1
|
Blanken SL, Barry A, Lanke K, Guelbeogo M, Ouedraogo A, Soulama I, Coulibaly SA, Teelen K, Graumans W, Dumont E, Stone W, Ramjith J, Marti M, Andrade CM, Drakeley C, Collins K, Tiono A, Bousema T. Plasmodium falciparum gametocyte production correlates with genetic markers of parasite replication but is not influenced by experimental exposure to mosquito biting. EBioMedicine 2024; 105:105190. [PMID: 38901148 PMCID: PMC11239461 DOI: 10.1016/j.ebiom.2024.105190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Plasmodium blood-stage parasites balance asexual multiplication with gametocyte development. Few studies link these dynamics with parasite genetic markers in vivo; even fewer in longitudinally monitored infections. Environmental influences on gametocyte formation, such as mosquito exposure, may influence the parasite's investment in gametocyte production. METHODS We investigated gametocyte production and asexual multiplication in two Plasmodium falciparum infected populations; a controlled human malaria infection (CHMI) study and a 28-day observational study in naturally infected individuals in Burkina Faso with controlled mosquito exposure. We measured gene transcript levels previously related to gametocyte formation (ap2-g, surfin1.2, surfin13.1, gexp-2) or inhibition of asexual multiplication (sir2a) and compared transcript levels to ring-stage parasite and mature gametocyte densities. FINDINGS Three of the five markers (ap2-g, surfin1.2, surfin13.1) predicted peak gametocytaemia in the CHMI study. An increase in all five markers in natural infections was associated with an increase in mature gametocytes 14 days later; the effect of sir2a on future gametocytes was strongest (fold change = 1.65, IQR = 1.22-2.24, P = 0.004). Mosquito exposure was not associated with markers of gametocyte formation (ap2-g P = 0.277; sir2a P = 0.499) or carriage of mature gametocytes (P = 0.379). INTERPRETATION All five parasite genetic markers predicted gametocyte formation over a single cycle of gametocyte formation and maturation in vivo; sir2a and ap2-g were most closely associated with gametocyte growth dynamics. We observed no evidence to support the hypothesis that exposure to Anopheles mosquito bites stimulates gametocyte formation. FUNDING This work was funded by the Bill & Melinda Gates Foundation (INDIE OPP1173572), the European Research Council fellowship (ERC-CoG 864180) and UKRI Medical Research Council (MR/T016272/1) and Wellcome Center (218676/Z/19/Z).
Collapse
Affiliation(s)
- Sara Lynn Blanken
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Aissata Barry
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Kjerstin Lanke
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Moussa Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Alphonse Ouedraogo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Issiaka Soulama
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Sam Aboubacar Coulibaly
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Karina Teelen
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Wouter Graumans
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Elin Dumont
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Will Stone
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Jordache Ramjith
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, Institute of Infection and Immunity, University of Glasgow, Glasgow, Scotland, UK
| | - Carolina M Andrade
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Chris Drakeley
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Katharine Collins
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Alfred Tiono
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
2
|
Andolina C, Graumans W, Guelbeogo M, van Gemert GJ, Ramijth J, Harouna S, Soumanaba Z, Stoter R, Vegte-Bolmer M, Pangos M, Sinnis P, Collins K, Staedke SG, Tiono AB, Drakeley C, Lanke K, Bousema T. Quantification of sporozoite expelling by Anopheles mosquitoes infected with laboratory and naturally circulating P. falciparum gametocytes. eLife 2024; 12:RP90989. [PMID: 38517746 PMCID: PMC10959522 DOI: 10.7554/elife.90989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
It is currently unknown whether all Plasmodium falciparum-infected mosquitoes are equally infectious. We assessed sporogonic development using cultured gametocytes in the Netherlands and naturally circulating strains in Burkina Faso. We quantified the number of sporozoites expelled into artificial skin in relation to intact oocysts, ruptured oocysts, and residual salivary gland sporozoites. In laboratory conditions, higher total sporozoite burden was associated with shorter duration of sporogony (p<0.001). Overall, 53% (116/216) of infected Anopheles stephensi mosquitoes expelled sporozoites into artificial skin with a median of 136 expelled sporozoites (interquartile range [IQR], 34-501). There was a strong positive correlation between ruptured oocyst number and salivary gland sporozoite load (ρ = 0.8; p<0.0001) and a weaker positive correlation between salivary gland sporozoite load and number of sporozoites expelled (ρ = 0.35; p=0.0002). In Burkina Faso, Anopheles coluzzii mosquitoes were infected by natural gametocyte carriers. Among salivary gland sporozoite positive mosquitoes, 89% (33/37) expelled sporozoites with a median of 1035 expelled sporozoites (IQR, 171-2969). Again, we observed a strong correlation between ruptured oocyst number and salivary gland sporozoite load (ρ = 0.9; p<0.0001) and a positive correlation between salivary gland sporozoite load and the number of sporozoites expelled (ρ = 0.7; p<0.0001). Several mosquitoes expelled multiple parasite clones during probing. Whilst sporozoite expelling was regularly observed from mosquitoes with low infection burdens, our findings indicate that mosquito infection burden is positively associated with the number of expelled sporozoites. Future work is required to determine the direct implications of these findings for transmission potential.
