1
|
Ajendra J, Allen JE. Neutrophils: Friend or Foe in Filariasis? Parasite Immunol 2022; 44:e12918. [DOI: 10.1111/pim.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology University Hospital of Bonn Bonn Germany
| | - Judith E. Allen
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell‐Matrix Research, Manchester Academic Health Science Center University of Manchester Manchester UK
| |
Collapse
|
2
|
Andersen BJ, Rosa BA, Kupritz J, Meite A, Serge T, Hertz MI, Curtis K, King CL, Mitreva M, Fischer PU, Weil GJ. Systems analysis-based assessment of post-treatment adverse events in lymphatic filariasis. PLoS Negl Trop Dis 2019; 13:e0007697. [PMID: 31557154 PMCID: PMC6762072 DOI: 10.1371/journal.pntd.0007697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022] Open
Abstract
Background Lymphatic filariasis (LF) is a neglected tropical disease, and the Global Program to Eliminate LF delivers mass drug administration (MDA) to 500 million people every year. Adverse events (AEs) are common after LF treatment. Methodology/Principal findings To better understand the pathogenesis of AEs, we studied LF-patients from a treatment trial. Plasma levels of many filarial antigens increased post-treatment in individuals with AEs, and this is consistent with parasite death. Circulating immune complexes were not elevated in these participants, and the classical complement cascade was not activated. Multiple cytokines increased after treatment in persons with AEs. A transcriptomic analysis was performed for nine individuals with moderate systemic AEs and nine matched controls. Differential gene expression analysis identified a significant transcriptional signature associated with post-treatment AEs; 744 genes were upregulated. The transcriptional signature was enriched for TLR and NF-κB signaling. Increased expression of seven out of the top eight genes upregulated in persons with AEs were validated by qRT-PCR, including TLR2. Conclusions/Significance This is the first global study of changes in gene expression associated with AEs after treatment of lymphatic filariasis. Changes in cytokines were consistent with prior studies and with the RNAseq data. These results suggest that Wolbachia lipoprotein is involved in AE development, because it activates TLR2-TLR6 and downstream NF-κB. Additionally, LPS Binding Protein (LBP, which shuttles lipoproteins to TLR2) increased post-treatment in individuals with AEs. Improved understanding of the pathogenesis of AEs may lead to improved management, increased MDA compliance, and accelerated LF elimination. Lymphatic filariasis (LF) is a disabling parasitic disease that affects millions of people in the developing world. The Global Programme to Eliminate Lymphatic Filariasis (coordinated by the World Health Organization) uses mass administration of antifilarial medications to cure infections, prevent disease, and reduce transmission. Some individuals develop adverse events (AEs) after treatment, and this can reduce willingness of persons in endemic areas to accept treatment. The purpose of this study was to improve understanding of the cause of AEs following treatment. We hypothesized that parasite antigens released into the blood following treatment trigger inflammatory responses that lead to AEs. To test this hypothesis we collected blood from LF-infected individuals before and after treatment and clinically assessed them for AEs. We measured parasite antigens, cytokines and other components of the immune system in blood samples and compared post-treatment changes in persons with and without AEs. We also assessed changes in transcription profiles in peripheral blood leukocytes that were associated with post-treatment AEs. Post-treatment changes in transcription profiles and in immune proteins and parasite components in plasma suggest that systemic AEs are triggered by death of the parasites following treatment with release of parasite antigens and Wolbachia bacteria into the circulation. Improved understanding of the pathogenesis of post-treatment AEs may help to improve messaging related to mass drug administration programs and lead to improved AE management.
