1
|
Narang G, Jakhan J, Tamang S, Yadav K, Singh V. Characterization of drug resistance genes in Indian Plasmodium falciparum and Plasmodium vivax field isolates. Acta Trop 2024; 255:107218. [PMID: 38636585 DOI: 10.1016/j.actatropica.2024.107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
One of the major challenges for malaria control and elimination is the spread and emergence of antimalarial drug resistance. Mutations in Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) field isolates for five drug resistance genes viz. crt, mdr1, dhps, dhfr and kelch known to confer resistance to choloroquine (CQ), sulfadoxine-pyrimethamine (SP) and artemisinin (ART) and its derivatives were analyzed. A total of 342 symptomatic isolates of P. falciparum (Pf) and P. vivax (Pv) from 1993 to 2014 were retrieved from malaria parasite repository at National Institute of Malaria Research (NIMR). Sample DNA was extracted from dried blood spots and various targeted single nucleotide polymorphisms (SNPs) associated with antimalarial drug resistance were analysed for these isolates. 72S (67.7%) and 76T (83.8%) mutations along with SVMNT haplotype (67.7%) predominated the study population for Pfcrt. The most prevalent SNPs were 108N (73.2%) and 437G (24.8%) and the most prevalent haplotypes were ACNRNI (51.9%) and SAKAA (74.5%) in Pfdhfr and Pfdhps respectively. Only two mutations in Pfmdr1, 86Y (26.31%) and 184F (56.26%), were seen frequently in our study population. No mutations associated with Pfk13 were observed. For Pv, all the studied isolates showed two Pvdhps mutations, 383G and 553G, and two Pfdhfr mutations, 58R and 117N. Similarly, three mutations, viz. 958M, 908L and 1076L were found in Pvmdr1. No variations were observed in Pvcrt-o and Pvk12 genes. Overall, our study demonstrates an increase in mutations associated with SP resistance in both Pf and Pv, however, no single nucleotide polymorphisms (SNPs) associated with ART resistance have been observed for either species. Various SNPs associated with CQ resistance were seen in Pf; whereas only Pvmdr1 associated resistant SNPs were observed in Pv. Therefore, molecular characterization of drug resistance genes is essential for timely monitoring and prevention of malaria by identifying the circulating drug resistant parasites in the country.
Collapse
Affiliation(s)
- Geetika Narang
- ICMR-National Institute of Malaria Research (NIMR), Sector-8, Dwarka, New Delhi 110077, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Jahnvi Jakhan
- ICMR-National Institute of Malaria Research (NIMR), Sector-8, Dwarka, New Delhi 110077, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Suman Tamang
- ICMR-National Institute of Malaria Research (NIMR), Sector-8, Dwarka, New Delhi 110077, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Karmveer Yadav
- ICMR-National Institute of Malaria Research (NIMR), Sector-8, Dwarka, New Delhi 110077, India
| | - Vineeta Singh
- ICMR-National Institute of Malaria Research (NIMR), Sector-8, Dwarka, New Delhi 110077, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
2
|
Rosenthal PJ, Asua V, Conrad MD. Emergence, transmission dynamics and mechanisms of artemisinin partial resistance in malaria parasites in Africa. Nat Rev Microbiol 2024; 22:373-384. [PMID: 38321292 DOI: 10.1038/s41579-024-01008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 02/08/2024]
Abstract
Malaria, mostly due to Plasmodium falciparum infection in Africa, remains one of the most important infectious diseases in the world. Standard treatment for uncomplicated P. falciparum malaria is artemisinin-based combination therapy (ACT), which includes a rapid-acting artemisinin derivative plus a longer-acting partner drug, and standard therapy for severe P. falciparum malaria is intravenous artesunate. The efficacy of artemisinins and ACT has been threatened by the emergence of artemisinin partial resistance in Southeast Asia, mediated principally by mutations in the P. falciparum Kelch 13 (K13) protein. High ACT treatment failure rates have occurred when resistance to partner drugs is also seen. Recently, artemisinin partial resistance has emerged in Rwanda, Uganda and the Horn of Africa, with independent emergences of different K13 mutants in each region. In this Review, we summarize our current knowledge of artemisinin partial resistance and focus on the emergence of resistance in Africa, including its epidemiology, transmission dynamics and mechanisms. At present, the clinical impact of emerging resistance in Africa is unclear and most available evidence suggests that the efficacies of leading ACTs remain excellent, but there is an urgent need to better appreciate the extent of the problem and its consequences for the treatment and control of malaria.
