1
|
Mostafa RM, Baz MM, Ebeed HT, Essawy HS, Dawwam GE, Darwish AB, Selim A, El-Shourbagy NM. Biological effects of Bougainvillea glabra, Delonix regia, Lantana camara, and Platycladus orientalis extracts and their possible metabolomics therapeutics against the West Nile virus vector, Culex pipiens (Diptera: Culicidae). Microb Pathog 2024; 195:106870. [PMID: 39163920 DOI: 10.1016/j.micpath.2024.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Plants are a treasure trove of biological materials containing a wide range of potential phytochemicals that are target-specific, rapidly biodegradable, and environmentally friendly, with multiple medicinal effects. Unfortunately, the development of resistance to synthetic pesticides and antibiotics led to the discovery of new antibiotics, antioxidants, and biopesticides. This has also led to the creation of new medications that work very well. The current study aimed to prove that ornamental plants contain specialized active substances that are used in several biological processes. Mosquitoes, one of the deadliest animals on the planet, cause millions of fatalities each year by transmitting several human illnesses. Phytochemicals are possible biological agents for controlling pests that are harmful. The potential of leaf extracts of Bougainvillea glabra, Delonix regia, Lantana camara, and Platycladus orientalis against Culex pipiens and microbial agents was evaluated. Acetone extracts had more toxic effects against Cx. pipiens larvae (99.0-100 %, 72 h post-treatment), and the LC50 values were 142.8, 189.5, 95.4, and 71.1 ppm for B. glabra, D. regia, L. camara, and P. orientalis, respectively. Plant extracts tested in this study showed high insecticidal, antimicrobial, and antioxidant potential. GC-MS and HPLC analyses showed a higher number of terpenes, flavonoids, and phenolic compounds. The ADME analysis of element, caryophyllene oxide, caryophyllene, and copaene showed that they were similar to drugs and that they were better absorbed by the body and able to pass through the blood-brain barrier. Our results confirm the ability of ornamental plants to have promising larvicidal and antimicrobial activity and biotechnology.
Collapse
Affiliation(s)
- Reham M Mostafa
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Qalyubiya, 13518, Egypt
| | - Mohamed M Baz
- Entomology Department, Faculty of Science, Benha University, Benha, 13518, Egypt.
| | - Heba Talat Ebeed
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, 34517, Egypt; National Biotechnology Network of Expertise (NBNE), Academy of Scientific Research and Technology (ASRT), Cairo, Egypt
| | - Heba S Essawy
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Qalyubiya, 13518, Egypt
| | - Ghada E Dawwam
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Qalyubiya, 13518, Egypt
| | - Ahmed B Darwish
- Zoology Department, Faculty of Science, Suez University, Suez, 43518, Egypt
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), College of Veterinary Medicine, Benha University Toukh, 13736, Egypt.
| | - Nancy M El-Shourbagy
- Entomology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| |
Collapse
|
2
|
Jeang B, Zhong D, Lee MC, Atieli H, Yewhalaw D, Yan G. Molecular surveillance of Kelch 13 polymorphisms in Plasmodium falciparum isolates from Kenya and Ethiopia. Malar J 2024; 23:36. [PMID: 38287365 PMCID: PMC10823687 DOI: 10.1186/s12936-023-04812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/30/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Timely molecular surveillance of Plasmodium falciparum kelch 13 (k13) gene mutations is essential for monitoring the emergence and stemming the spread of artemisinin resistance. Widespread artemisinin resistance, as observed in Southeast Asia, would reverse significant gains that have been made against the malaria burden in Africa. The purpose of this study was to assess the prevalence of k13 polymorphisms in western Kenya and Ethiopia at sites representing varying transmission intensities between 2018 and 2022. METHODS Dried blood spot samples collected through ongoing passive surveillance and malaria epidemiological studies, respectively, were investigated. The k13 gene was genotyped in P. falciparum isolates with high parasitaemia: 775 isolates from four sites in western Kenya (Homa Bay, Kakamega, Kisii, and Kombewa) and 319 isolates from five sites across Ethiopia (Arjo, Awash, Gambella, Dire Dawa, and Semera). DNA sequence variation and neutrality were analysed within each study site where mutant alleles were detected. RESULTS Sixteen Kelch13 haplotypes were detected in this study. Prevalence of nonsynonymous k13 mutations was low in both western Kenya (25/783, 3.19%) and Ethiopia (5/319, 1.57%) across the study period. Two WHO-validated mutations were detected: A675V in three isolates from Kenya and R622I in four isolates from Ethiopia. Seventeen samples from Kenya carried synonymous mutations (2.17%). No synonymous mutations were detected in Ethiopia. Genetic variation analyses and tests of neutrality further suggest an excess of low frequency polymorphisms in each study site. Fu and Li's F test statistic in Semera was 0.48 (P > 0.05), suggesting potential population selection of R622I, which appeared at a relatively high frequency (3/22, 13.04%). CONCLUSIONS This study presents an updated report on the low frequency of k13 mutations in western Kenya and Ethiopia. The WHO-validated R622I mutation, which has previously only been reported along the north-west border of Ethiopia, appeared in four isolates collected from eastern Ethiopia. The rapid expansion of R622I across Ethiopia signals the need for enhanced monitoring of the spread of drug-resistant P. falciparum parasites in East Africa. Although ACT remains currently efficacious in the study areas, continued surveillance is necessary to detect early indicators of artemisinin partial resistance.
