotypes G6 and G7 are among the most common genotypes associated with human CE cases worldwide. However, our understanding of ecology, biology and epidemiology of G6 and G7 is still limited. An essential first step towards this goal is correct genotype identification, but distinguishing genotypes G6 and G7 has been challenging. A recent analysis based on complete mitogenome data revealed that the conventional sequencing of the cox1 (366 bp) gene fragment mistakenly classified a subset of G7 samples as G6. On the other hand, sequencing complete mitogenomes is not practical if only genotype or haplogroup identification is needed. Therefore, a simpler and less costly method is required to distinguish genotypes G6 and G7. We compared 93 complete mitogenomes of G6 and G7 from a wide geographical range and demonstrate that a combination of nad2 (714 bp) and nad5 (680 bp) gene fragments would be the best option to distinguish G6 and G7. Moreover, this method allows assignment of G7 samples into haplogroups G7a and G7b. However, due to very high genetic variability of G6 and G7, we suggest to construct a phylogenetic network based on the nad2 and nad5 sequences in order to be absolutely sure in genotype assignment. For this we provide a reference dataset of 93 concatenated nad2 and nad5 sequences (1394 bp in total) containing representatives of G6 and G7 (and haplogroups G7a and G7b), which can be used for the reconstruction of phylogenetic networks.
Collapse
Affiliation(s)
- Teivi Laurimäe
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51003 Tartu, Estonia
| | - Liina Kinkar
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51003 Tartu, Estonia
| | - Thomas Romig
- Institute of Zoology, Parasitology Unit, University of Hohenheim, 70599 Stuttgart, Germany
| | - Gérald Umhang
- Anses, Wildlife Surveillance and Eco-epidemiology Unit, National Reference Laboratory for Echinococcus spp., Nancy Laboratory for Rabies and Wildlife, 54220 Malzéville, France
| | - Adriano Casulli
- World Health Organization Collaborating Centre for the Epidemiology, Detection and Control of Cystic and Alveolar Echinococcosis (in humans and animals), Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; European Union Reference Laboratory for Parasites (EURLP), Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Rihab A Omer
- National University Research Institute, National University Sudan, Khartoum, Sudan
| | - Mitra Sharbatkhori
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hossein Mirhendi
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Francisco Ponce-Gordo
- Department of Parasitology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Lorena E Lazzarini
- Department of Microbiology and Parasitology, Faculty of Medical Sciences, Comahue National University, Buenos Aires, 1400, 8300, Neuquén, Argentina
| | - Silvia V Soriano
- Department of Microbiology and Parasitology, Faculty of Medical Sciences, Comahue National University, Buenos Aires, 1400, 8300, Neuquén, Argentina
| | - Antonio Varcasia
- Laboratorio di Parassitologia e Malattie Parassitarie, Ospedale Didattico Veterinario Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vanesa Andresiuk
- Laboratorio de Zoonosis Parasitarias, FCEyN, UNMdP, Funes 3350, CP: 7600 Mar del Plata, Buenos Aires, Argentina
| | - Pablo Maravilla
- Hospital General "Dr. Manuel Gea Gonzalez", Departamento de Ecologia de Agentes Patogenos, DF 14080, Mexico
| | - Luis Miguel González
- Parasitology Department, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
| | - Monika Dybicz
- Department of General Biology and Parasitology, 5 Chałubińskiego Str., 02-004 Warsaw, Medical University of Warsaw, Poland
| | - Jakub Gawor
- W. Stefański Institute of Parasitology, Polish Academy of Science, Twarda51/55, Warsaw 00-818, Poland
| | - Mindaugas Šarkūnas
- Department of Veterinary Pathobiology, Veterinary Academy, Lithuanian University of Health Sciences, Tilžes Street 18, 47181 Kaunas, Lithuania
| | - Viliam Šnábel
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Hlinkova 3, 040 01 Košice, Slovakia
| | - Tetiana Kuzmina
- I.I. Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, 01030 Kyiv, Ukraine
| | - Eshrat Beigom Kia
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Urmas Saarma
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51003 Tartu, Estonia.