Collapse
Affiliation(s)
| | - Victor Asua
- Infectious Diseases Research Collaboration, Kampala, Uganda
- University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
3
|
Nain M, Dhorda M, Flegg JA, Gupta A, Harrison LE, Singh-Phulgenda S, Otienoburu SD, Harriss E, Bharti PK, Behera B, Rahi M, Guerin PJ, Sharma A. Systematic Review and Geospatial Modeling of Molecular Markers of Resistance to Artemisinins and Sulfadoxine-Pyrimethamine in Plasmodium falciparum in India. Am J Trop Med Hyg 2024; 110:910-920. [PMID: 38574550 PMCID: PMC11066343 DOI: 10.4269/ajtmh.23-0631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/17/2023] [Indexed: 04/06/2024] Open
Abstract
Surveillance for genetic markers of resistance can provide valuable information on the likely efficacy of antimalarials but needs to be targeted to ensure optimal use of resources. We conducted a systematic search and review of publications in seven databases to compile resistance marker data from studies in India. The sample collection from the studies identified from this search was conducted between 1994 and 2020, and these studies were published between 1994 and 2022. In all, Plasmodium falciparum Kelch13 (PfK13), P. falciparum dihydropteroate synthase, and P. falciparum dihydrofolate reductase (PfDHPS) genotype data from 2,953, 4,148, and 4,222 blood samples from patients with laboratory-confirmed malaria, respectively, were extracted from these publications and uploaded onto the WorldWide Antimalarial Resistance Network molecular surveyors. These data were fed into hierarchical geostatistical models to produce maps with a predicted prevalence of the PfK13 and PfDHPS markers, and of the associated uncertainty. Zones with a predicted PfDHPS 540E prevalence of >15% were identified in central, eastern, and northeastern India. The predicted prevalence of PfK13 mutants was nonzero at only a few locations, but were within or adjacent to the zones with >15% prevalence of PfDHPS 540E. There may be a greater probability of artesunate-sulfadoxine-pyrimethamine failures in these regions, but these predictions need confirmation. This work can be applied in India and elsewhere to help identify the treatments most likely to be effective for malaria elimination.
Collapse
Affiliation(s)
- Minu Nain
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Mehul Dhorda
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
- Infectious Diseases Data Observatory, Oxford, United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jennifer A. Flegg
- School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
| | - Apoorv Gupta
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Lucinda E. Harrison
- School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
| | - Sauman Singh-Phulgenda
- Infectious Diseases Data Observatory, Oxford, United Kingdom
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sabina D. Otienoburu
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
- Infectious Diseases Data Observatory, Oxford, United Kingdom
- College of STEM, Johnson C. Smith University, Charlotte, North Carolina
| | - Eli Harriss
- The Knowledge Centre, Bodleian Health Care Libraries, University of Oxford, Oxford, United Kingdom
| | | | - Beauty Behera
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Manju Rahi
- ICMR-National Institute of Malaria Research, New Delhi, India
- Indian Council of Medical Research, New Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh
| | - Philippe J. Guerin
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
- Infectious Diseases Data Observatory, Oxford, United Kingdom
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Amit Sharma
- ICMR-National Institute of Malaria Research, New Delhi, India
- Molecular Medicine, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
4
|
Molecular assays for determining sulphadoxine-pyrimethamine drug resistance in India: a systematic review. Parasitol Res 2022; 121:2765-2774. [PMID: 35980472 DOI: 10.1007/s00436-022-07623-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
A plethora of studies analyse the molecular markers of drug resistance and hence help in guiding the evidence-based malaria treatment policies in India. For reporting mutations, a number of techniques including DNA sequencing, restriction-fragment length polymorphism and mutation-specific polymerase chain reaction have been employed across numerous studies, including variations in the methodology used. However, there is no sufficient data from India comparing these methods as well as report the prevalence of polymorphisms in SP drug resistance molecular markers independently using such methods. Therefore, all data from Indian studies available for molecular marker studies of Plasmodium falciparum drug resistance to sulphadoxine-pyrimethamine was gathered, and a systematic review was performed. This systematic review identifies the molecular methods in use in India and compares each method for detecting sulphadoxine-pyrimethamine drug resistance marker. To delay the spread of drug-resistant parasite strains, a simplified and standardized molecular method is much needed which can be obtained by analysing the performance of each method in use and answering the necessity of newer methodological approaches.