Collapse
Affiliation(s)
- Brook Jeang
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - Daibin Zhong
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - Ming-Chieh Lee
- Program in Public Health, University of California Irvine, Irvine, CA, USA
| | - Harrysone Atieli
- School of Public Health and Community Development, Maseno University, Kisumu, Kenya
- International Center of Excellence for Malaria Research, Tom Mboya University College, Homa Bay, Kenya
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Guiyun Yan
- Program in Public Health, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
3
|
Kebede AM, Sutanto E, Trimarsanto H, Benavente ED, Barnes M, Pearson RD, Siegel SV, Erko B, Assefa A, Getachew S, Aseffa A, Petros B, Lo E, Mohammed R, Yilma D, Rumaseb A, Nosten F, Noviyanti R, Rayner JC, Kwiatkowski DP, Price RN, Golassa L, Auburn S. Genomic analysis of Plasmodium vivax describes patterns of connectivity and putative drivers of adaptation in Ethiopia. Sci Rep 2023; 13:20788. [PMID: 38012191 PMCID: PMC10682486 DOI: 10.1038/s41598-023-47889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
Ethiopia has the greatest burden of Plasmodium vivax in Africa, but little is known about the epidemiological landscape of parasites across the country. We analysed the genomic diversity of 137 P. vivax isolates collected nine Ethiopian districts from 2012 to 2016. Signatures of selection were detected by cross-country comparisons with isolates from Thailand (n = 104) and Indonesia (n = 111), representing regions with low and high chloroquine resistance respectively. 26% (35/137) of Ethiopian infections were polyclonal, and 48.5% (17/35) of these comprised highly related clones (within-host identity-by-descent > 25%), indicating frequent co-transmission and superinfection. Parasite gene flow between districts could not be explained entirely by geographic distance, with economic and cultural factors hypothesised to have an impact on connectivity. Amplification of the duffy binding protein gene (pvdbp1) was prevalent across all districts (16-75%). Cross-population haplotype homozygosity revealed positive selection in a region proximal to the putative chloroquine resistance transporter gene (pvcrt-o). An S25P variant in amino acid transporter 1 (pvaat1), whose homologue has recently been implicated in P. falciparum chloroquine resistance evolution, was prevalent in Ethiopia (96%) but not Thailand or Indonesia (35-53%). The genomic architecture in Ethiopia highlights circulating variants of potential public health concern in an endemic setting with evidence of stable transmission.
Collapse
Affiliation(s)
| | | | - Hidayat Trimarsanto
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Ernest Diez Benavente
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mariana Barnes
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
| | | | | | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ashenafi Assefa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sisay Getachew
- Armauer Hansen Research Unit (AHRI), Addis Ababa, Ethiopia
- Addis Ababa University, Addis Ababa, Ethiopia
- Millipore Sigma (Bioreliance), Rockville, USA
| | - Abraham Aseffa
- Armauer Hansen Research Unit (AHRI), Addis Ababa, Ethiopia
| | | | - Eugenia Lo
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, USA
| | | | - Daniel Yilma
- Jimma University Clinical Trial Unit, Department of Internal Medicine, Jimma University, Jimma, Ethiopia
| | - Angela Rumaseb
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
| | - Francois Nosten
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | - Ric N Price
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sarah Auburn
- Menzies School of Health Research and Charles Darwin University, Casuarina, PO Box 41096, Darwin, NT, 0811, Australia.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
4
|
Lopez L, Koepfli C. Systematic review of Plasmodium falciparum and Plasmodium vivax polyclonal infections: Impact of prevalence, study population characteristics, and laboratory procedures. PLoS One 2021; 16:e0249382. [PMID: 34115783 PMCID: PMC8195386 DOI: 10.1371/journal.pone.0249382] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/17/2021] [Indexed: 12/27/2022] Open
Abstract
Multiple infections of genetically distinct clones of the same Plasmodium species are common in many malaria endemic settings. Mean multiplicity of infection (MOI) and the proportion of polyclonal infections are often reported as surrogate marker of transmission intensity, yet the relationship with traditional measures such as parasite prevalence is not well understood. We have searched Pubmed for articles on P. falciparum and P. vivax multiplicity, and compared the proportion of polyclonal infections and mean MOI to population prevalence. The impact of the genotyping method, number of genotyping markers, method for diagnosis (microscopy/RDT vs. PCR), presence of clinical symptoms, age, geographic region, and year of sample collection on multiplicity indices were assessed. For P. falciparum, 153 studies met inclusion criteria, yielding 275 individual data points and 33,526 genotyped individuals. The proportion of polyclonal infections ranged from 0-96%, and mean MOI from 1-6.1. For P. vivax, 54 studies met inclusion criteria, yielding 115 data points and 13,325 genotyped individuals. The proportion of polyclonal infections ranged from 0-100%, and mean MOI from 1-3.8. For both species, the proportion of polyclonal infections ranged from very low to close to 100% at low prevalence, while at high prevalence it was always high. Each percentage point increase in prevalence resulted in a 0.34% increase in the proportion of polyclonal P. falciparum infections (P<0.001), and a 0.78% increase in the proportion of polyclonal P. vivax infections (P<0.001). In multivariable analysis, higher prevalence, typing multiple markers, diagnosis of infections by PCR, and sampling in Africa were found to result in a higher proportion of P. falciparum polyclonal infections. For P. vivax, prevalence, year of study, typing multiple markers, and geographic region were significant predictors. In conclusion, polyclonal infections are frequently present in all settings, but the association between multiplicity and prevalence is weak.
