1
|
de Jong GM, Yap XZ, Walk J, Dik WA, McCall MBB, van Genderen PJJ, van Hellemond JJ, Verbon A, Sauerwein RW. Baseline TGF-β correlates with protection after immunization with Plasmodium falciparum sporozoites in the Controlled Human Malaria Infection model. Immunol Lett 2023; 258:20-23. [PMID: 37075916 DOI: 10.1016/j.imlet.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/31/2023] [Accepted: 04/15/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Here we assessed a possible relationship between baseline TGF-β concentrations and acquisition of sterile immunity after Plasmodium falciparum sporozoite immunization. METHODS TGF-β concentrations were determined in samples of 65 malaria-naive volunteers in 4 studies either prior to and after challenge infection, or prior to and after first immunizing infection under chemoprophylaxis with P. falciparum sporozoites. RESULTS High baseline TGF-β concentrations were associated with rapid acquisition of sterile protection (p=0.028). CONCLUSION Baseline TGF-β concentrations predict the efficiency of acquisition of sterile immunity following sporozoite immunisation and may represent a steady-state regulatory mechanism to keep in check immune systems with a low threshold for activation.
Collapse
Affiliation(s)
- G M de Jong
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, 6500HB, The Netherlands
| | - X Z Yap
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, 6500HB, The Netherlands
| | - J Walk
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, 6500HB, The Netherlands
| | - W A Dik
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC University Medical Center, Rotterdam, 3015GD, the Netherlands
| | - M B B McCall
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, 6500HB, The Netherlands
| | - P J J van Genderen
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - J J van Hellemond
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - A Verbon
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - R W Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, 6500HB, The Netherlands.
| |
Collapse
|
2
|
van der Boor SC, Alkema M, van Gemert GJ, Teelen K, van de Vegte-Bolmer M, Walk J, van Crevel R, de Mast Q, Ockenhouse CF, Sauerwein RW, McCall MBB. Whole sporozoite immunization with Plasmodium falciparum strain NF135 in a randomized trial. BMC Med 2023; 21:137. [PMID: 37024868 PMCID: PMC10079489 DOI: 10.1186/s12916-023-02788-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/15/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Whole sporozoite immunization under chemoprophylaxis (CPS regime) induces long-lasting sterile homologous protection in the controlled human malaria infection model using Plasmodium falciparum strain NF54. The relative proficiency of liver-stage parasite development may be an important factor determining immunization efficacy. Previous studies show that Plasmodium falciparum strain NF135 produces relatively high numbers of large liver-stage schizonts in vitro. Here, we evaluate this strain for use in CPS immunization regimes. METHODS In a partially randomized, open-label study conducted at the Radboudumc, Nijmegen, the Netherlands, healthy, malaria-naïve adults were immunized by three rounds of fifteen or five NF135-infected mosquito bites under mefloquine prophylaxis (cohort A) or fifteen NF135-infected mosquito bites and presumptive treatment with artemether/lumefantrine (cohort B). Cohort A participants were exposed to a homologous challenge 19 weeks after immunization. The primary objective of the study was to evaluate the safety and tolerability of CPS immunizations with NF135. RESULTS Relatively high liver-to-blood inocula were observed during immunization with NF135 in both cohorts. Eighteen of 30 (60%) high-dose participants and 3/10 (30%) low-dose participants experienced grade 3 adverse events 7 to 21 days following their first immunization. All cohort A participants and two participants in cohort B developed breakthrough blood-stage malaria infections during immunizations requiring rescue treatment. The resulting compromised immunizations induced modest sterile protection against homologous challenge in cohort A (5/17; 29%). CONCLUSIONS These CPS regimes using NF135 were relatively poorly tolerated and frequently required rescue treatment, thereby compromising immunization efficiency and protective efficacy. Consequently, the full potential of NF135 sporozoites for induction of immune protection remains inconclusive. Nonetheless, the high liver-stage burden achieved by this strain highlights it as an interesting potential candidate for novel whole sporozoite immunization approaches. TRIAL REGISTRATION The trial was registered at ClinicalTrials.gov under identifier NCT03813108.
