1
|
Caraballo L, Rangel Y, Reyna-Bello A, Muñoz M, Figueroa-Espinosa R, Sanz-Rodriquez CE, Guerrero E, Loureiro CL, Liu Q, Takiff HE. Outbreak of Intermediate Species Leptospira venezuelensis Spread by Rodents to Cows and Humans in L. interrogans-Endemic Region, Venezuela. Emerg Infect Dis 2024; 30:1514-1522. [PMID: 39043385 PMCID: PMC11286060 DOI: 10.3201/eid3008.231562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Leptospirosis is a common but underdiagnosed zoonosis. We conducted a 1-year prospective study in La Guaira State, Venezuela, analyzing 71 hospitalized patients who had possible leptospirosis and sampling local rodents and dairy cows. Leptospira rrs gene PCR test results were positive in blood or urine samples from 37/71 patients. Leptospira spp. were isolated from cultured blood or urine samples of 36/71 patients; 29 had L. interrogans, 3 L. noguchii, and 4 L. venezuelensis. Conjunctival suffusion was the most distinguishing clinical sign, many patients had liver involvement, and 8/30 patients with L. interrogans infections died. The Leptospira spp. found in humans were also isolated from local rodents; L. interrogans and L. venezuelensis were isolated from cows on a nearby, rodent-infested farm. Phylogenetic clustering of L. venezuelensis isolates suggested a recently expanded outbreak strain spread by rodents. Increased awareness of leptospirosis prevalence and rapid diagnostic tests are needed to improve patient outcomes.
Collapse
|
2
|
Grillova L, Cokelaer T, Mariet JF, da Fonseca JP, Picardeau M. Core genome sequencing and genotyping of Leptospira interrogans in clinical samples by target capture sequencing. BMC Infect Dis 2023; 23:157. [PMID: 36918832 PMCID: PMC10012794 DOI: 10.1186/s12879-023-08126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND The life-threatening pathogen Leptospira interrogans is the most common agent of leptospirosis, an emerging zoonotic disease. However, little is known about the strains that are currently circulating worldwide due to the fastidious nature of the bacteria and the difficulty to isolate cultures. In addition, the paucity of bacteria in blood and other clinical samples has proven to be a considerable challenge for directly genotyping the agent of leptospirosis directly from patient material. Our understanding of the genetic diversity of strains during human infection is therefore limited. METHODS Here, we carried out hybridization capture followed by Illumina sequencing of the core genome directly from 20 clinical samples that were PCR positive for pathogenic Leptospira to elucidate the genetic diversity of currently circulating Leptospira strains in mainland France. RESULTS Capture with RNA probes covering the L. interrogans core genome resulted in a 72 to 13,000-fold increase in pathogen reads relative to standard sequencing without capture. Variant analysis of the genomes sequenced from the biological samples using 273 Leptospira reference genomes was then carried out to determine the genotype of the infecting strain. For samples with sufficient coverage (19/20 samples with coverage > 8×), we could unambiguously identify L. interrogans serovars Icterohaemorrhagiae and Copenhageni (14 samples), L. kirschneri serovar Grippotyphosa (4 samples), and L. interrogans serovar Pyrogenes (1 sample) as the infecting strains. CONCLUSIONS We obtained high-quality genomic data with suitable coverage for confident core genome genotyping of the agent of leptospirosis for most of our clinical samples. The recovery of the genome of the serovars Icterohaemorrhagiae and Copenhageni directly from multiple clinical samples revealed low adaptive diversification of the core genes during human infection. The ability to generate culture-free genomic data opens new opportunities for better understanding of the epidemiology of this fastidious pathogen and pathogenesis of this neglected disease.
Collapse
Affiliation(s)
- Linda Grillova
- Biology of Spirochetes Unit, French National Reference Centre for Leptospirosis, CNRS UMR 6047, Institut Pasteur, Université Paris Cité, 75015, Paris, France.,Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Thomas Cokelaer
- Institut Pasteur, Université Paris Cité, Plate-Forme Technologique Biomics, 75015, Paris, France.,Département Biologie Computationnelle, Institut Pasteur, Université Paris Cité, Hub de Bioinformatique et Biostatistique, 75015, Paris, France
| | - Jean-François Mariet
- Biology of Spirochetes Unit, French National Reference Centre for Leptospirosis, CNRS UMR 6047, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| | | | - Mathieu Picardeau
- Biology of Spirochetes Unit, French National Reference Centre for Leptospirosis, CNRS UMR 6047, Institut Pasteur, Université Paris Cité, 75015, Paris, France.
| |
Collapse
|
3
|
Caimi K, Ruybal P. Leptospira spp., a genus in the stage of diversity and genomic data expansion. INFECTION GENETICS AND EVOLUTION 2020; 81:104241. [PMID: 32061688 DOI: 10.1016/j.meegid.2020.104241] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Abstract
Leptospirosis is a widespread global zoonotic bacterial disease with a noteworthy human-animal-ecosystem interface. The disease presents different clinical manifestations and a high mortality and morbidity rates in humans and animals throughout the world. Characterization and correct classification of Leptospira isolates is essential for a better understanding the epidemiological properties of the disease. In the last ten years, molecular typing tools have been developed and applied to this field. These methods together with the availability of hundreds of new whole genome sequences that belong to known and new described species are shaping the understanding and structure of the entire genus.