Collapse
Affiliation(s)
- Luis Lopez
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
| | - Cristian Koepfli
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States of America
| |
Collapse
|
5
|
Benavente ED, Manko E, Phelan J, Campos M, Nolder D, Fernandez D, Velez-Tobon G, Castaño AT, Dombrowski JG, Marinho CRF, Aguiar ACC, Pereira DB, Sriprawat K, Nosten F, Moon R, Sutherland CJ, Campino S, Clark TG. Distinctive genetic structure and selection patterns in Plasmodium vivax from South Asia and East Africa. Nat Commun 2021; 12:3160. [PMID: 34039976 PMCID: PMC8154914 DOI: 10.1038/s41467-021-23422-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022] Open
Abstract
Despite the high burden of Plasmodium vivax malaria in South Asian countries, the genetic diversity of circulating parasite populations is not well described. Determinants of antimalarial drug susceptibility for P. vivax in the region have not been characterised. Our genomic analysis of global P. vivax (n = 558) establishes South Asian isolates (n = 92) as a distinct subpopulation, which shares ancestry with some East African and South East Asian parasites. Signals of positive selection are linked to drug resistance-associated loci including pvkelch10, pvmrp1, pvdhfr and pvdhps, and two loci linked to P. vivax invasion of reticulocytes, pvrbp1a and pvrbp1b. Significant identity-by-descent was found in extended chromosome regions common to P. vivax from India and Ethiopia, including the pvdbp gene associated with Duffy blood group binding. Our investigation provides new understanding of global P. vivax population structure and genomic diversity, and genetic evidence of recent directional selection in this important human pathogen.
Collapse
Affiliation(s)
- Ernest Diez Benavente
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Emilia Manko
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Jody Phelan
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Monica Campos
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Debbie Nolder
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Public Health England Malaria Reference Laboratory, London School of Hygiene & Tropical Medicine, London, UK
| | - Diana Fernandez
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Antioquia, Colombia
| | - Gabriel Velez-Tobon
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Antioquia, Colombia
| | | | - Jamille G Dombrowski
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Claudio R F Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Anna Caroline C Aguiar
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | - Robert Moon
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Colin J Sutherland
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Public Health England Malaria Reference Laboratory, London School of Hygiene & Tropical Medicine, London, UK
| | - Susana Campino
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | - Taane G Clark
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
6
|
Noviyanti R, Miotto O, Barry A, Marfurt J, Siegel S, Thuy-Nhien N, Quang HH, Anggraeni ND, Laihad F, Liu Y, Sumiwi ME, Trimarsanto H, Coutrier F, Fadila N, Ghanchi N, Johora FT, Puspitasari AM, Tavul L, Trianty L, Utami RAS, Wang D, Wangchuck K, Price RN, Auburn S. Implementing parasite genotyping into national surveillance frameworks: feedback from control programmes and researchers in the Asia-Pacific region. Malar J 2020; 19:271. [PMID: 32718342 PMCID: PMC7385952 DOI: 10.1186/s12936-020-03330-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/09/2020] [Indexed: 01/13/2023] Open
Abstract
The Asia-Pacific region faces formidable challenges in achieving malaria elimination by the proposed target in 2030. Molecular surveillance of Plasmodium parasites can provide important information on malaria transmission and adaptation, which can inform national malaria control programmes (NMCPs) in decision-making processes. In November 2019 a parasite genotyping workshop was held in Jakarta, Indonesia, to review molecular approaches for parasite surveillance and explore ways in which these tools can be integrated into public health systems and inform policy. The meeting was attended by 70 participants from 8 malaria-endemic countries and partners of the Asia Pacific Malaria Elimination Network. The participants acknowledged the utility of multiple use cases for parasite genotyping including: quantifying the prevalence of drug resistant parasites, predicting risks of treatment failure, identifying major routes and reservoirs of infection, monitoring imported malaria and its contribution to local transmission, characterizing the origins and dynamics of malaria outbreaks, and estimating the frequency of Plasmodium vivax relapses. However, the priority of each use case varies with different endemic settings. Although a one-size-fits-all approach to molecular surveillance is unlikely to be applicable across the Asia-Pacific region, consensus on the spectrum of added-value activities will help support data sharing across national boundaries. Knowledge exchange is needed to establish local expertise in different laboratory-based methodologies and bioinformatics processes. Collaborative research involving local and international teams will help maximize the impact of analytical outputs on the operational needs of NMCPs. Research is also needed to explore the cost-effectiveness of genetic epidemiology for different use cases to help to leverage funding for wide-scale implementation. Engagement between NMCPs and local researchers will be critical throughout this process.