Collapse
Affiliation(s)
- Saskia C van der Boor
- Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Manon Alkema
- Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Karina Teelen
- Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Marga van de Vegte-Bolmer
- Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Jona Walk
- Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
- Present affiliation: TropIQ Health Sciences, Transistorweg 5-C02, 6534 AT, Nijmegen, The Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Centre, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Centre, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | | | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.
- Present affiliation: TropIQ Health Sciences, Transistorweg 5-C02, 6534 AT, Nijmegen, The Netherlands.
| | - Matthew B B McCall
- Department of Medical Microbiology, Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
4
|
Nunes-Cabaço H, Moita D, Prudêncio M. Five decades of clinical assessment of whole-sporozoite malaria vaccines. Front Immunol 2022; 13:977472. [PMID: 36159849 PMCID: PMC9493004 DOI: 10.3389/fimmu.2022.977472] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
In 1967, pioneering work by Ruth Nussenzweig demonstrated for the first time that irradiated sporozoites of the rodent malaria parasite Plasmodium berghei protected mice against a challenge with infectious parasites of the same species. This remarkable finding opened up entirely new prospects of effective vaccination against malaria using attenuated sporozoites as immunization agents. The potential for whole-sporozoite-based immunization in humans was established in a clinical study in 1973, when a volunteer exposed to X-irradiated P. falciparum sporozoites was found to be protected against malaria following challenge with a homologous strain of this parasite. Nearly five decades later, much has been achieved in the field of whole-sporozoite malaria vaccination, and multiple reports on the clinical evaluation of such candidates have emerged. However, this process has known different paces before and after the turn of the century. While only a few clinical studies were published in the 1970’s, 1980’s and 1990’s, remarkable progress was made in the 2000’s and beyond. This article reviews the history of the clinical assessment of whole-sporozoite malaria vaccines over the last forty-nine years, highlighting the impressive achievements made over the last few years, and discussing some of the challenges ahead.
Collapse
|
5
|
Chaudhury S, Yu C, Liu R, Kumar K, Hornby S, Duplessis C, Sklar JM, Epstein JE, Reifman J. Wearables Detect Malaria Early in a Controlled Human-Infection Study. IEEE Trans Biomed Eng 2021; 69:2119-2129. [PMID: 34941497 DOI: 10.1109/tbme.2021.3137756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Observational studies on the use of commercially available wearable devices for infection detection lack the rigor of controlled clinical studies, where time of exposure and onset of infection are exactly known. Towards that end, we carried out a feasibility study using a commercial smartwatch for monitoring of heart rate, skin temperature, and body acceleration on subjects as they underwent a controlled human malaria infection (CHMI) challenge. METHODS Ten subjects underwent CHMI and were asked to wear the smartwatch for at least 12 hours/day from 2 weeks pre-challenge to 4 weeks post-challenge. Using these data, we developed 2B-Healthy, a Bayesian-based infection prediction algorithm that estimates a probability of infection. We also collected data from eight control subjects for 4 weeks to assess the false-positive rate of 2B-Healthy. RESULTS Nine of 10 CHMI subjects developed parasitemia, with an average time to parasitemia of 12 days. 2B-Healthy detected infection in seven of nine subjects (78% sensitivity), where in six subjects it detected infection 6 days before parasitemia (on average). In the eight control subjects, we obtained a false-positive rate of 6%/week. CONCLUSION The 2B-Healthy algorithm was able to reliably detect infection prior to the onset of symptoms using data collected from a commercial smartwatch in a controlled human infection study. SIGNIFICANCE Our findings demonstrate the feasibility of wearables as a screening device to provide early warning of infection and support further research on the use of the 2B-Healthy algorithm as the basis for a wearable infection-detection platform.