| |
Collapse
|
5
|
Wu Y, Li L, Zhu G, Li W, Zhang N, Li S, Yao G, Tian W, Fu B, Yin H, Zhu X, Yan H, Jia W. Mitochondrial genome data confirm that yaks can serve as the intermediate host of Echinococcus canadensis (G10) on the Tibetan Plateau. Parasit Vectors 2018. [PMID: 29523164 PMCID: PMC5845295 DOI: 10.1186/s13071-018-2684-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background Cervids used to be considered the only animal intermediate hosts of the G10 genotype of Echinococcus canadensis. Yaks are often herded in the Qinghai-Tibet Plateau, China, where echinococcosis remains prevalent. However, no E. canadensis G10 cases have been recorded in yaks until now. The aim of our study was to identify causative agents of echinococcosis in yaks in this region. Methods Total genomic DNA was extracted from the germinal layer of one hydatid using a Blood and Tissue Kit. Full-length mitochondrial (mt) cytochrome c oxidase subunit 1 (cox1) and NADH dehydrogenase subunit 1 (nad1) genes were amplified by PCR. All purified PCR products were directly sequenced in both directions. Then seven pairs of overlap primers were designed to amplify the entire mt genome sequence of a suspected E. canadensis G10 isolate. Phylogenetic analyses were performed based on concatenated nucleotides from the 12 protein-coding genes of mt genomes of Echinococcus species in a Bayesian framework using MrBayes v3.1 and implementing the GTR + I + G model. Results Hydatids were found in yaks (n = 129) when organs were inspected at the slaughterhouse in Maqu county, Gannan Tibetan Autonomous Prefecture, Gansu Province, China in October 2016. Of these, 33 (25.6%) harbored up to a dozen hydatid cysts. One cyst from each yak was characterized by sequencing its mitochondrial (mt) cox1 and nad1 genes. On the basis of these sequence data, 32 cysts were identified as Echinococcus granulosus (sensu stricto) (G1-G3) and the remaining one was identified as the G10 genotype of E. canadensis. Its mt genome was then fully sequenced and compared with that of the G10 genotype in GenBank (AB745463). Phylogenetic analysis using complete mt genomes confirmed the Chinese cyst as belonging to the G10 genotype. Conclusions To our knowledge, this is the first report globally of E. canadensis (G10) from yaks in China, which suggests that the G10 genotype has a wider geographical distribution and broader host range than previously believed. This genotype has therefore potential risks to human health and animal husbandry.
Collapse
Affiliation(s)
- Yantao Wu
- State Key Laboratory of Veterinary Etiological Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Li Li
- State Key Laboratory of Veterinary Etiological Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Guoqiang Zhu
- State Key Laboratory of Veterinary Etiological Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Wenhui Li
- State Key Laboratory of Veterinary Etiological Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Nianzhang Zhang
- State Key Laboratory of Veterinary Etiological Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Shuangnan Li
- State Key Laboratory of Veterinary Etiological Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Gang Yao
- State Key Laboratory of Veterinary Etiological Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Wenjun Tian
- State Key Laboratory of Veterinary Etiological Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Baoquan Fu
- State Key Laboratory of Veterinary Etiological Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Xingquan Zhu
- State Key Laboratory of Veterinary Etiological Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Hongbin Yan
- State Key Laboratory of Veterinary Etiological Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China.