Collapse
Affiliation(s)
| | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Alyssa Barry
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Burnet Institute, Melbourne, VIC, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Sasha Siegel
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Nguyen Thuy-Nhien
- Centre for Tropical Medicine, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Huynh Hong Quang
- Institute of Malariology, Parasitology and Entomology, Quy Nhon, Vietnam
| | | | | | - Yaobao Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | | | | | - Farah Coutrier
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Nadia Fadila
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Najia Ghanchi
- Pathology, Aga Khan University Hospital, Karachi, Pakistan
| | - Fatema Tuj Johora
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh Mohakhali, Dhaka, Bangladesh
| | | | - Livingstone Tavul
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Leily Trianty
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | - Duoquan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Kesang Wangchuck
- Royal Center for Disease Control, Department of Public Health, Ministry of Health, Thimphu, Bhutan
| | - Ric N Price
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah Auburn
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Roh ME, Tessema SK, Murphy M, Nhlabathi N, Mkhonta N, Vilakati S, Ntshalintshali N, Saini M, Maphalala G, Chen A, Wilheim J, Prach L, Gosling R, Kunene S, S Hsiang M, Greenhouse B. High Genetic Diversity of Plasmodium falciparum in the Low-Transmission Setting of the Kingdom of Eswatini. J Infect Dis 2020; 220:1346-1354. [PMID: 31190073 PMCID: PMC6743842 DOI: 10.1093/infdis/jiz305] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/12/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND To better understand transmission dynamics, we characterized Plasmodium falciparum genetic diversity in Eswatini, where transmission is low and sustained by importation. METHODS Twenty-six P. falciparum microsatellites were genotyped in 66% of confirmed cases (2014-2016; N = 582). Population and within-host diversity were used to characterize differences between imported and locally acquired infections. Logistic regression was used to assess the added value of diversity metrics to classify imported and local infections beyond epidemiology data alone. RESULTS Parasite population in Eswatini was highly diverse (expected heterozygosity [HE] = 0.75) and complex: 67% polyclonal infections, mean multiplicity of infection (MOI) 2.2, and mean within-host infection fixation index (FWS) 0.84. Imported cases had comparable diversity to local cases but exhibited higher MOI (2.4 vs 2.0; P = .004) and lower mean FWS (0.82 vs 0.85; P = .03). Addition of MOI and FWS to multivariate analyses did not increase discrimination between imported and local infections. CONCLUSIONS In contrast to the common perception that P. falciparum diversity declines with decreasing transmission intensity, Eswatini isolates exhibited high parasite diversity consistent with high rates of malaria importation and limited local transmission. Estimates of malaria transmission intensity from genetic data need to consider the effect of importation, especially as countries near elimination.
Collapse
Affiliation(s)
- Michelle E Roh
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California, San Francisco.,Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Sofonias K Tessema
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco
| | - Maxwell Murphy
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco
| | | | | | | | | | - Manik Saini
- Clinton Health Access Initiative, Mbabane, Eswatini
| | | | - Anna Chen
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco
| | - Jordan Wilheim
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco
| | - Lisa Prach
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California, San Francisco
| | - Roly Gosling
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California, San Francisco.,Department of Epidemiology and Biostatistics, University of California, San Francisco
| | | | - Michelle S Hsiang
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California, San Francisco.,Department of Pediatrics, University of California, San Francisco.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas
| | - Bryan Greenhouse
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco.,Chan Zuckerberg Biohub, San Francisco, California
| |
Collapse
|
8
|
Pava Z, Puspitasari AM, Rumaseb A, Handayuni I, Trianty L, Utami RAS, Tirta YK, Burdam F, Kenangalem E, Wirjanata G, Kho S, Trimarsanto H, Anstey NM, Poespoprodjo JR, Noviyanti R, Price RN, Marfurt J, Auburn S. Molecular surveillance over 14 years confirms reduction of Plasmodium vivax and falciparum transmission after implementation of Artemisinin-based combination therapy in Papua, Indonesia. PLoS Negl Trop Dis 2020; 14:e0008295. [PMID: 32379762 PMCID: PMC7237043 DOI: 10.1371/journal.pntd.0008295] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 05/19/2020] [Accepted: 04/15/2020] [Indexed: 01/13/2023] Open
Abstract