Collapse
|
6
|
Shibeshi W, Bagchus W, Yalkinoglu Ö, Tappert A, Engidawork E, Oeuvray C. Reproducibility of malaria sporozoite challenge model in humans for evaluating efficacy of vaccines and drugs: a systematic review. BMC Infect Dis 2021; 21:1274. [PMID: 34930178 PMCID: PMC8686662 DOI: 10.1186/s12879-021-06953-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The development of novel malaria vaccines and antimalarial drugs is limited partly by emerging challenges to conduct field trials in malaria endemic areas, including unknown effects of existing immunity and a reported fall in malaria incidence. As a result, Controlled Human Malaria Infection (CHMI) has become an important approach for accelerated development of malarial vaccines and drugs. We conducted a systematic review of the literature to establish aggregate evidence on the reproducibility of a malaria sporozoite challenge model. METHODS A systematic review of research articles published between 1990 and 2018 on efficacy testing of malaria vaccines and drugs using sporozoite challenge and sporozoite infectivity studies was conducted using Pubmed, Scopus, Embase and Cochrane Library, ClinicalTrials.gov and Trialtrove. The inclusion criteria were randomized and non-randomized, controlled or open-label trials using P. falciparum or P. vivax sporozoite challenges. The data were extracted from articles using standardized data extraction forms and descriptive analysis was performed for evidence synthesis. The endpoints considered were infectivity, prepatent period, parasitemia and safety of sporozoite challenge. RESULTS Seventy CHMI trials conducted with a total of 2329 adult healthy volunteers were used for analysis. CHMI was induced by bites of mosquitoes infected with P. falciparum or P. vivax in 52 trials and by direct venous inoculation of P. falciparum sporozoites (PfSPZ challenge) in 18 trials. Inoculation with P. falciparum-infected mosquitoes produced 100% infectivity in 40 studies and the mean/median prepatent period assessed by thick blood smear (TBS) microscopy was ≤ 12 days in 24 studies. On the other hand, out of 12 infectivity studies conducted using PfSPZ challenge, 100% infection rate was reproduced in 9 studies with a mean or median prepatent period of 11 to 15.3 days as assessed by TBS and 6.8 to 12.6 days by PCR. The safety profile of P. falciparum and P.vivax CHMI was characterized by consistent features of malaria infection. CONCLUSION There is ample evidence on consistency of P. falciparum CHMI models in terms of infectivity and safety endpoints, which supports applicability of CHMI in vaccine and drug development. PfSPZ challenge appears more feasible for African trials based on current evidence of safety and efficacy.
Collapse
Affiliation(s)
- Workineh Shibeshi
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
- Global Health Institute of Merck, Ares Trading S.A., A subsidiary of Merck KGaA, Darmstadt, Germany.
| | - Wilhelmina Bagchus
- Translational Medicine, Merck Serono S.A., An Affiliate of Merck KGaA, Darmstadt, Germany
| | - Özkan Yalkinoglu
- Translational Medicine, Merck Healthcare KGaA, Darmstadt, Germany
| | - Aliona Tappert
- Global Patient Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Claude Oeuvray
- Global Health Institute of Merck, Ares Trading S.A., A subsidiary of Merck KGaA, Darmstadt, Germany
| |
Collapse
|
7
|
Abstract
Introduction: An effective vaccine against malaria forms a global health priority. Both naturally acquired immunity and sterile protection induced by irradiated sporozoite immunization were described decades ago. Still no vaccine exists that sufficiently protects children in endemic areas. Identifying immunological correlates of vaccine efficacy can inform rational vaccine design and potentially accelerate clinical development.Areas covered: We discuss recent research on immunological correlates of malaria vaccine efficacy, including: insights from state-of-the-art omics platforms and systems vaccinology analyses; functional anti-parasitic assays; pre-immunization predictors of vaccine efficacy; and comparison of correlates of vaccine efficacy against controlled human malaria infections (CHMI) and against naturally acquired infections.Expert Opinion: Effective vaccination may be achievable without necessarily understanding immunological correlates, but the relatively disappointing efficacy of malaria vaccine candidates in target populations is concerning. Hypothesis-generating omics and systems vaccinology analyses, alongside assessment of pre-immunization correlates, have the potential to bring about paradigm-shifts in malaria vaccinology. Functional assays may represent in vivo effector mechanisms, but have scarcely been formally assessed as correlates. Crucially, evidence is still meager that correlates of vaccine efficacy against CHMI correspond with those against naturally acquired infections in target populations. Finally, the diversity of immunological assays and efficacy endpoints across malaria vaccine trials remains a major confounder.