Collapse
Affiliation(s)
- Chiara Andolina
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Wouter Graumans
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Moussa Guelbeogo
- Centre National de Recherche et de Formation sur le PaludismeOuagadougouBurkina Faso
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Jordache Ramijth
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Soré Harouna
- Centre National de Recherche et de Formation sur le PaludismeOuagadougouBurkina Faso
| | - Zongo Soumanaba
- Centre National de Recherche et de Formation sur le PaludismeOuagadougouBurkina Faso
| | - Rianne Stoter
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Marga Vegte-Bolmer
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Martina Pangos
- Department of Plastic and Reconstructive Surgery, Azienda Ospedaliero Universitaria GiulianoIsontina TriesteTriesteItaly
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns HopkinsBloomberg School of Public HealthBaltimoreUnited States
| | - Katharine Collins
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Sarah G Staedke
- Liverpool School of Tropical MedicineLiverpoolUnited Kingdom
| | - Alfred B Tiono
- Centre National de Recherche et de Formation sur le PaludismeOuagadougouBurkina Faso
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Kjerstin Lanke
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical CentreNijmegenNetherlands
- Department of Immunology and Infection, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| |
Collapse
|
3
|
Yang ASP, Dutta D, Kretzschmar K, Hendriks D, Puschhof J, Hu H, Boonekamp KE, van Waardenburg Y, Chuva de Sousa Lopes SM, van Gemert GJ, de Wilt JHW, Bousema T, Clevers H, Sauerwein RW. Development of Plasmodium falciparum liver-stages in hepatocytes derived from human fetal liver organoid cultures. Nat Commun 2023; 14:4631. [PMID: 37532704 PMCID: PMC10397232 DOI: 10.1038/s41467-023-40298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
Plasmodium falciparum (Pf) parasite development in liver represents the initial step of the life-cycle in the human host after a Pf-infected mosquito bite. While an attractive stage for life-cycle interruption, understanding of parasite-hepatocyte interaction is inadequate due to limitations of existing in vitro models. We explore the suitability of hepatocyte organoids (HepOrgs) for Pf-development and show that these cells permitted parasite invasion, differentiation and maturation of different Pf strains. Single-cell messenger RNA sequencing (scRNAseq) of Pf-infected HepOrg cells has identified 80 Pf-transcripts upregulated on day 5 post-infection. Transcriptional profile changes are found involving distinct metabolic pathways in hepatocytes with Scavenger Receptor B1 (SR-B1) transcripts highly upregulated. A novel functional involvement in schizont maturation is confirmed in fresh primary hepatocytes. Thus, HepOrgs provide a strong foundation for a versatile in vitro model for Pf liver-stages accommodating basic biological studies and accelerated clinical development of novel tools for malaria control.
Collapse
Affiliation(s)
- Annie S P Yang
- Radboud Center of Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Devanjali Dutta
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Merus, Utrecht, the Netherlands
| | - Kai Kretzschmar
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, University Hospital Würzburg, Würzburg, Germany
| | - Delilah Hendriks
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Microbiome and Cancer Devision, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Huili Hu
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- The Research Center of Stem Cell and Regenerative Medicine, Department of Systems Biomedicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kim E Boonekamp
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Signaling and Functional Genomics Devision, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Youri van Waardenburg
- Radboud Center of Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Geert-Jan van Gemert
- Radboud Center of Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Johannes H W de Wilt
- Department of Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Teun Bousema
- Radboud Center of Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
- Princess Maxima Center (PMC) for Pediatric Oncology, Utrecht, the Netherlands.