| | - Wanzhong Jia
- State Key Laboratory of Veterinary Etiological Biology/Key Laboratory of Veterinary Parasitology of Gansu Province/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou, 225009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
6
|
Martínez-Flores WA, Palma-García JM, Caballero-Ortega H, Del Viento-Camacho A, López-Escamilla E, Martínez-Hernández F, Vinuesa P, Correa D, Maravilla P. Genotyping Toxoplasma gondii with the B1 Gene in Naturally Infected Sheep from an Endemic Region in the Pacific Coast of Mexico. Vector Borne Zoonotic Dis 2017; 17:495-502. [PMID: 28530509 DOI: 10.1089/vbz.2016.2085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Toxoplasma gondii is a protozoan parasite with a broad ecological valence, which has been detected in a wide range of hosts and landscapes. Although the genus is considered monospecific, in recent years it has been demonstrated to exhibit more genetic variability than previously known. In Mexico, there are few genotyping studies, which suggest that classical, autochthonous, and atypical strains are circulating. The goal of this study was to describe T. gondii genetic diversity in naturally infected sheep from Colima, Mexico. This is a good site to study ecological aspects of this parasite since it is located between the Nearctic and Neotropical ecozones and it includes domestic and wild risks for transmission. We analyzed 305 tissue samples of semicaptive sheep from six coastal and central zones of Colima and border zones of Michoacán. We used an 803 bp amplicon of the B1 gene to genotype T. gondii and seroprevalence was determined by ELISA. Indexes for genetic diversity and genetic differentiation were calculated and compared with reference strains from North America (NA) and South America (SA). Twenty-three tissue samples were positive for the B1 gene by PCR, which were sequenced. Crude prevalence was 24.4%. The genetic analysis showed 16 variable sites along the 803 bp region that grouped all sequences into 13 haplotypes in the phylogenetic tree. Bayesian and haplotype network analysis showed nine new B1-types, of which three were frequent and six had unique alleles. Comparisons among sequence sets revealed that the Mexican population had lower differentiation than SA and an intermediate genetic variability between South America and North America. The B1 gene analysis showed new T. gondii haplotypes in naturally infected sheep; therefore, this marker could be initially used in molecular screening studies to identify potentially virulent genotypes of this parasite using natural host samples directly.
Collapse
Affiliation(s)
| | - José Manuel Palma-García
- 2 Centro Universitario de Investigación y Desarrollo Agropecuario, Facultad de Medicina Veterinaria y Zootecnia, Universidad de Colima , Colima, México
| | | | - Alejandra Del Viento-Camacho
- 2 Centro Universitario de Investigación y Desarrollo Agropecuario, Facultad de Medicina Veterinaria y Zootecnia, Universidad de Colima , Colima, México
| | - Eduardo López-Escamilla
- 1 Departamento de Ecología de Agentes Patógenos, Hospital General "Dr. Manuel Gea González," Ciudad de México, México
| | - Fernando Martínez-Hernández
- 1 Departamento de Ecología de Agentes Patógenos, Hospital General "Dr. Manuel Gea González," Ciudad de México, México
| | - Pablo Vinuesa
- 4 Centro de Ciencias Genómicas, Programa de Ingeniería Genómica, Universidad Nacional Autónoma de México , Cuernavaca, México
| | - Dolores Correa
- 3 Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría , Ciudad de México, México
| | - Pablo Maravilla
- 1 Departamento de Ecología de Agentes Patógenos, Hospital General "Dr. Manuel Gea González," Ciudad de México, México
| |
Collapse
|
7
|
Deplazes P, Rinaldi L, Alvarez Rojas CA, Torgerson PR, Harandi MF, Romig T, Antolova D, Schurer JM, Lahmar S, Cringoli G, Magambo J, Thompson RCA, Jenkins EJ. Global Distribution of Alveolar and Cystic Echinococcosis. ADVANCES IN PARASITOLOGY 2017; 95:315-493. [PMID: 28131365 DOI: 10.1016/bs.apar.2016.11.001] [Citation(s) in RCA: 573] [Impact Index Per Article: 81.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Alveolar echinococcosis (AE) and cystic echinococcosis (CE) are severe helminthic zoonoses. Echinococcus multilocularis (causative agent of AE) is widely distributed in the northern hemisphere where it is typically maintained in a wild animal cycle including canids as definitive hosts and rodents as intermediate hosts. The species Echinococcus granulosus, Echinococcus ortleppi, Echinococcus canadensis and Echinococcus intermedius are the causative agents of CE with a worldwide distribution and a highly variable human disease burden in the different endemic areas depending upon human behavioural risk factors, the diversity and ecology of animal host assemblages and the genetic diversity within Echinococcus species which differ in their zoonotic potential and pathogenicity. Both AE and CE are regarded as neglected zoonoses, with a higher overall burden of disease for CE due to its global distribution and high regional prevalence, but a higher pathogenicity and case fatality rate for AE, especially in Asia. Over the past two decades, numerous studies have addressed the epidemiology and distribution of these Echinococcus species worldwide, resulting in better-defined boundaries of the endemic areas. This chapter presents the global distribution of Echinococcus species and human AE and CE in maps and summarizes the global data on host assemblages, transmission, prevalence in animal definitive hosts, incidence in people and molecular epidemiology.