Collapse
Affiliation(s)
| | - Matthew B B McCall
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| |
Collapse
|
8
|
Yang ASP, van Waardenburg YM, van de Vegte-Bolmer M, van Gemert GJA, Graumans W, de Wilt JHW, Sauerwein RW. Zonal human hepatocytes are differentially permissive to Plasmodium falciparum malaria parasites. EMBO J 2021; 40:e106583. [PMID: 33459428 PMCID: PMC7957391 DOI: 10.15252/embj.2020106583] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
Plasmodium falciparum (Pf) is a major cause of human malaria and is transmitted by infected Anopheles mosquitoes. The initial asymptomatic infection is characterized by parasite invasion of hepatocytes, followed by massive replication generating schizonts with blood‐infective merozoites. Hepatocytes can be categorized by their zonal location and metabolic functions within a liver lobule. To understand specific host conditions that affect infectivity, we studied Pf parasite liver stage development in relation to the metabolic heterogeneity of fresh human hepatocytes. We found selective preference of different Pf strains for a minority of hepatocytes, which are characterized by the particular presence of glutamine synthetase (hGS). Schizont growth is significantly enhanced by hGS uptake early in development, showcasing a novel import system. In conclusion, Pf development is strongly determined by the differential metabolic status in hepatocyte subtypes. These findings underscore the importance of detailed understanding of hepatocyte host‐Pf interactions and may delineate novel pathways for intervention strategies.
Collapse
Affiliation(s)
- Annie S P Yang
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Youri M van Waardenburg
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marga van de Vegte-Bolmer
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert-Jan A van Gemert
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wouter Graumans
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johannes H W de Wilt
- Department of surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robert W Sauerwein
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Schmaler M, Orlova-Fink N, Rutishauser T, Abdulla S, Daubenberger C. Human unconventional T cells in Plasmodium falciparum infection. Semin Immunopathol 2020; 42:265-277. [PMID: 32076813 PMCID: PMC7223888 DOI: 10.1007/s00281-020-00791-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022]
Abstract
Malaria is an old scourge of humankind and has a large negative impact on the economic development of affected communities. Recent success in malaria control and reduction of mortality seems to have stalled emphasizing that our current intervention tools need to be complemented by malaria vaccines. Different populations of unconventional T cells such as mucosal-associated invariant T (MAIT) cells, invariant natural killer T (iNKT) cells and γδ T cells are gaining attention in the field of malaria immunology. Significant advances in our basic understanding of unconventional T cell biology in rodent malaria models have been made, however, their roles in humans during malaria are less clear. Unconventional T cells are abundant in skin, gut and liver tissues, and long-lasting expansions and functional alterations were observed upon malaria infection in malaria naïve and malaria pre-exposed volunteers. Here, we review the current understanding of involvement of unconventional T cells in anti-Plasmodium falciparum immunity and highlight potential future research avenues.
Collapse
Affiliation(s)
- Mathias Schmaler
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Nina Orlova-Fink
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Tobias Rutishauser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland
| | - Salim Abdulla
- Ifakara Health Institute, Bagamoyo Clinical Trial Unit, Bagamoyo, Tanzania
| | - Claudia Daubenberger
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland.
| |
Collapse
|
10
|
Abstract
Much of the gain in malaria control, in terms of regional achievements in restricting geographical spread and reducing malaria cases and deaths, can be attributed to large-scale deployment of antimalarial drugs, insecticide-treated bed nets, and early diagnostics. However, despite impressive progress, control efforts have stalled because of logistics, unsustainable delivery, or short-term effectiveness of existing interventions or a combination of these reasons. A highly efficacious malaria vaccine as an additional tool would go a long way, but success in the development of this important intervention remains elusive. Moreover, most of the vaccine candidate antigens that were investigated in early-stage clinical trials, selected partly because of their immunogenicity and abundance during natural malaria infection, were polymorphic or structurally complex or both. Likewise, we have a limited understanding of immune mechanisms that confer protection. We reflect on some considerable technological and scientific progress that has been achieved and the lessons learned.