Collapse
Affiliation(s)
- Britt J. Andersen
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bruce A. Rosa
- McDonnell Genome Institute, Washington University School of Medicine, St.Louis, Missouri, United States of America
| | - Jonah Kupritz
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Aboulaye Meite
- Programme National de la Lutte Contre la Schistosomiase, Les Geohelminthiases et la Filariose Lymphatique, Abidjan, Côte d’Ivoire
| | - Traye Serge
- Programme National de la Lutte Contre la Schistosomiase, Les Geohelminthiases et la Filariose Lymphatique, Abidjan, Côte d’Ivoire
| | - Marla I. Hertz
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kurt Curtis
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Christopher L. King
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Makedonka Mitreva
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- McDonnell Genome Institute, Washington University School of Medicine, St.Louis, Missouri, United States of America
| | - Peter U. Fischer
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gary J. Weil
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
3
|
IgG4 antibodies from patients with asymptomatic bancroftian filariasis inhibit the binding of IgG1 and IgG2 to C1q in a Fc-Fc-dependent mechanism. Parasitol Res 2019; 118:2957-2968. [PMID: 31485865 PMCID: PMC6754495 DOI: 10.1007/s00436-019-06451-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 08/30/2019] [Indexed: 12/24/2022]
Abstract
A striking feature of lymphatic filariasis (LF) is the clinical heterogeneity among exposed individuals. While endemic normals (EN) remain free of infection despite constant exposure to the infective larvae, a small group of patients, generally microfilaria free (Mf-) develops severe pathology (CP) such as lymphedema or hydrocele. Another group of infected individuals remains asymptomatic while expressing large amounts of microfilariae (Mf+). This Mf+ group is characterized by an immune-suppressed profile with high levels of anti-inflammatory cytokines and elevated IgG4. This particular immunoglobulin is unable to activate the complement. The complement system plays a critical role in both innate and adaptive immunity. However, its importance and regulation during LF is not fully understood. Using affinity chromatography and solid-phase-enzyme-immunoassays, we investigated the ability of antibody isotypes from LF clinical groups to bind C1q, the first element of the complement’s classical pathway. The results indicate that while C1q is similarly expressed in all LF clinical groups, IgG1–2 in the plasma from Mf+ individuals presented significantly lower affinity to C1q compared to EN, Mf−, and CP. In addition, selective depletion of IgG4 significantly enhanced the affinity of IgG1–2 to C1q in Mf+ individuals. Strikingly, no effect was seen on the ability of IgG3 to bind C1q in the same conditions. More interestingly, papain-generated IgG4-Fc-portions interacted with Fc portions of IgG1–2 as revealed by far-western blot analysis. These data suggest that while being unable to bind C1q, IgG4 inhibits the first steps of the complement classical pathway by IgG1 or IgG2 via Fc-Fc interactions.
Collapse
|
4
|
Ebenezer RS, Gupta UD, Gupta P, Shakila H. Protective effect of antigen excess immune complex in guinea pigs infected with Mycobacterium tuberculosis. Indian J Med Res 2018; 146:629-635. [PMID: 29512605 PMCID: PMC5861474 DOI: 10.4103/ijmr.ijmr_298_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background & objectives: Immune complexes (ICs) play a crucial role which can either be beneficial or pathological to the host. Involvement of circulating immune complexes (CICs) has been shown in tuberculosis (TB) cases (adults and neonates form), but its immunomodulatory effect has not been studied in vivo. Hence, this study was carried out to understand and explore the prognostic therapeutic potential of CICs on the host immune system in guinea pigs animal TB model. Methods: In this study, the guinea pigs (group I) were immunized with in vitro synthesized antigen excess IC (AgX-IC), group II with antibody excess IC (AbX-IC) and group III with phosphate-buffered saline. All these animals were sensitized with Mycobacterium tuberculosis H37Rv before immunization and subsequently infected with M. tuberculosis H37Rv strain post-immunization with IC. Results: Mortality was observed in animals belonging of groups II and III, while all animals in group I survived. A steady increase in the body weight of animals immunized with AgX-IC was observed when compared to the other groups. The infection load in the spleen and lungs was less in animals from group I when compared to the other groups. The CICs were found to be in higher concentration in serum of IC-immunized guinea pigs when compared to ICs non-immunized animals. Interpretation & conclusions: Based on our findings, it can be speculated that the ICs may have a protective immunomodulatory role pertaining to disease progression and development of pathology. As a new perspective, with further insight into the underlying mechanism of action and correlation with clinical data, ICs may also be used as a potential tool for assessing the immune status of the infected individuals, especially the close contacts of TB patients.
Collapse
Affiliation(s)
- Rajadas Sam Ebenezer
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Umesh D Gupta
- Laboratory for Animal Experiments, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, India
| | - Pushpa Gupta
- Laboratory for Animal Experiments, ICMR-National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, India
| | - Harshavardhan Shakila
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| |
Collapse
|
5
|
Andersen BJ, Kumar J, Curtis K, Sanuku N, Satofan S, King CL, Fischer PU, Weil GJ. Changes in Cytokine, Filarial Antigen, and DNA Levels Associated With Adverse Events Following Treatment of Lymphatic Filariasis. J Infect Dis 2018; 217:280-287. [PMID: 29149303 PMCID: PMC5853815 DOI: 10.1093/infdis/jix578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/13/2017] [Indexed: 11/14/2022] Open
Abstract
Background Mild to moderate adverse events (AEs) are common after treatment of lymphatic filariasis (LF) and pose a major challenge for the global LF elimination program. We studied changes in cytokine levels and filarial worm components in plasma of subjects with and without AEs following treatment of LF. Methods Participants (n = 24) were hospitalized and monitored for AEs following treatment. Cytokines (27), filarial DNA, circulating filarial antigen (CFA), and immune complexes were measured in plasma samples collected before and after treatment. Results Levels for 16 cytokines increased after treatment in individuals with moderate AEs compared to individuals with no and/or mild AEs. These included 3 major proinflammatory cytokines (interleukin 6, tumor necrosis factor α, and interleukin 1β). Eotaxin-1 levels were elevated at baseline in individuals who developed moderate AEs after treatment; thus, eotaxin-1 is a potential biomarker for AE risk. CFA and filarial DNA levels increased more in individuals with moderate AEs after treatment than in people with no/mild AEs. Conclusions Increases in cytokine, filarial DNA, and CFA levels were associated with development of AEs following treatment of LF. Improved understanding of the pathogenesis of AEs may lead to improved methods for their prevention or management that could increase compliance in elimination programs.