Collapse
Affiliation(s)
- K Caimi
- Instituto de Agrobiotecnología y Biología Molecular (IABiMo), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - P Ruybal
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Facultad de Medicina, Paraguay 2155 Piso: 12, CABA 1121, Argentina
| |
Collapse
|
4
|
Abstract
This chapter covers the progress made in the Leptospira field since the application of mutagenesis techniques and how they have allowed the study of virulence factors and, more generally, the biology of Leptospira. The last decade has seen advances in our ability to perform molecular genetic analysis of Leptospira. Major achievements include the generation of large collections of mutant strains and the construction of replicative plasmids, enabling complementation of mutations. However, there are still no practical tools for routine genetic manipulation of pathogenic Leptospira strains, slowing down advances in pathogenesis research. This review summarizes the status of the molecular genetic toolbox for Leptospira species and highlights new challenges in the nascent field of Leptospira genetics.
Collapse
Affiliation(s)
- Mathieu Picardeau
- Biology of Spirochetes Unit, Institut Pasteur, 28 Rue Du Docteur Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|
5
|
Viana MVC, Sahm A, Góes Neto A, Figueiredo HCP, Wattam AR, Azevedo V. Rapidly evolving changes and gene loss associated with host switching in Corynebacterium pseudotuberculosis. PLoS One 2018; 13:e0207304. [PMID: 30419061 PMCID: PMC6231662 DOI: 10.1371/journal.pone.0207304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/28/2018] [Indexed: 02/01/2023] Open
Abstract
Phylogenomics and genome scale positive selection analyses were performed on 29 Corynebacterium pseudotuberculosis genomes that were isolated from different hosts, including representatives of the Ovis and Equi biovars. A total of 27 genes were identified as undergoing adaptive changes. An analysis of the clades within this species and these biovars, the genes specific to each branch, and the genes responding to selective pressure show clear differences, indicating that adaptation and specialization is occurring in different clades. These changes are often correlated with the isolation host but could indicate responses to some undetermined factor in the respective niches. The fact that some of these more-rapidly evolving genes have homology to known virulence factors, antimicrobial resistance genes and drug targets shows that this type of analysis could be used to identify novel targets, and that these could be used as a way to control this pathogen.
Collapse
Affiliation(s)
| | - Arne Sahm
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Aristóteles Góes Neto
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Henrique Cesar Pereira Figueiredo
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alice Rebecca Wattam
- Biocomplexity Institute of Virginia Tech, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Vasco Azevedo
- Department of General Biology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
6
|
Yamaguchi T, Higa N, Okura N, Matsumoto A, Hermawan I, Yamashiro T, Suzuki T, Toma C. Characterizing interactions of Leptospira interrogans with proximal renal tubule epithelial cells. BMC Microbiol 2018; 18:64. [PMID: 29973159 PMCID: PMC6030750 DOI: 10.1186/s12866-018-1206-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/20/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Leptospira interrogans is a pathogenic, spirochetal bacterium that is responsible for leptospirosis, an emerging worldwide zoonosis. Leptospires colonize the renal proximal tubules and chronically infect the kidney. Live bacteria are excreted into urine, contaminating the environment. While it is well known that leptospires can persist in the kidneys without signs of disease for several months, the interactions of leptospires with the proximal renal epithelial tubule cells that allow the chronic renal colonization have not been elucidated yet. In the present study, we compared the interactions between a virulent, low passage (LP) strain and a cultured-attenuated, high passage (HP) strain with renal proximal tubule epithelial cells (RPTECs) to elucidate the strategies used by Leptospira to colonize the kidney. RESULTS Kinetics analysis of kidney colonization in a mouse model of chronic infection performed by quantitative real-time PCR and immunofluorescence, showed that the LP strain reached the kidney by 3 days post infection (pi) and attached to the basal membrane side of the renal epithelial cells. At 10 days pi, some leptospires were attached to the luminal side of the tubular epithelia and the number of colonizing leptospires gradually increased. On the other hand, the HP strain was cleared during hematogenous dissemination and did not colonize the kidney. Transmission electron microscopy analysis of LP-infected kidneys at 25 days pi showed aggregated leptospires and membrane vesicles attached to the epithelial brush border. Leptospiral kidney colonization altered the organization of the RPTEC brush border. An in vitro model of infection using TCMK-1 cells, showed that leptospiral infection induced a host stress response, which is delayed in LP-infected cells. CONCLUSIONS After hematogenous dissemination, leptospires create protective and replicative niches in the base membrane and luminal sides of the RPTECs. During the long-term colonization, leptospires attached to the RPTEC brush borders and membrane vesicles might be involved in the formation of a biofilm-like structure in vivo. Our results also suggested that the virulent strain is able to manipulate host cell stress responses to promote renal colonization.