Collapse
Affiliation(s)
- Nirianne Marie Q Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
11
|
Chughlay MF, Akakpo S, Odedra A, Csermak-Renner K, Djeriou E, Winnips C, Leboulleux D, Gaur AH, Shanks GD, McCarthy J, Chalon S. Liver Enzyme Elevations in Plasmodium falciparum Volunteer Infection Studies: Findings and Recommendations. Am J Trop Med Hyg 2020; 103:378-393. [PMID: 32314694 PMCID: PMC7356411 DOI: 10.4269/ajtmh.19-0846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Malaria volunteer infection studies (VISs) accelerate new drug and vaccine development. In the induced blood-stage malaria (IBSM) model, volunteers are inoculated with erythrocytes infected with Plasmodium falciparum. Observations of elevated liver enzymes in the IBSM model with new chemical entities (NCEs) promoted an analysis of available data. Data were reviewed from eight IBSM studies of seven different NCEs, plus two studies with the registered antimalarial piperaquine conducted between June 2013 and January 2017 at QIMR Berghofer, Brisbane, Australia. Alanine aminotransferase (ALT) was elevated (> 2.5 times the upper limit of normal [×ULN]) in 20/114 (17.5%) participants. Of these, 8.9% (10/114) had moderate increases (> 2.5–5 × ULN), noted in seven studies of six different NCEs ± piperaquine or piperaquine alone, and 8.9% (10/114) had severe elevations (> 5 × ULN), occurring in six studies of six different NCEs ± piperaquine. Aspartate aminotransferase (AST) was elevated (> 2.5 × ULN) in 11.4% (13/114) of participants, across six of the 10 studies. Bilirubin was > 2 × ULN in one participant. Published data from other VIS models, using sporozoite inoculation by systemic administration or mosquito feeding, also showed moderate/severe liver enzyme elevations. In conclusion, liver enzyme elevations in IBSM studies are most likely multifactorial and could be caused by the model conditions, that is, malaria infection/parasite density and/or effective parasite clearance, or by participant-specific risk factors, acetaminophen administration, or direct hepatotoxicity of the test drug. We make recommendations that may mitigate the risk of liver enzyme elevations in future VISs and propose measures to assist their interpretation, should they occur.
Collapse
Affiliation(s)
| | | | - Anand Odedra
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | | | | | | | - Aditya H Gaur
- St. Jude Children's Research Hospital, Memphis, Tennessee
| | - G Dennis Shanks
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - James McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | |
Collapse
|
12
|
Langenberg MCC, Dekkers OM, Roestenberg M. Are placebo controls necessary in controlled human infection trials for vaccines? THE LANCET. INFECTIOUS DISEASES 2020; 20:e69-e74. [PMID: 32142640 DOI: 10.1016/s1473-3099(20)30020-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 01/02/2020] [Accepted: 01/12/2020] [Indexed: 12/18/2022]
Abstract
Controlled human infection trials, whereby a small group of healthy participants is deliberately exposed to a pathogen under controlled circumstances, can provide preliminary data for vaccine efficacy and for the selection of the most promising candidate vaccines for field trials. Because of the potential harm to participants through the deliberate exposure to a pathogen, the use of smaller groups minimises the cumulative risk. As such, a control group that receives a placebo vaccine followed by controlled exposure to a pathogen should be scientifically well justified. As these types of trials are designed to generate consistent infection rates and thus comparable outcomes across populations and trial sites, data from past studies (historical data) could be used as a valid alternative to placebo groups. In this Personal View, we review this option and highlight the considerations for choosing historical data as a suitable control. For the widespread application of this method, responsibility for the centralisation and sharing of data from controlled human infection trials lies with the scientific community.