Collapse
Affiliation(s)
- Britt J Andersen
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Jessica Kumar
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Kurt Curtis
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Nelly Sanuku
- Papua New Guinea Institute of Medical Research, Goroka
| | | | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Peter U Fischer
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Gary J Weil
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
6
|
Kolaviron shows anti-proliferative effect and down regulation of vascular endothelial growth factor-C and toll like receptor-2 in Wuchereria bancrofti infected blood lymphocytes. J Infect Public Health 2017; 10:661-666. [PMID: 28619504 DOI: 10.1016/j.jiph.2017.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/12/2017] [Accepted: 05/30/2017] [Indexed: 01/08/2023] Open
Abstract
The anti-proliferative effect and down regulation of vascular endothelial growth factor C and toll like receptor-2 by kolaviron on Wuchereria bancrofti infected peripheral blood lymphocytes were investigated. Blood were collected from consenting volunteers in Talata Mafara, Nigeria, between the hours of 10pm to 12am, and microscopically identified for microfilariae. W. bancrofti positive samples were cultured for 72h treated with Doxycycline (2μg/ml) and kolaviron (5μg/ml) in vitro. Mitotic index, expression of vascular endothelial growth factor-C (VEGF-c), toll like receptor-2 (TLR-2) were determined using standard procedures. Mitotic index was significantly (P<0.05) reduced in the kolaviron treated group compared to negative control. Kolaviron also significantly (P<0.05) down regulated the expression of VEGF-c and TLR-2 when compared with the untreated group. In both cases, the effects of kolaviron was not significantly different (P<0.05) to that of doxycycline. Furthermore, strong positive correlations between mitotic index, VEGF-c and TLR-2 expressions were observed. The study suggests that kolaviron rich portion of Garcinia kola exhibited anti-proliferative effect and down regulation of VEGF-c and TLR-2 in W. bancrofti infected blood. Thus, the results from this study might have unravelled the potency of kolaviron in the management of complications associated with lymphatic filariasis.
Collapse
|
7
|
Pierog P, Krishna M, Yamniuk A, Chauhan A, DeSilva B. Detection of drug specific circulating immune complexes from in vivo cynomolgus monkey serum samples. J Immunol Methods 2014; 416:124-36. [PMID: 25462536 DOI: 10.1016/j.jim.2014.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Administration of a biotherapeutic can result in the formation of anti-drug antibodies (ADAs). The resulting ADA can potentially form immune complexes (ICs) with the drug leading to altered pharmacokinetic (PK) profiles and/or adverse events. Furthermore the presence of such complexes may interfere with accurate PK assessment, and/or detection of ADA in immunogenicity assays. Here, we present two assays to detect the presence of drug-ADA immune complexes in cynomolgus monkeys. RESULTS Serum samples were analyzed for IC formation in vivo. 8/8 tested animals were positive for drug specific IC. Depending on the time point tested 4/8 or 7/8 animals tested positive for ADA during drug dosing. All 8 animals were confirmed positive for ADA during the washout phase, indicating drug interference in the bridging assay. Relative amount of IC over time was determined and its correlation with PK and ADA was then assessed. Multivariate data analysis demonstrates good correlation between signals obtained from the anti-drug and FcγRIIIa based capture assays, although due to its biological characteristic FcγRIIIa based assay captured only a subset of drug specific IC. In one animal IC remained in circulation even when the drug levels decreased below detection limit. CONCLUSION Results from this study indicate the presence of IC during administration of an immunogenic biotherapeutic. Potential application of these assays includes detection of ADA in an IC during high drug levels. The results on the kinetics of IC formation during ADA response can complement the understanding of PK and ADA profiles. Moreover, the presence of IC indicates possible ADA interference in standard PK assays and potential underestimation of total drug exposure in toxicology studies. In addition this study also highlights the need to understand downstream in vivo consequences of drug-ADA IC as no animals under investigation developed adverse events.