Collapse
|
5
|
The Effect of Socioeconomic Factors and Indoor Residual Spraying on Malaria in Mangaluru, India: A Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211853. [PMID: 34831610 PMCID: PMC8618973 DOI: 10.3390/ijerph182211853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022]
Abstract
India faces 0.5 million malaria cases annually, including half of all Plasmodium vivax malaria cases worldwide. This case–control study assessed socioeconomic determinants of urban malaria in coastal Mangaluru, Karnataka, southwestern India. Between June and December 2015, we recruited 859 malaria patients presenting at the governmental Wenlock Hospital and 2190 asymptomatic community controls. We assessed clinical, parasitological, and socioeconomic data. Among patients, p. vivax mono-infection (70.1%) predominated. Most patients were male (93%), adult (median, 27 years), had no or low-level education (70.3%), and 57.1% were daily labourers or construction workers. In controls (59.3% male; median age, 32 years; no/low-level education, 54.5%; daily labourers/construction workers, 41.3%), 4.1% showed asymptomatic Plasmodium infection. The odds of malaria was reduced among those who had completed 10th school grade (aOR, 0.3; 95% CI, 0.26–0.42), lived in a building with a tiled roof (aOR, 0.71; 95% CI, 0.53–0.95), and reported recent indoor residual spraying (aOR, 0.02; 95% CI, 0.01–0.04). In contrast, migrant status was a risk factor for malaria (aOR, 2.43; 95% CI, 1.60–3.67). Malaria in Mangaluru is influenced by education, housing condition, and migration. Indoor residual spraying greatly contributes to reducing malaria in this community and should be promoted, especially among its marginalised members.
Collapse
|
6
|
Ozarkar A, Kanyal A, Dass S, Deshpande P, Deobagkar D, Karmodiya K. Analysis of drug resistance marker genes of Plasmodium falciparum after implementation of artemisinin-based combination therapy in Pune district, India. J Biosci 2021. [DOI: 10.1007/s12038-021-00200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Pathak A, Mårtensson A, Gawariker S, Sharma A, Diwan V, Purohit M, Ursing J. Stable high frequencies of sulfadoxine-pyrimethamine resistance associated mutations and absence of K13 mutations in Plasmodium falciparum 3 and 4 years after the introduction of artesunate plus sulfadoxine-pyrimethamine in Ujjain, Madhya Pradesh, India. Malar J 2020; 19:290. [PMID: 32795288 PMCID: PMC7427725 DOI: 10.1186/s12936-020-03274-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/29/2020] [Indexed: 11/27/2022] Open
Abstract
Background Artesunate plus sulfadoxine–pyrimethamine (ASP) is first-line treatment for uncomplicated Plasmodium falciparum malaria in most of India, except for six North-eastern provinces where treatment failure rates were high. In Ujjain, central India, the frequency of mutations associated with increased drug tolerance, but not overt resistance to sulfadoxine and pyrimethamine were 9% and > 80%, respectively, in 2009 and 2010, just prior to the introduction of ASP. The frequency of drug resistance associated mutations in Ujjain in 2015–2016 after 3–4 years of ASP use, are reported. Methods Blood samples from patients with P. falciparum mono-infection verified by microscopy were collected on filter-paper at all nine major pathology laboratories in Ujjain city. Codons pfdhfr 16–185, pfdhps 436–632 and K13 407–689 were identified by sequencing. Pfcrt K76T and pfmdr1 N86Y were identified by restriction fragment length polymorphism. Results Sulfadoxine–pyrimethamine resistance-associated pfdhfr 108 N and 59R alleles were found in 100/104 (96%) and 87/91 (96%) samples, respectively. Pfdhps 437G was found in 10/105 (10%) samples. Double mutant pfdhfr 59R + 108 N were found in 75/81 (93%) samples. Triple mutant pfdhfr 59R + 108 N and pfdhps 437G were found in 6/78 (8%) samples. Chloroquine-resistance-associated pfcrt 76T was found in 102/102 (100%). Pfmdr1 N86 and 86Y were identified in 83/115 (72%) and 32/115 (28%) samples, respectively. Conclusion The frequency of P. falciparum with reduced susceptibility to sulfadoxine–pyrimethamine remained high, but did not appear to have increased significantly since the introduction of ASP. No polymorphisms in K13 associated with decreased artemisinin susceptibility were found. ASP probably remained effective, supporting continued ASP use.