- Pharma, Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Robert W Sauerwein
- Radboud Center of Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands.
- TropIQ Health Sciences, Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Miglianico M, Bolscher JM, Vos MW, Koolen KJM, de Bruijni M, Rajagopal DS, Chen E, Kiczun M, Gray D, Campo B, Sauerwein RW, Dechering KJ. Assessment of the drugability of initial malaria infection through miniaturized sporozoite assays and high-throughput screening. Commun Biol 2023; 6:216. [PMID: 36823266 PMCID: PMC9950425 DOI: 10.1038/s42003-023-04599-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The sporozoite stages of malaria parasites are the primary cause of infection of the vertebrate host and are targeted by (experimental) vaccines. Yet, little is known about their susceptibility to chemical intervention. Phenotypic high-throughput screens have not been feasible due to a lack of in vitro systems. Here we tested 78 marketed and experimental antimalarial compounds in miniaturized assays addressing sporozoite viability, gliding motility, hepatocyte traversal, and intrahepatocytic schizogony. None potently interfered with sporozoite viability or motility but ten compounds acted at the level of schizogony with IC50s < 100 nM. To identify compounds directly targeting sporozoites, we screened 81,000 compounds from the Global Health Diversity and reFRAME libraries in a sporozoite viability assay using a parasite expressing a luciferase reporter driven by the circumsporozoite promoter. The ionophore gramicidin emerged as the single hit from this screening campaign. Its effect on sporozoite viability translated into reduced gliding motility and an inability of sporozoites to invade human primary hepatocytes and develop into hepatic schizonts. While providing proof of concept for a small molecule sporontocidal mode of action, our combined data indicate that liver schizogony is more accessible to chemical intervention by (candidate) antimalarials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Emily Chen
- Calibr, a division of The Scripps Research Institute, La Jolla, California, United States of America
| | - Michael Kiczun
- Drug Discovery Unit, University of Dundee, Dundee, United Kingdom
| | - David Gray
- Drug Discovery Unit, University of Dundee, Dundee, United Kingdom
| | - Brice Campo
- Medicines for Malaria Venture, Geneva, Switzerland
| | | | | |
Collapse
|
5
|
Genetic Diversity of Plasmodium falciparum and Distribution of Antimalarial Drug Resistance Mutations in Symptomatic and Asymptomatic Infections. Antimicrob Agents Chemother 2022; 66:e0018822. [DOI: 10.1128/aac.00188-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria control relies on passive case detection, and this strategy fails detecting asymptomatic infections. In addition, infections in endemic areas harbor multiple parasite genotypes that could affect case management and malaria epidemiology.
Collapse
|
6
|
de Jong RM, Meerstein-Kessel L, Da DF, Nsango S, Challenger JD, van de Vegte-Bolmer M, van Gemert GJ, Duarte E, Teyssier N, Sauerwein RW, Churcher TS, Dabire RK, Morlais I, Locke E, Huynen MA, Bousema T, Jore MM. Monoclonal antibodies block transmission of genetically diverse Plasmodium falciparum strains to mosquitoes. NPJ Vaccines 2021; 6:101. [PMID: 34385463 PMCID: PMC8361195 DOI: 10.1038/s41541-021-00366-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/29/2021] [Indexed: 11/09/2022] Open
Abstract
Malaria parasite transmission to mosquitoes relies on the uptake of sexual stage parasites during a blood meal and subsequent formation of oocysts on the mosquito midgut wall. Transmission-blocking vaccines (TBVs) and monoclonal antibodies (mAbs) target sexual stage antigens to interrupt human-to-mosquito transmission and may form important tools for malaria elimination. Although most epitopes of these antigens are considered highly conserved, little is known about the impact of natural genetic diversity on the functional activity of transmission-blocking antibodies. Here we measured the efficacy of three mAbs against leading TBV candidates (Pfs48/45, Pfs25 and Pfs230) in transmission assays with parasites from naturally infected donors compared to their efficacy against the strain they were raised against (NF54). Transmission-reducing activity (TRA) was measured as reduction in mean oocyst intensity. mAb 45.1 (α-Pfs48/45) and mAb 4B7 (α-Pfs25) reduced transmission of field parasites from almost all donors with IC80 values similar to NF54. Sequencing of oocysts that survived high mAb concentrations did not suggest enrichment of escape genotypes. mAb 2A2 (α-Pfs230) only reduced transmission of parasites from a minority of the donors, suggesting that it targets a non-conserved epitope. Using six laboratory-adapted strains, we revealed that mutations in one Pfs230 domain correlate with mAb gamete surface binding and functional TRA. Our findings demonstrate that, despite the conserved nature of sexual stage antigens, minor sequence variation can significantly impact the efficacy of transmission-blocking mAbs. Since mAb 45.1 shows high potency against genetically diverse strains, our findings support its further clinical development and may inform Pfs48/45 vaccine design.
