1
|
Lucien MAB, Esona MD, Pierre M, Joseph G, Rivière C, Leshem E, Aliabadi N, Desormeaux AM, Andre-Alboth J, Fitter DL, Grant-Greene Y, Tate J, Boncy J, Patel R, Burnett E, Juin S, Parashar UD, Bowen MD. Diversity of rotavirus strains circulating in Haiti before and after introduction of monovalent vaccine. IJID REGIONS 2022; 4:146-151. [PMID: 35923644 PMCID: PMC9340491 DOI: 10.1016/j.ijregi.2022.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
Rotaviruses are the most common cause of acute gastroenteritis among children. In Haiti, the most frequent genotype in the pre-vaccine period was G12P[8]. Equine-like G3P[8] strains dominated most years following vaccine introduction.
Background Haiti introduced a monovalent human group A rotavirus (RVA) vaccine (Rotarix) into its routine infant immunization program in April 2014. The goal of the surveillance program was to characterize RVA strains circulating in Haiti before and after RVA vaccine introduction. Methods Stool samples were collected from children <5 years old presenting with acute gastroenteritis at 16 hospitals in Haiti. RVA antigen enzyme immunoassay (EIA) testing was performed, and G and P genotypes were determined for positive specimens. In this study, genotype data for samples collected from May 2012 through April 2014 (the pre-vaccine introduction era) and May 2014 through July 2019 (post-vaccine introduction era) were analyzed. Results A total of 809 specimens were tested by the Centers for Disease Control and Prevention. During the pre-vaccine introduction era (May 2012 through April 2014), G12P[8] was the predominant genotype, detected in 88–94% of specimens. There was a high prevalence of the equine-like G3P[8] genotype among Haitian children with RVA after vaccine introduction. Conclusions The predominance of equine-like G3P[8] in three of five RVA seasons post-vaccine introduction suggests possible vaccine-specific selection pressure in Haiti. These temporal variations in RVA genotype predominance will require continued monitoring in Haiti as the vaccination program continues.
Collapse
Affiliation(s)
- Mentor Ali Ber Lucien
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
- Corresponding author: Mentor Ali Ber Lucien, Laboratoire National de Santé Publique, Port-au-Prince, Haiti.
| | - Mathew D. Esona
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases (NCIRD), CDC, Atlanta, Georgia, USA
| | | | - Gerard Joseph
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | | | - Eyal Leshem
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases (NCIRD), CDC, Atlanta, Georgia, USA
| | - Negar Aliabadi
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases (NCIRD), CDC, Atlanta, Georgia, USA
| | | | | | | | | | - Jacqueline Tate
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases (NCIRD), CDC, Atlanta, Georgia, USA
| | - Jacques Boncy
- Laboratoire National de Santé Publique, Port-au-Prince, Haiti
| | | | - Eleanor Burnett
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases (NCIRD), CDC, Atlanta, Georgia, USA
| | | | - Umesh D. Parashar
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases (NCIRD), CDC, Atlanta, Georgia, USA
| | - Michael D. Bowen
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases (NCIRD), CDC, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Mijatovic-Rustempasic S, Jaimes J, Perkins C, Ward ML, Esona MD, Gautam R, Lewis J, Sturgeon M, Panjwani J, Bloom GA, Miller S, Reisdorf E, Riley AM, Pence MA, Dunn J, Selvarangan R, Jerris RC, DeGroat D, Parashar UD, Cortese MM, Bowen MD. Rotavirus Strain Trends in United States, 2009-2016: Results from the National Rotavirus Strain Surveillance System (NRSSS). Viruses 2022; 14:1775. [PMID: 36016397 PMCID: PMC9414880 DOI: 10.3390/v14081775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Before the introduction of vaccines, group A rotaviruses (RVA) were the leading cause of acute gastroenteritis in children worldwide. The National Rotavirus Strain Surveillance System (NRSSS) was established in 1996 by the Centers for Disease Control and Prevention (CDC) to perform passive RVA surveillance in the USA. We report the distribution of RVA genotypes collected through NRSSS during the 2009-2016 RVA seasons and retrospectively examine the genotypes detected through the NRSSS since 1996. During the 2009-2016 RVA seasons, 2134 RVA-positive fecal specimens were sent to the CDC for analysis of the VP7 and VP4 genes by RT-PCR genotyping assays and sequencing. During 2009-2011, RVA genotype G3P[8] dominated, while G12P[8] was the dominant genotype during 2012-2016. Vaccine strains were detected in 1.7% of specimens and uncommon/unusual strains, including equine-like G3P[8] strains, were found in 1.9%. Phylogenetic analyses showed limited VP7 and VP4 sequence variation within the common genotypes with 1-3 alleles/lineages identified per genotype. A review of 20 years of NRSSS surveillance showed two changes in genotype dominance, from G1P[8] to G3P[8] and then G3P[8] to G12P[8]. A better understanding of the long-term effects of vaccine use on epidemiological and evolutionary dynamics of circulating RVA strains requires continued surveillance.