Collapse
Affiliation(s)
| | - Olaf M Dekkers
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands; Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
13
|
Seilie AM, Chang M, Hanron AE, Billman ZP, Stone BC, Zhou K, Olsen TM, Daza G, Ortega J, Cruz KR, Smith N, Healy SA, Neal J, Wallis CK, Shelton L, Mankowski TV, Wong-Madden S, Mikolajczak SA, Vaughan AM, Kappe SHI, Fishbaugher M, Betz W, Kennedy M, Hume JCC, Talley AK, Hoffman SL, Chakravarty S, Sim BKL, Richie TL, Wald A, Plowe CV, Lyke KE, Adams M, Fahle GA, Cowan EP, Duffy PE, Kublin JG, Murphy SC. Beyond Blood Smears: Qualification of Plasmodium 18S rRNA as a Biomarker for Controlled Human Malaria Infections. Am J Trop Med Hyg 2020; 100:1466-1476. [PMID: 31017084 PMCID: PMC6553913 DOI: 10.4269/ajtmh.19-0094] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
18S rRNA is a biomarker that provides an alternative to thick blood smears in controlled human malaria infection (CHMI) trials. We reviewed data from CHMI trials at non-endemic sites that used blood smears and Plasmodium 18S rRNA/rDNA biomarker nucleic acid tests (NATs) for time to positivity. We validated a multiplex quantitative reverse transcription–polymerase chain reaction (qRT-PCR) for Plasmodium 18S rRNA, prospectively compared blood smears and qRT-PCR for three trials, and modeled treatment effects at different biomarker-defined parasite densities to assess the impact on infection detection, symptom reduction, and measured intervention efficacy. Literature review demonstrated accelerated NAT-based infection detection compared with blood smears (mean acceleration: 3.2–3.6 days). For prospectively tested trials, the validated Plasmodium 18S rRNA qRT-PCR positivity was earlier (7.6 days; 95% CI: 7.1–8.1 days) than blood smears (11.0 days; 95% CI: 10.3–11.8 days) and significantly preceded the onset of grade 2 malaria-related symptoms (12.2 days; 95% CI: 10.6–13.3 days). Discrepant analysis showed that the risk of a blood smear–positive, biomarker-negative result was negligible. Data modeling predicted that treatment triggered by specific biomarker-defined thresholds can differentiate complete, partial, and non-protective outcomes and eliminate many grade 2 and most grade 3 malaria-related symptoms post-CHMI. Plasmodium 18S rRNA is a sensitive and specific biomarker that can justifiably replace blood smears for infection detection in CHMI trials in non-endemic settings. This study led to biomarker qualification through the U.S. Food and Drug Administration for use in CHMI studies at non-endemic sites, which will facilitate biomarker use for the qualified context of use in drug and vaccine trials.
Collapse
Affiliation(s)
- Annette M Seilie
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Ming Chang
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Amelia E Hanron
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Zachary P Billman
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Brad C Stone
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Kevin Zhou
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Tayla M Olsen
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Glenda Daza
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Jose Ortega
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Kurtis R Cruz
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Nahum Smith
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Washington, Seattle, Washington.,Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Jillian Neal
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Carolyn K Wallis
- Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| | - Lisa Shelton
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Tracie VonGoedert Mankowski
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Sharon Wong-Madden
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sebastian A Mikolajczak
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Matt Fishbaugher
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Will Betz
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Mark Kennedy
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | - Jen C C Hume
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Angela K Talley
- Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington
| | | | | | | | | | - Anna Wald
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington
| | | | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Matthew Adams
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gary A Fahle
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | | | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - James G Kublin
- Seattle Malaria Clinical Trials Center, Fred Hutch Cancer Research Center, Seattle, Washington.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sean C Murphy