Collapse
Affiliation(s)
- Roos M de Jong
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisette Meerstein-Kessel
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dari F Da
- Institut de Recherche en Sciences de la Santé, Direction Régionale, Bobo Dioulasso, Burkina Faso
| | - Sandrine Nsango
- Malaria Research Laboratory, OCEAC, Yaoundé, Cameroon
- Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
| | - Joseph D Challenger
- Medical Research Council Centre for Global Infections Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Marga van de Vegte-Bolmer
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert-Jan van Gemert
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elias Duarte
- EPPIcenter Research Program, Division of HIV, ID, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Noam Teyssier
- EPPIcenter Research Program, Division of HIV, ID, and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Robert W Sauerwein
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- TropIQ Health Sciences, Nijmegen, Netherlands
| | - Thomas S Churcher
- Medical Research Council Centre for Global Infections Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Roch K Dabire
- Institut de Recherche en Sciences de la Santé, Direction Régionale, Bobo Dioulasso, Burkina Faso
| | - Isabelle Morlais
- Malaria Research Laboratory, OCEAC, Yaoundé, Cameroon
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
| | - Emily Locke
- PATH's Malaria Vaccine Initiative, Washington, DC, USA
| | - Martijn A Huynen
- Center for Molecular and Biomolecular Informatics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Teun Bousema
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Matthijs M Jore
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Yang ASP, van Waardenburg YM, van de Vegte-Bolmer M, van Gemert GJA, Graumans W, de Wilt JHW, Sauerwein RW. Zonal human hepatocytes are differentially permissive to Plasmodium falciparum malaria parasites. EMBO J 2021; 40:e106583. [PMID: 33459428 PMCID: PMC7957391 DOI: 10.15252/embj.2020106583] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
Plasmodium falciparum (Pf) is a major cause of human malaria and is transmitted by infected Anopheles mosquitoes. The initial asymptomatic infection is characterized by parasite invasion of hepatocytes, followed by massive replication generating schizonts with blood‐infective merozoites. Hepatocytes can be categorized by their zonal location and metabolic functions within a liver lobule. To understand specific host conditions that affect infectivity, we studied Pf parasite liver stage development in relation to the metabolic heterogeneity of fresh human hepatocytes. We found selective preference of different Pf strains for a minority of hepatocytes, which are characterized by the particular presence of glutamine synthetase (hGS). Schizont growth is significantly enhanced by hGS uptake early in development, showcasing a novel import system. In conclusion, Pf development is strongly determined by the differential metabolic status in hepatocyte subtypes. These findings underscore the importance of detailed understanding of hepatocyte host‐Pf interactions and may delineate novel pathways for intervention strategies.