Genetic epidemiology can provide important insights into parasite transmission that can inform public health interventions. The current study compared long-term changes in the genetic diversity and structure of co-endemic Plasmodium falciparum and P. vivax populations. The study was conducted in Papua Indonesia, where high-grade chloroquine resistance in P. falciparum and P. vivax led to a universal policy of Artemisinin-based Combination Therapy (ACT) in 2006. Microsatellite typing and population genetic analyses were undertaken on available isolates collected between 2004 and 2017 from patients with uncomplicated malaria (n = 666 P. falciparum and n = 615 P. vivax). The proportion of polyclonal P. falciparum infections fell from 28% (38/135) before policy change (2004-2006) to 18% (22/125) at the end of the study (2015-2017); p<0.001. Over the same period, polyclonal P. vivax infections fell from 67% (80/119) to 35% (33/93); p<0.001. P. falciparum strains persisted for up to 9 years compared to 3 months for P. vivax, reflecting higher rates of outbreeding in the latter. Sub-structure was observed in the P. falciparum population, but not in P. vivax, confirming different patterns of outbreeding. The P. falciparum population exhibited 4 subpopulations that changed in frequency over time. Notably, a sharp rise was observed in the frequency of a minor subpopulation (K2) in the late post-ACT period, accounting for 100% of infections in late 2016-2017. The results confirm epidemiological evidence of reduced P. falciparum and P. vivax transmission over time. The smaller change in P. vivax population structure is consistent with greater outbreeding associated with relapsing infections and highlights the need for radical cure to reduce recurrent infections. The study emphasizes the challenge in disrupting P. vivax transmission and demonstrates the potential of molecular data to inform on the impact of public health interventions.
Collapse
Affiliation(s)
- Zuleima Pava
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | | | - Angela Rumaseb
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Irene Handayuni
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Leily Trianty
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | | | - Faustina Burdam
- Mimika District Health Authority, Timika, Papua, Indonesia
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | - Enny Kenangalem
- Mimika District Health Authority, Timika, Papua, Indonesia
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | - Grennady Wirjanata
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Steven Kho
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | | | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Jeanne Rini Poespoprodjo
- Mimika District Health Authority, Timika, Papua, Indonesia
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Pediatric Research Office, Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Lo E, Hostetler JB, Yewhalaw D, Pearson RD, Hamid MMA, Gunalan K, Kepple D, Ford A, Janies DA, Rayner JC, Miller LH, Yan G. Frequent expansion of Plasmodium vivax Duffy Binding Protein in Ethiopia and its epidemiological significance. PLoS Negl Trop Dis 2019; 13:e0007222. [PMID: 31509523 PMCID: PMC6756552 DOI: 10.1371/journal.pntd.0007222] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 09/23/2019] [Accepted: 07/23/2019] [Indexed: 01/20/2023] Open
Abstract
Plasmodium vivax invasion of human erythrocytes depends on the Duffy Binding Protein (PvDBP) which interacts with the Duffy antigen. PvDBP copy number has been recently shown to vary between P. vivax isolates in Sub-Saharan Africa. However, the extent of PvDBP copy number variation, the type of PvDBP multiplications, as well as its significance across broad samples are still unclear. We determined the prevalence and type of PvDBP duplications, as well as PvDBP copy number variation among 178 Ethiopian P. vivax isolates using a PCR-based diagnostic method, a novel quantitative real-time PCR assay and whole genome sequencing. For the 145 symptomatic samples, PvDBP duplications were detected in 95 isolates, of which 81 had the Cambodian and 14 Malagasy-type PvDBP duplications. PvDBP varied from 1 to >4 copies. Isolates with multiple PvDBP copies were found to be higher in symptomatic than asymptomatic infections. For the 33 asymptomatic samples, PvDBP was detected with two copies in two of the isolates, and both were the Cambodian-type PvDBP duplication. PvDBP copy number in Duffy-negative heterozygotes was not significantly different from that in Duffy-positives, providing no support for the hypothesis that increased copy number is a specific association with Duffy-negativity, although the number of Duffy-negatives was small and further sampling is required to test this association thoroughly. Plasmodium vivax invasion of human erythrocytes relies on interaction between the Duffy antigen and P. vivax Duffy Binding Protein (PvDBP). Whole genome sequences from P. vivax field isolates in Madagascar identified a duplication of the PvDBP gene and PvDBP duplication has also been detected in non-African P. vivax-endemic countries. Two types of PvDBP duplications have been reported, termed Cambodian and Malagasy-type duplications. Our study used a combination of PCR-based diagnostic method, a novel quantitative real-time PCR assay, and whole genome sequencing to determine the prevalence and type of PvDBP duplications, as well as PvDBP copy number on a broad number of P. vivax samples in Ethiopia. We found that over 65% of P. vivax isolated from the symptomatic infections were detected with PvDBP duplications and PvDBP varied from 1 to >4 copies. The majority of PvDBP duplications belongs to the Cambodian-type while the Malagasy-type duplications was also detected. For the asymptomatic infections, despite a small sample size, the majority of P. vivax were detected with a single-copy based on both PCR and qPCR assays. There was no significant difference in PvDBP copy number between Duffy-null heterozygote and Duffy-positive homozygote/heterozygote. Further investigation is needed with expanded Duffy-null homozygotes to examine the functional significance of PvDBP expansion.