Collapse
Affiliation(s)
- Piotr Pierog
- Novartis Institutes for BioMedical Research, Inc., Cambridge, MA 02139, United States
| | - Murli Krishna
- Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States.
| | - Aaron Yamniuk
- Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| | - Anil Chauhan
- Division of Adult and Pediatric Rheumatology, St. Louis University, St. Louis, MO 63104, United States
| | - Binodh DeSilva
- Bristol-Myers Squibb Company, Princeton, NJ 08543-4000, United States
| |
Collapse
|
8
|
Tamarozzi F, Wright HL, Thomas HB, Edwards SW, Taylor MJ. A lack of confirmation with alternative assays questions the validity of IL-17A expression in human neutrophils using immunohistochemistry. Immunol Lett 2014; 162:194-8. [PMID: 25445614 DOI: 10.1016/j.imlet.2014.10.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/29/2014] [Accepted: 10/22/2014] [Indexed: 01/13/2023]
Abstract
We identified IL-17A-positive neutrophils in Wolbachia-positive Onchocerca volvulus nodules using an antibody that has previously reported IL-17A-positive neutrophils in several inflammatory conditions. However, we could not detect IL-17A using a range of alternative assays. Our data question the IL-17A antibody specificity and the ability of human neutrophils to express IL-17A.
Collapse
Affiliation(s)
- Francesca Tamarozzi
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Helen L Wright
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Huw B Thomas
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Steven W Edwards
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mark J Taylor
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
9
|
Chakraborty S, Gurusamy M, Zawieja DC, Muthuchamy M. Lymphatic filariasis: perspectives on lymphatic remodeling and contractile dysfunction in filarial disease pathogenesis. Microcirculation 2014; 20:349-64. [PMID: 23237232 DOI: 10.1111/micc.12031] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 12/07/2012] [Indexed: 01/02/2023]
Abstract
Lymphatic filariasis, one of the most debilitating diseases associated with the lymphatic system, affects over a hundred million people worldwide and manifests itself in a variety of severe clinical pathologies. The filarial parasites specifically target the lymphatics and impair lymph flow, which is critical for the normal functions of the lymphatic system in maintenance of body fluid balance and physiological interstitial fluid transport. The resultant contractile dysfunction of the lymphatics causes fluid accumulation and lymphedema, one of the major pathologies associated with filarial infection. In this review, we take a closer look at the contractile mechanisms of the lymphatics, its altered functions, and remodeling during an inflammatory state and how it relates to the severe pathogenesis underlying a filarial infection. We further elaborate on the complex host-parasite interactions, and molecular mechanisms contributing to the disease pathogenesis. The overall emphasis is on elucidating some of the emerging concepts and new directions that aim to harness the process of lymphangiogenesis or enhance contractility in a dysfunctional lymphatics, thereby restoring the fluid imbalance and mitigating the pathological conditions of lymphatic filariasis.
Collapse
Affiliation(s)
- Sanjukta Chakraborty
- Department of Systems Biology and Translational Medicine, Texas A&M Health Science Center College of Medicine, College Station/Temple, TX 77843, USA
| | | | | | | |
Collapse
|
10
|
Immunopathogenesis of lymphatic filarial disease. Semin Immunopathol 2012; 34:847-61. [PMID: 23053393 DOI: 10.1007/s00281-012-0346-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 09/13/2012] [Indexed: 01/06/2023]
Abstract
Although two thirds of the 120 million people infected with lymph-dwelling filarial parasites have subclinical infections, ~40 million have lymphedema and/or other pathologic manifestations including hydroceles (and other forms of urogenital disease), episodic adenolymphangitis, tropical pulmonary eosinophilia, lymphedema, and (in its most severe form) elephantiasis. Adult filarial worms reside in the lymphatics and lymph nodes and induce changes that result in dilatation of lymphatics and thickening of the lymphatic vessel walls. Progressive lymphatic damage and pathology results from the summation of the effect of tissue alterations induced by both living and nonliving adult parasites, the host inflammatory response to the parasites and their secreted antigens, the host inflammatory response to the endosymbiont Wolbachia, and those seen as a consequence of secondary bacterial or fungal infections. Inflammatory damage induced by filarial parasites appears to be multifactorial, with endogenous parasite products, Wolbachia, and host immunity all playing important roles. This review will initially examine the prototypical immune responses engendered by the parasite and delineate the regulatory mechanisms elicited to prevent immune-mediated pathology. This will be followed by a discussion of the proposed mechanisms underlying pathogenesis, with the central theme being that pathogenesis is a two-step process-the first initiated by the parasite and host innate immune system and the second propagated mainly by the host's adaptive immune system and by other factors (including secondary infections).
Collapse
|