Collapse
Affiliation(s)
- Annie S P Yang
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Youri M van Waardenburg
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marga van de Vegte-Bolmer
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert-Jan A van Gemert
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wouter Graumans
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johannes H W de Wilt
- Department of surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robert W Sauerwein
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Safety and feasibility of apheresis to harvest and concentrate parasites from subjects with induced blood stage Plasmodium vivax infection. Malar J 2021; 20:43. [PMID: 33446191 PMCID: PMC7807416 DOI: 10.1186/s12936-021-03581-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 01/04/2021] [Indexed: 11/27/2022] Open
Abstract
Background In the absence of a method to culture Plasmodium vivax, the only way to source parasites is ex vivo. This hampers many aspects of P. vivax research. This study aimed to assess the safety of apheresis, a method for selective removal of specific components of blood as a means of extracting and concentrating P. vivax parasites. Methods An iterative approach was employed across four non-immune healthy human subjects in single subject cohorts. All four subjects were inoculated with ~ 564 blood stage P. vivax (HMP013-Pv) and subjected to apheresis 10 to 11 days later. Blood samples collected during apheresis (haematocrit layers 0.5% to 11%) were tested for the presence and concentration of P. vivax by microscopy, flow cytometry, 18S rDNA qPCR for total parasites, and pvs25 qRT-PCR for female gametocyte transcripts. Safety was determined by monitoring adverse events. Malaria transmission to mosquitoes was assessed by membrane feeding assays. Results There were no serious adverse events and no significant safety concerns. Apheresis concentrated asexual parasites by up to 4.9-fold (range: 0.9–4.9-fold) and gametocytes by up to 1.45-fold (range: 0.38–1.45-fold) compared to pre-apheresis densities. No single haematocrit layer contained > 40% of all the recovered P. vivax asexual parasites. Ex vivo concentration of parasites by Percoll gradient centrifugation of whole blood achieved greater concentration of gametocytes than apheresis. Mosquito transmission was enhanced by up to fivefold in a single apheresis sample compared to pre-apheresis. Conclusion The modest level of parasite concentration suggests that the use of apheresis may not be an ideal method for harvesting P. vivax. Trial Registration Australia New Zealand Clinical Trials Registry (ANZCTR) Trial ID: ACTRN12617001502325 registered on 19th October 2017. https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=373812.
Collapse
|
9
|
Novel Method for the Separation of Male and Female Gametocytes of the Malaria Parasite Plasmodium falciparum That Enables Biological and Drug Discovery. mSphere 2020; 5:5/4/e00671-20. [PMID: 32817458 PMCID: PMC7426174 DOI: 10.1128/msphere.00671-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The protozoan Plasmodium falciparum causes the most severe form of human malaria. The development of sexual forms (so-called gametocytes) is crucial for disease transmission. However, knowledge of these forms is severely hampered by the paucity of sex-specific markers and the inability to extract single sex gametocytes in high purity. Moreover, the identification of compounds that specifically affect one sex is difficult due to the female bias of the gametocytes. We have developed a system that allows for the separation of male and female gametocytes from the same population. Applying our system, we show that male and female parasites mature at different rates, which might have implications for transmission. We also identified new sex-specific genes that can be used as sex markers or to unravel sex-specific functions. Our system will not only aid in the discovery of much needed gametocidal compounds, but it also represents a valuable tool for exploring malaria transmission biology. We developed a flow-cytometry-based method to separate and collect cocultured male and female Plasmodium falciparum gametocytes responsible for malaria transmission. The purity of the collected cells was estimated at >97% using flow cytometry, and sorted cells were observed by Giemsa-stained thin-smear and live-cell fluorescence microscopy. The expression of validated sex-specific markers corroborated the sorting strategy. Collected male and female gametocytes were used to confirm three novel sex-specific markers by quantitative real-time PCR that were more enriched in sorted male and female gametocyte populations than existing sex-specific markers. We also applied the method as a proof-of-principle drug screen that allows the identification of drugs that kill gametocytes in a sex-specific manner. Since the developed method allowed for the separation of male and female parasites from the same culture, we observed for the first time a difference in development time between the sexes: females developed faster than males. Hence, the ability to separate male and female gametocytes opens the door to a new field of sex-specific P. falciparum gametocyte biology to further our understanding of malaria transmission. IMPORTANCE The protozoan Plasmodium falciparum causes the most severe form of human malaria. The development of sexual forms (so-called gametocytes) is crucial for disease transmission. However, knowledge of these forms is severely hampered by the paucity of sex-specific markers and the inability to extract single sex gametocytes in high purity. Moreover, the identification of compounds that specifically affect one sex is difficult due to the female bias of the gametocytes. We have developed a system that allows for the separation of male and female gametocytes from the same population. Applying our system, we show that male and female parasites mature at different rates, which might have implications for transmission. We also identified new sex-specific genes that can be used as sex markers or to unravel sex-specific functions. Our system will not only aid in the discovery of much needed gametocidal compounds, but it also represents a valuable tool for exploring malaria transmission biology.
Collapse
|