Collapse
Affiliation(s)
- Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
- * E-mail: (EL); (LHM); (GY)
| | - Jessica B. Hostetler
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences and Pathology, College of Public Health and Medical Sciences, Jimma University, Jimma, Ethiopia
| | - Richard D. Pearson
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Muzamil M. A. Hamid
- Department of Parasitology and Medical Entomology, University of Khartoum, Khartoum, Sudan
| | - Karthigayan Gunalan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel Kepple
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Anthony Ford
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Daniel A. Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Julian C. Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Louis H. Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (EL); (LHM); (GY)
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California at Irvine, Irvine, CA, United States of America
- * E-mail: (EL); (LHM); (GY)
| |
Collapse
|
10
|
Nelli L, Ferguson HM, Matthiopoulos J. Achieving explanatory depth and spatial breadth in infectious disease modelling: Integrating active and passive case surveillance. Stat Methods Med Res 2019; 29:1273-1287. [PMID: 31213191 DOI: 10.1177/0962280219856380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ideally, the data used for robust spatial prediction of disease distribution should be both high-resolution and spatially expansive. However, such in-depth and geographically broad data are rarely available in practice. Instead, researchers usually acquire either detailed epidemiological data with high resolution at a small number of active sampling sites, or more broad-ranging but less precise data from passive case surveillance. We propose a novel inferential framework, capable of simultaneously drawing insights from both passive and active data types. We developed a Bayesian latent point process approach, combining active data collection in a limited set of points, where in-depth covariates are measured, with passive case detection, where error-prone, large-scale disease data are accompanied only by coarse or remotely-sensed covariate layers. Using the example of malaria, we tested our method's efficiency under several hypothetical scenarios of reported incidence in different combinations of imperfect detection and spatial complexity of the environmental variables. We provide a simple solution to a widespread problem in spatial epidemiology, combining latent process modelling and spatially autoregressive modelling. By using active sampling and passive case detection in a complementary way, we achieved the best-of-both-worlds, in effect, a formal calibration of spatially extensive, error-prone data by localised, high-quality data.
Collapse
Affiliation(s)
- Luca Nelli
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Heather M Ferguson
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Jason Matthiopoulos
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
11
|
Pacheco MA, Schneider KA, Céspedes N, Herrera S, Arévalo-Herrera M, Escalante AA. Limited differentiation among Plasmodium vivax populations from the northwest and to the south Pacific Coast of Colombia: A malaria corridor? PLoS Negl Trop Dis 2019; 13:e0007310. [PMID: 30921317 PMCID: PMC6456216 DOI: 10.1371/journal.pntd.0007310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 04/09/2019] [Accepted: 03/16/2019] [Indexed: 01/06/2023] Open
Abstract
Background Malaria remains endemic in several countries of South America with low to moderate transmission intensity. Regional human migration through underserved endemic areas may be responsible for significant parasite dispersion making the disease resilient to interventions. Thus, the genetic characterization of malarial parasites is an important tool to assess how endemic areas may connect via the movement of infected individuals. Here, four sites in geographically separated areas reporting 80% of the malaria morbidity in Colombia were studied. The sites are located on an imaginary transect line of 1,500 km from the northwest to the south Pacific Coast of Colombia with a minimal distance of 500 km between populations that display noticeable ethnic, economic, epidemiological, and ecological differences. Methodology/Principal findings A total of 624 Plasmodium vivax samples from the four populations were genotyped by using eight microsatellite loci. Although a strong geographic structure was expected between these populations, only moderate evidence of genetic differentiation was observed using a suite of population genetic analyses. High genetic diversity, shared alleles, and low linkage disequilibrium were also found in these P. vivax populations providing no evidence for a bottleneck or clonal expansions as expected from recent reductions in the transmission that could have been the result of scaling up interventions or environmental changes. These patterns are consistent with a disease that is not only endemic in each site but also imply that there is gene flow among these populations across 1,500 km. Conclusion /Significance The observed patterns in P. vivax are consistent with a “corridor” where connected endemic areas can sustain a high level of genetic diversity locally and can restore parasite-subdivided populations via migration of infected individuals even after local interventions achieved a substantial reduction of clinical cases. The consequences of these findings in terms of control and elimination are discussed. The regional movements of infected individuals that connect suitable transmission areas make malaria resilient to control efforts. Those movements are expected to leave genetic signatures in the parasite populations that can be detected using analytical tools. In this study, the genetic makeups of Plasmodium vivax populations were characterized to assess whether the most endemic areas in Colombia were connected. Samples were collected from passive surveillance studies in four locations across an imaginary transect line of 1,500 km from the northwest to the south Pacific Coast of Colombia (South America). Considering the distance, and contrary to expectations, we found weak levels of genetic differentiation between these parasite populations with no evidence indicating that their genetic diversity has been eroded as expected whenever the prevalence of the disease is successfully reduced, e.g., through control programs or environmental changes. Although the sampling lacks the geographic and temporal detail to describe how the dispersion of parasite lineages occurred, the observed patterns are consistent with a series of infected populations that are connected in space by human movements allowing the parasite to diffuse across this 1,500 km transect. This malaria corridor needs to be characterized to achieve elimination.