Collapse
Affiliation(s)
- P Deplazes
- University of Zürich, Zurich, Switzerland
| | - L Rinaldi
- University of Naples Federico II, Napoli, Italy
| | | | | | - M F Harandi
- Research centre of Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - T Romig
- University of Hohenheim, Stuttgart, Germany
| | - D Antolova
- Institute of Parasitology SAS, Kosice, Slovak Republic
| | - J M Schurer
- University of Saskatchewan, Saskatoon, SK, Canada; University of Washington, Seattle, WA, United States
| | - S Lahmar
- National School of Veterinary Medicine, Sidi Thabet, Tunisia
| | - G Cringoli
- University of Naples Federico II, Napoli, Italy
| | - J Magambo
- Meru University of Science and Technology, Meru, Kenya
| | | | - E J Jenkins
- University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
8
|
Ito A, Nakao M, Lavikainen A, Hoberg E. Cystic echinococcosis: Future perspectives of molecular epidemiology. Acta Trop 2017; 165:3-9. [PMID: 27237060 DOI: 10.1016/j.actatropica.2016.05.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 01/11/2023]
Abstract
Human cystic echinococcosis (CE) has been considered to be caused predominantly by Echinococcus granulosus sensu stricto (the dog-sheep strain). Molecular approaches on CE, however, have revealed that human cases are also commonly caused by another species, Echinococcus canadensis. All indices for classification and standardization of CE pathology including available images, epidemiology, diagnostics and treatment are currently based largely on a mixture of infections which include at least E. granulosus s.s. and E. canadensis. Involvement of other species of Echinococcus in CE including E. ortleppi or otherwise cryptic diversity demonstrated recently in Africa requires further elucidation. Molecular identification of the causative species in CE cases is essential for better understanding of pathogenesis and disease. This article stresses the importance of molecular species identification of human CE as a foundation for re-evaluation of evidence-based epidemiology.
Collapse
|
9
|
Cases of Echinococcus granulosus Sensu Stricto Isolated from Polish Patients: Imported or Indigenous? BIOMED RESEARCH INTERNATIONAL 2015; 2015:728321. [PMID: 26491683 PMCID: PMC4605230 DOI: 10.1155/2015/728321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/21/2015] [Accepted: 09/16/2015] [Indexed: 11/17/2022]
Abstract
The cases of nine Polish patients with diagnosed cystic echinococcosis (CE) were examined. A total of nine isolates obtained postoperatively were investigated using PCR and sequencing. The mitochondrial region of nad1 gene was amplified. This PCR and sequencing analysis revealed the presence of Echinococcus canadensis G7 in seven patients and E. granulosus G1 in two patients. These data demonstrate that E. canadensis is the predominant causative agent of human cystic echinococcosis in Poland. E. granulosus G1 detection in Polish patients suggests that the parasite was imported; however it does not exclude the possibility that these cases could have been of Polish origin.
Collapse
|
10
|
Abstract
AbstractThis review presents the historical and current situation of echinococcoses in Mongolia. Since the collapse of the Soviet Union in 1991, Mongolia's health surveillance infrastructure has been very poor, especially as it pertains to chronic diseases, including neglected zoonotic diseases (NZDs). Although there is anecdotal evidence of people dying from hepatic disease due to infection with the larval stage of Echinococcus spp., there are very few published reports. All confirmed cases of echinococcoses in Mongolia are from hospitals located in the capital city of Ulaanbaatar. Cases of cystic echinococcosis (CE), caused by either Echinococcus granulosus sensu stricto or Echinococcus canadensis are believed to be relatively common throughout Mongolia. In contrast, cases of alveolar echinococcosis (AE), caused by Echinococcus multilocularis, are believed to be rare. Recent wild-animal surveys have revealed that wolves (Canis lupus) are the major definitive hosts of E. canadensis, whereas both wolves and red foxes (Vulpes vulpes) are the primary definitive hosts of E. multilocularis. Although wild-animal surveys have begun to elucidate the transmission of Echinococcus spp. in Mongolia, there have yet to be large-scale studies conducted in domestic dogs and livestock. Therefore, further epidemiological studies, in addition to education-based control campaigns, are needed to help combat this NZD.
Collapse
|