Collapse
Affiliation(s)
- Takayoshi Yamaguchi
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215 Japan
- Present address: Department of Food and Nutrition Science, Junior College, Sagami Women’s University, Sagamihara, Kanagawa 252-0383 Japan
| | - Naomi Higa
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215 Japan
| | - Nobuhiko Okura
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215 Japan
| | - Arina Matsumoto
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215 Japan
- Present address: Okinawa Industrial Technology Center, Okinawa, 904-2234 Japan
| | - Idam Hermawan
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215 Japan
| | - Tetsu Yamashiro
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215 Japan
| | - Toshihiko Suzuki
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medicine and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510 Japan
| | - Claudia Toma
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215 Japan
| |
Collapse
|
7
|
Moreno LZ, Miraglia F, Kremer FS, Eslabao MR, Dellagostin OA, Lilenbaum W, Freitas JC, Vasconcellos SA, Heinemann MB, Moreno AM. Comparative genomics of pathogenic Leptospira interrogans serovar Canicola isolated from swine and human in Brazil. Mem Inst Oswaldo Cruz 2018; 113:126-129. [PMID: 29236931 PMCID: PMC5722268 DOI: 10.1590/0074-02760170119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022] Open
Abstract
Leptospira interrogans serovar Canicola is one of the most important pathogenic serovars for the maintenance of urban leptospirosis. Even though it is considered highly adapted to dogs, serovar Canicola infection has already been described in other animals and even a few human cases. Here, we present the genomic characterisation of two Brazilian L. interrogans serovar Canicola strains isolated from slaughtered sows (L0-3 and L0-4) and their comparison with human strain Fiocruz LV133. It was observed that the porcine serovar Canicola strains present the genetic machinery to cause human infection and, therefore, represent a higher risk to public health. Both human and porcine serovar Canicola isolates also presented sequences with high identity to the Chinese serovar Canicola published plasmids pGui1 and pGui2. The plasmids identification in the Brazilian and Chinese serovar Canicola strains suggest that extra-chromosomal elements are one more feature of this serovar that was previously unnoticed.
Collapse
Affiliation(s)
- Luisa Z Moreno
- Laboratório de Epidemiologia Molecular e Resistência a Antimicrobianos, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Fabiana Miraglia
- Laboratório de Bacteriologia Veterinária, Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - Frederico S Kremer
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brasil
| | - Marcus R Eslabao
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brasil
| | - Odir A Dellagostin
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brasil
| | - Walter Lilenbaum
- Laboratório de Bacteriologia Veterinária, Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niterói, RJ, Brasil
| | - Julio C Freitas
- Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina, Londrina, PR, Brasil
| | - Silvio A Vasconcellos
- Laboratório de Epidemiologia Molecular e Resistência a Antimicrobianos, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Marcos B Heinemann
- Laboratório de Epidemiologia Molecular e Resistência a Antimicrobianos, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Andrea M Moreno
- Laboratório de Epidemiologia Molecular e Resistência a Antimicrobianos, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
8
|
Ghazaei C. Pathogenic Leptospira: Advances in understanding the molecular pathogenesis and virulence. Open Vet J 2018; 8:13-24. [PMID: 29445617 PMCID: PMC5806663 DOI: 10.4314/ovj.v8i1.4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
Leptospirosis is a common zoonotic disease has emerged as a major public health problem, with developing countries bearing disproportionate burdens. Although the diverse range of clinical manifestations of the leptospirosis in humans is widely documented, the mechanisms through which the pathogen causes disease remain undetermined. In addition, leptospirosis is a much-neglected life-threatening disease although it is one of the most important zoonoses occurring in a diverse range of epidemiological distribution. Recent advances in molecular profiling of pathogenic species of the genus Leptospira have improved our understanding of the evolutionary factors that determine virulence and mechanisms that the bacteria employ to survive. However, a major impediment to the formulation of intervention strategies has been the limited understanding of the disease determinants. Consequently, the association of the biological mechanisms to the pathogenesis of Leptospira, as well as the functions of numerous essential virulence factors still remain implicit. This review examines recent advances in genetic screening technologies, the underlying microbiological processes, the virulence factors and associated molecular mechanisms driving pathogenesis of Leptospira species.