Collapse
Affiliation(s)
- M. Andreína Pacheco
- Department of Biology/Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, Pennsylvania, United States of America
| | | | - Nora Céspedes
- Caucaseco Scientific Research Center and Malaria Vaccine and Drug Development Center, Cali, Colombia
| | - Sócrates Herrera
- Caucaseco Scientific Research Center and Malaria Vaccine and Drug Development Center, Cali, Colombia
| | - Myriam Arévalo-Herrera
- Caucaseco Scientific Research Center and Malaria Vaccine and Drug Development Center, Cali, Colombia
- Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Ananias A. Escalante
- Department of Biology/Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
12
|
Auburn S, Benavente ED, Miotto O, Pearson RD, Amato R, Grigg MJ, Barber BE, William T, Handayuni I, Marfurt J, Trimarsanto H, Noviyanti R, Sriprawat K, Nosten F, Campino S, Clark TG, Anstey NM, Kwiatkowski DP, Price RN. Genomic analysis of a pre-elimination Malaysian Plasmodium vivax population reveals selective pressures and changing transmission dynamics. Nat Commun 2018; 9:2585. [PMID: 29968722 PMCID: PMC6030216 DOI: 10.1038/s41467-018-04965-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/01/2018] [Indexed: 01/13/2023] Open
Abstract
The incidence of Plasmodium vivax infection has declined markedly in Malaysia over the past decade despite evidence of high-grade chloroquine resistance. Here we investigate the genetic changes in a P. vivax population approaching elimination in 51 isolates from Sabah, Malaysia and compare these with data from 104 isolates from Thailand and 104 isolates from Indonesia. Sabah displays extensive population structure, mirroring that previously seen with the emergence of artemisinin-resistant P. falciparum founder populations in Cambodia. Fifty-four percent of the Sabah isolates have identical genomes, consistent with a rapid clonal expansion. Across Sabah, there is a high prevalence of loci known to be associated with antimalarial drug resistance. Measures of differentiation between the three countries reveal several gene regions under putative selection in Sabah. Our findings highlight important factors pertinent to parasite resurgence and molecular cues that can be used to monitor low-endemic populations at the end stages of P. vivax elimination.
Collapse
Affiliation(s)
- Sarah Auburn
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0811 Australia ,Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF UK
| | - Ernest D. Benavente
- 0000 0004 0425 469Xgrid.8991.9Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT UK
| | - Olivo Miotto
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF UK ,0000 0004 0606 5382grid.10306.34Wellcome Trust Sanger Institute, Hinxton Cambridge, CB10 1SA UK ,0000 0004 1937 0490grid.10223.32Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, 10400 Thailand
| | - Richard D. Pearson
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF UK ,0000 0004 0606 5382grid.10306.34Wellcome Trust Sanger Institute, Hinxton Cambridge, CB10 1SA UK
| | - Roberto Amato
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF UK ,0000 0004 0606 5382grid.10306.34Wellcome Trust Sanger Institute, Hinxton Cambridge, CB10 1SA UK
| | - Matthew J. Grigg
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0811 Australia ,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, 88300 Kota Kinabalu Sabah, Malaysia
| | - Bridget E. Barber
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0811 Australia ,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, 88300 Kota Kinabalu Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, 88300 Kota Kinabalu Sabah, Malaysia ,0000 0004 1772 8727grid.415560.3Clinical Research Centre, Queen Elizabeth Hospital, 88300 Kota Kinabalu Sabah, Malaysia ,Jesselton Medical Centre, 88300 Kota Kinabalu Sabah, Malaysia
| | - Irene Handayuni
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0811 Australia
| | - Jutta Marfurt
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0811 Australia
| | - Hidayat Trimarsanto
- 0000 0004 1795 0993grid.418754.bEijkman Institute for Molecular Biology, Jakarta, 10430 Indonesia ,0000 0001 0746 0534grid.432292.cAgency for Assessment and Application of Technology, Jl. MH Thamrin 8, Jakarta, 10340 Indonesia
| | - Rintis Noviyanti
- 0000 0004 1795 0993grid.418754.bEijkman Institute for Molecular Biology, Jakarta, 10430 Indonesia
| | - Kanlaya Sriprawat
- 0000 0004 1937 0490grid.10223.32Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot Tak, 63110 Thailand
| | - Francois Nosten
- 0000 0004 1937 0490grid.10223.32Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot Tak, 63110 Thailand ,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine Research Building, University of Oxford Old Road Campus, Oxford, OX3 7LJ UK
| | - Susana Campino
- 0000 0004 0425 469Xgrid.8991.9Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT UK
| | - Taane G. Clark
- 0000 0004 0425 469Xgrid.8991.9Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT UK ,0000 0004 0425 469Xgrid.8991.9Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT UK
| | - Nicholas M. Anstey
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0811 Australia
| | - Dominic P. Kwiatkowski