Collapse
Affiliation(s)
- Ashish Pathak
- Department of Pediatrics, R D Gardi Medical College, Surasa, 456010, Ujjain, India.,Department of Women and Children's Health, International Maternal and Child Health Unit, Uppsala University, 751 85, Uppsala, Sweden.,Global Health-Health Systems and Policy: Medicines, Focusing Antibiotics, Department of Global Public Health, Karolinska Institutet, Tomtebodavägen 18A, 171 77, Stockholm, Sweden
| | - Andreas Mårtensson
- Department of Women and Children's Health, International Maternal and Child Health Unit, Uppsala University, 751 85, Uppsala, Sweden
| | - Sudhir Gawariker
- Department of Medicine, R D Gardi Medical College, Surasa, 456010, Ujjain, India
| | - Ashish Sharma
- Department of Medicine, R D Gardi Medical College, Surasa, 456010, Ujjain, India
| | - Vishal Diwan
- Department of Women and Children's Health, International Maternal and Child Health Unit, Uppsala University, 751 85, Uppsala, Sweden.,Public Health & Environment in R D Gardi Medical College, Ujjain, India
| | - Manju Purohit
- Global Health-Health Systems and Policy: Medicines, Focusing Antibiotics, Department of Global Public Health, Karolinska Institutet, Tomtebodavägen 18A, 171 77, Stockholm, Sweden.,Department of Pathology, R D Gardi Medical College, Surasa, 456010, Ujjain, India
| | - Johan Ursing
- Department of Infectious Diseases, Danderyd Hospital, Stockholm, Sweden. .,Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden.
| |
Collapse
|
8
|
Pereira DMS, Carvalho Júnior AR, Lacerda EMDCB, da Silva LCN, Marinho CRF, André E, Fernandes ES. Oxidative and nitrosative stresses in cerebral malaria: can we target them to avoid a bad prognosis? J Antimicrob Chemother 2020; 75:1363-1373. [PMID: 32105324 DOI: 10.1093/jac/dkaa032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is currently a global effort to reduce malaria morbidity and mortality. However, malaria still results in the deaths of thousands of people every year. Malaria is caused by Plasmodium spp., parasites transmitted through the bite of an infected female Anopheles mosquito. Treatment timing plays a decisive role in reducing mortality and sequelae associated with the severe forms of the disease such as cerebral malaria (CM). The available antimalarial therapy is considered effective but parasite resistance to these drugs has been observed in some countries. Antimalarial drugs act by increasing parasite lysis, especially through targeting oxidative stress pathways. Here we discuss the roles of reactive oxygen species and reactive nitrogen intermediates in CM as a result of host-parasite interactions. We also present evidence of the potential contribution of oxidative and nitrosative stress-based antimalarial drugs to disease treatment and control.
Collapse
Affiliation(s)
| | | | | | | | | | - Eunice André
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Elizabeth Soares Fernandes
- Programa de Pós-graduação, Universidade CEUMA, São Luís, MA, Brazil.,Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil.,Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| |
Collapse
|
9
|
Development of artemisinin resistance in malaria therapy. Pharmacol Res 2019; 146:104275. [DOI: 10.1016/j.phrs.2019.104275] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 01/23/2023]
|
10
|
Rosenthal PJ. Artemisinin Resistance Outside of Southeast Asia. Am J Trop Med Hyg 2018; 99:1357-1359. [PMID: 30426924 PMCID: PMC6283499 DOI: 10.4269/ajtmh.18-0845] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 11/27/2022] Open
Affiliation(s)
- Philip J. Rosenthal
- Department of Medicine, University of California, San Francisco, San Francisco, California
| |
Collapse
|