Collapse
Affiliation(s)
- Slavica Mijatovic-Rustempasic
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Jose Jaimes
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Charity Perkins
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - M. Leanne Ward
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Mathew D. Esona
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Rashi Gautam
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Jamie Lewis
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Michele Sturgeon
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Junaid Panjwani
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Gail A. Bloom
- Indiana University Health Pathology Laboratory, Indiana University, 350 West 11th Street, Indianapolis, IN 46202, USA
| | - Steve Miller
- UCSF Clinical Microbiology Laboratory, 185 Berry St, Suite 290, San Francisco, CA 94107, USA
| | - Erik Reisdorf
- Wisconsin State Laboratory of Hygiene, 2601 Agriculture Drive, Madison, WI 53718, USA
| | - Ann Marie Riley
- Infectious Disease Diagnostic Laboratory, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
| | - Morgan A. Pence
- Cook Children’s Medical Center, 801 Seventh Ave., Fort Worth, TX 76104, USA
| | - James Dunn
- Medical Microbiology and Virology, Department of Pathology, Texas Children’s Hospital, 6621 Fannin Street, Suite AB1195, Houston, TX 77030, USA
| | | | - Robert C. Jerris
- Children’s Healthcare of Atlanta, 1405 Clifton Rd, Atlanta, GA 30329, USA
| | - Dona DeGroat
- Seattle Children’s Hospital, 5801 Sand Point Way NE, Seattle, WA 98105, USA
| | - Umesh D. Parashar
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Margaret M. Cortese
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| | - Michael D. Bowen
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mail Stop G-04, Atlanta, GA 30329, USA
| |
Collapse
|
3
|
Katz EM, Esona MD, Betrapally NS, De La Cruz De Leon LA, Neira YR, Rey GJ, Bowen MD. Whole-gene analysis of inter-genogroup reassortant rotaviruses from the Dominican Republic: Emergence of equine-like G3 strains and evidence of their reassortment with locally-circulating strains. Virology 2019; 534:114-131. [PMID: 31228725 DOI: 10.1016/j.virol.2019.06.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 11/26/2022]
Abstract
Inter-genogroup reassortant group A rotavirus (RVA) strains possessing a G3 VP7 gene of putative equine origin (EQL-G3) have been detected in humans since 2013. Here we report detection of EQL-G3P[8] RVA strains from the Dominican Republic collected in 2014-16. Whole-gene analysis of RVA in stool specimens revealed 16 EQL-G3P[8] strains, 3 of which appear to have acquired an N1 NSP1 gene from locally-circulating G9P[8] strains and a novel G2P[8] reassortant possessing 7 EQL-G3-associated genes and 3 genes from a locally-circulating G2P[4] strain. Phylogenetic/genetic analyses of VP7 gene sequences revealed nine G3 lineages (I-IX) with newly-assigned lineage IX encompassing all reported human EQL-G3 strains along with the ancestral equine strain. VP1 and NSP2 gene phylogenies suggest that EQL-G3P[8] strains were introduced into the Dominican Republic from Thailand. The emergence of EQL-G3P[8] strains in the Dominican Republic and their reassortment with locally-circulating RVA could have implications for current vaccination strategies.
Collapse
Affiliation(s)
- Eric M Katz
- Cherokee Nation Assurance, Contracting Agency to the Division of Viral Diseases, Centers for Disease Control and Prevention, Arlington, VA, USA; Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mathew D Esona
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Naga S Betrapally
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Yenny R Neira
- Pan American Health Organization/World Health Organization, Santo Domingo, Dominican Republic
| | - Gloria J Rey
- Pan American Health Organization, Washington, D.C, USA
| | - Michael D Bowen
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
4
|
Bowen MD, Mijatovic-Rustempasic S, Esona MD, Teel EN, Gautam R, Sturgeon M, Azimi PH, Baker CJ, Bernstein DI, Boom JA, Chappell J, Donauer S, Edwards KM, Englund JA, Halasa NB, Harrison CJ, Johnston SH, Klein EJ, McNeal MM, Moffatt ME, Rench MA, Sahni LC, Selvarangan R, Staat MA, Szilagyi PG, Weinberg GA, Wikswo ME, Parashar UD, Payne DC. Rotavirus Strain Trends During the Postlicensure Vaccine Era: United States, 2008-2013. J Infect Dis 2016; 214:732-8. [PMID: 27302190 PMCID: PMC5075963 DOI: 10.1093/infdis/jiw233] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/26/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Group A rotaviruses (RVA) are a significant cause of pediatric gastroenteritis worldwide. The New Vaccine Surveillance Network (NVSN) has conducted active surveillance for RVA at pediatric hospitals and emergency departments at 3-7 geographically diverse sites in the United States since 2006. METHODS Over 6 consecutive years, from 2008 to 2013, 1523 samples from NVSN sites that were tested positive by a Rotaclone enzyme immunoassay were submitted to the Centers for Disease Control and Prevention for genotyping. RESULTS In the 2009, 2010, and 2011 seasons, genotype G3P[8] was the predominant genotype throughout the network, with a 46%-84% prevalence. In the 2012 season, G12P[8] replaced G3P[8] as the most common genotype, with a 70% prevalence, and this trend persisted in 2013 (68.0% prevalence). Vaccine (RotaTeq; Rotarix) strains were detected in 0.6%-3.4% of genotyped samples each season. Uncommon and unusual strains (eg, G8P[4], G3P[24], G2P[8], G3P[4], G3P[6], G24P[14], G4P[6], and G9P[4]) were detected sporadically over the study period. Year, study site, and race were found to be significant predictors of genotype. CONCLUSIONS Continued active surveillance is needed to monitor RVA genotypes in the United States and to detect potential changes since vaccine licensure.
Collapse
Affiliation(s)
- Michael D Bowen
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Mathew D Esona
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Rashi Gautam
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | - Carol J Baker
- Texas Children's Hospital Baylor College of Medicine, Houston, Texas
| | | | - Julie A Boom
- Texas Children's Hospital Baylor College of Medicine, Houston, Texas
| | - James Chappell
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | | | | | | | | | | - Mary E Moffatt
- Children's Mercy Hospitals and Clinics, Kansas City, Missouri
| | - Marcia A Rench
- Texas Children's Hospital Baylor College of Medicine, Houston, Texas
| | | | | | - Mary A Staat
- Cincinnati Children's Hospital Medical Center, Ohio
| | | | | | - Mary E Wikswo
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Daniel C Payne
- Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|