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF UK ,0000 0004 0606 5382grid.10306.34Wellcome Trust Sanger Institute, Hinxton Cambridge, CB10 1SA UK
| | - Ric N. Price
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0811 Australia ,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine Research Building, University of Oxford Old Road Campus, Oxford, OX3 7LJ UK
| |
Collapse
|
13
|
Zhong D, Lo E, Wang X, Yewhalaw D, Zhou G, Atieli HE, Githeko A, Hemming-Schroeder E, Lee MC, Afrane Y, Yan G. Multiplicity and molecular epidemiology of Plasmodium vivax and Plasmodium falciparum infections in East Africa. Malar J 2018; 17:185. [PMID: 29720181 PMCID: PMC5932820 DOI: 10.1186/s12936-018-2337-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/26/2018] [Indexed: 11/18/2022] Open
Abstract
Background Parasite genetic diversity and multiplicity of infection (MOI) affect clinical outcomes, response to drug treatment and naturally-acquired or vaccine-induced immunity. Traditional methods often underestimate the frequency and diversity of multiclonal infections due to technical sensitivity and specificity. Next-generation sequencing techniques provide a novel opportunity to study complexity of parasite populations and molecular epidemiology. Methods Symptomatic and asymptomatic Plasmodium vivax samples were collected from health centres/hospitals and schools, respectively, from 2011 to 2015 in Ethiopia. Similarly, both symptomatic and asymptomatic Plasmodium falciparum samples were collected, respectively, from hospitals and schools in 2005 and 2015 in Kenya. Finger-pricked blood samples were collected and dried on filter paper. Long amplicon (> 400 bp) deep sequencing of merozoite surface protein 1 (msp1) gene was conducted to determine multiplicity and molecular epidemiology of P. vivax and P. falciparum infections. The results were compared with those based on short amplicon (117 bp) deep sequencing. Results A total of 139 P. vivax and 222 P. falciparum samples were pyro-sequenced for pvmsp1 and pfmsp1, yielding a total of 21 P. vivax and 99 P. falciparum predominant haplotypes. The average MOI for P. vivax and P. falciparum were 2.16 and 2.68, respectively, which were significantly higher than that of microsatellite markers and short amplicon (117 bp) deep sequencing. Multiclonal infections were detected in 62.2% of the samples for P. vivax and 74.8% of the samples for P. falciparum. Four out of the five subjects with recurrent P. vivax malaria were found to be a relapse 44–65 days after clearance of parasites. No difference was observed in MOI among P. vivax patients of different symptoms, ages and genders. Similar patterns were also observed in P. falciparum except for one study site in Kenyan lowland areas with significantly higher MOI. Conclusions The study used a novel method to evaluate Plasmodium MOI and molecular epidemiological patterns by long amplicon ultra-deep sequencing. The complexity of infections were similar among age groups, symptoms, genders, transmission settings (spatial heterogeneity), as well as over years (pre- vs. post-scale-up interventions). This study demonstrated that long amplicon deep sequencing is a useful tool to investigate multiplicity and molecular epidemiology of Plasmodium parasite infections. Electronic supplementary material The online version of this article (10.1186/s12936-018-2337-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA.
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Xiaoming Wang
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA
| | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia.,Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Guofa Zhou
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA
| | - Harrysone E Atieli
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Andrew Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Ming-Chieh Lee
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA
| | - Yaw Afrane
- Department of Medical Microbiology, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA.
| |
Collapse
|
14
|
Zhong D, Koepfli C, Cui L, Yan G. Molecular approaches to determine the multiplicity of Plasmodium infections. Malar J 2018; 17:172. [PMID: 29685152 PMCID: PMC5914063 DOI: 10.1186/s12936-018-2322-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
Multiplicity of infection (MOI), also termed complexity of infection (COI), is defined as the number of genetically distinct parasite strains co-infecting a single host, which is an important indicator of malaria epidemiology. PCR-based genotyping often underestimates MOI. Next generation sequencing technologies provide much more accurate and genome-wide characterization of polyclonal infections. However, complete haplotype characterization of multiclonal infections remains a challenge due to PCR artifacts and sequencing errors, and requires efficient computational tools. In this review, the advantages and limitations of current molecular approaches to determine multiplicity of malaria parasite infection are discussed.
Collapse
Affiliation(s)
- Daibin Zhong
- Program in Public Health, University of California, Irvine, CA, 92617, USA.
| | - Cristian Koepfli
- Program in Public Health, University of California, Irvine, CA, 92617, USA
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA, 92617, USA.
| |
Collapse
|