Collapse
Affiliation(s)
- Ciamak Ghazaei
- Department of Microbiology, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
| |
Collapse
|
9
|
Fraser T, Brown PD. Temperature and Oxidative Stress as Triggers for Virulence Gene Expression in Pathogenic Leptospira spp. Front Microbiol 2017; 8:783. [PMID: 28536558 PMCID: PMC5423269 DOI: 10.3389/fmicb.2017.00783] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/18/2017] [Indexed: 01/21/2023] Open
Abstract
Leptospirosis is a zooanthroponosis aetiologically caused by pathogenic bacteria belonging to the genus, Leptospira. Environmental signals such as increases in temperatures or oxidative stress can trigger response regulatory modes of virulence genes during infection. This study sought to determine the effect of temperature and oxidative stress on virulence associated genes in highly passaged Leptospira borgpeterseneii Jules and L. interrogans Portlandvere. Bacteria were grown in EMJH at 30°C, 37°C, or at 30°C before being transferred to 37°C. A total of 14 virulence-associated genes (fliY, invA, lenA, ligB, lipL32, lipL36, lipL41, lipL45, loa22, lsa21, mce, ompL1, sph2, and tlyC) were assessed using endpoint PCR. Transcriptional analyses of lenA, lipL32, lipL41, loa22, sph2 were assessed by quantitative real-time RT-PCR at the temperature conditions. To assess oxidative stress, bacteria were exposed to H2O2 for 30 and 60 min with or without the temperature stress. All genes except ligB (for Portlandvere) and ligB and mce (for Jules) were detectable in the strains. Quantitatively, temperature stress resulted in significant changes in gene expression within species or between species. Temperature changes were more influential in gene expression for Jules, particularly at 30°C and upshift conditions; at 37°C, expression levels were higher for Portlandvere. However, compared to Jules, where temperature was influential in two of five genes, temperature was an essential element in four of five genes in Portlandvere exposed to oxidative stress. At both low and high oxidative stress levels, the interplay between genetic predisposition (larger genome size) and temperature was biased towards Portlandvere particularly at 30°C and upshift conditions. While it is clear that expression of many virulence genes in highly passaged strains of Leptospira are attenuated or lost, genetic predisposition, changes in growth temperature and/or oxidative intensity and/or duration were factors which acted in isolation or together with other regulatory cues to contribute to the variable gene expression observed in this study. Overall, differential gene expression in serovar Portlandvere was more responsive to temperature and oxidative stress.
Collapse
Affiliation(s)
- Tricia Fraser
- Department of Basic Medical Sciences, Biochemistry Section, University of the West IndiesMona, Jamaica.,Veterinary Services Division, Ministry of AgricultureHope Gardens, Jamaica
| | - Paul D Brown
- Department of Basic Medical Sciences, Biochemistry Section, University of the West IndiesMona, Jamaica
| |
Collapse
|
10
|
Grassmann AA, Souza JD, McBride AJA. A Universal Vaccine against Leptospirosis: Are We Going in the Right Direction? Front Immunol 2017; 8:256. [PMID: 28337203 PMCID: PMC5343615 DOI: 10.3389/fimmu.2017.00256] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/21/2017] [Indexed: 12/22/2022] Open
Abstract
Leptospirosis is the most widespread zoonosis in the world and a neglected tropical disease estimated to cause severe infection in more than one million people worldwide every year that can be combated by effective immunization. However, no significant progress has been made on the leptospirosis vaccine since the advent of bacterins over 100 years. Although protective against lethal infection, particularly in animals, bacterin-induced immunity is considered short term, serovar restricted, and the vaccine can cause serious side effects. The urgent need for a new vaccine has motivated several research groups to evaluate the protective immune response induced by recombinant vaccines. Significant protection has been reported with several promising outer membrane proteins, including LipL32 and the leptospiral immunoglobulin-like proteins. However, efficacy was variable and failed to induce a cross-protective response or sterile immunity among vaccinated animals. As hundreds of draft genomes of all known Leptospira species are now available, this should aid novel target discovery through reverse vaccinology (RV) and pangenomic studies. The identification of surface-exposed vaccine candidates that are highly conserved among infectious Leptospira spp. is a requirement for the development of a cross-protective universal vaccine. However, the lack of immune correlates is a major drawback to the application of RV to Leptospira genomes. In addition, as the protective immune response against leptospirosis is not fully understood, the rational use of adjuvants tends to be a process of trial and error. In this perspective, we discuss current advances, the pitfalls, and possible solutions for the development of a universal leptospirosis vaccine.
Collapse
Affiliation(s)
- André Alex Grassmann
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas , Pelotas , Brazil
| | - Jéssica Dias Souza
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas , Pelotas , Brazil
| | - Alan John Alexander McBride
- Biotechnology Unit, Technological Development Centre, Federal University of Pelotas, Pelotas, Brazil; Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Ministry of Health, Salvador, Brazil
| |
Collapse
|