- Department of Microbiology, University of Washington, Seattle, Washington.,Seattle Malaria Clinical Trials Center, Fred Hutch Cancer Research Center, Seattle, Washington.,Center for Global Infectious Disease Research, Seattle Children's Research Institute (formerly the Center for Infectious Disease Research), Seattle, Washington.,Department of Laboratory Medicine, Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington
| |
Collapse
|
14
|
Yap XZ, McCall MBB, Sauerwein RW. Fast and fierce versus slow and smooth: Heterogeneity in immune responses to Plasmodium in the controlled human malaria infection model. Immunol Rev 2020; 293:253-269. [PMID: 31605396 PMCID: PMC6973142 DOI: 10.1111/imr.12811] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022]
Abstract
Controlled human malaria infection (CHMI) is an established model in clinical malaria research. Upon exposure to Plasmodium falciparum parasites, malaria-naive volunteers differ in dynamics and composition of their immune profiles and subsequent capacity to generate protective immunity. CHMI volunteers are either inflammatory responders who have prominent cellular IFN-γ production primarily driven by adaptive T cells, or tempered responders who skew toward antibody-mediated humoral immunity. When exposed to consecutive CHMIs under antimalarial chemoprophylaxis, individuals who can control parasitemia after a single immunization (fast responders) are more likely to be protected against a subsequent challenge infection. Fast responders tend to be inflammatory responders who can rapidly induce long-lived IFN-γ+ T cell responses. Slow responders or even non-responders can also be protected, but via a more diverse range of responses that take a longer time to reach full protective efficacy, in part due to their tempered phenotype. The latter group can be identified at baseline before CHMI by higher expression of inhibitory ligands CTLA-4 and TIM-3 on CD4+ T cells. Delineating heterogeneity in human immune responses to P. falciparum will facilitate rational design and strategy towards effective malaria vaccines.
Collapse
Affiliation(s)
- Xi Zen Yap
- Department of Medical MicrobiologyRadboud University Medical CenterNijmegenThe Netherlands
- Radboud Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands
| | - Matthew B. B. McCall
- Department of Medical MicrobiologyRadboud University Medical CenterNijmegenThe Netherlands
- Radboud Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands
| | - Robert W. Sauerwein
- Department of Medical MicrobiologyRadboud University Medical CenterNijmegenThe Netherlands
- Radboud Center for Infectious DiseasesRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
15
|
Laurens MB, Berry AA, Travassos MA, Strauss K, Adams M, Shrestha B, Li T, Eappen A, Manoj A, Abebe Y, Murshedkar T, Gunasekera A, Richie TL, Lyke KE, Plowe CV, Kennedy JK, Potter GE, Deye GA, Sim BKL, Hoffman SL. Dose-Dependent Infectivity of Aseptic, Purified, Cryopreserved Plasmodium falciparum 7G8 Sporozoites in Malaria-Naive Adults. J Infect Dis 2019; 220:1962-1966. [PMID: 31419294 PMCID: PMC6834064 DOI: 10.1093/infdis/jiz410] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/13/2019] [Indexed: 12/11/2022] Open
Abstract
Direct venous inoculation of 3.2 × 103 aseptic, purified, cryopreserved, vialed Plasmodium falciparum (Pf) strain NF54 sporozoites, PfSPZ Challenge (NF54), has been used for controlled human malaria infection (CHMI) in the United States, 4 European countries, and 6 African countries. In nonimmune adults, this results in 100% infection rates. We conducted a double-blind, randomized, dose-escalation study to assess the infectivity of the 7G8 clone of Pf (PfSPZ Challenge [7G8]). Results showed dose-dependent infectivity from 43% for 8 × 102 PfSPZ to 100% for 4.8 × 103 PfSPZ. PfSPZ Challenge (7G8) will allow for more complete assessment by CHMI of antimalarial vaccines and drugs.
Collapse
Affiliation(s)
- Matthew B Laurens
- Malaria Research Group, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore
| | - Andrea A Berry
- Malaria Research Group, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore
| | - Mark A Travassos
- Malaria Research Group, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore
| | - Kathy Strauss
- Malaria Research Group, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore
| | - Matthew Adams
- Malaria Research Group, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore
| | - Biraj Shrestha
- Malaria Research Group, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore
| | - Tao Li
- Sanaria, Inc, Rockville, Maryland
| | | | | | | | | | | | | | - Kirsten E Lyke
- Malaria Research Group, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore
| | | | | | | | - Gregory A Deye
- Parasitology and International Programs Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | | |
Collapse
|