1
|
Kassam NA, Kaaya RD, Damian DJ, Schmiegelow C, Kavishe RA, Alifrangis M, Wang CW. Ten years of monitoring malaria trend and factors associated with malaria test positivity rates in Lower Moshi. Malar J 2021; 20:193. [PMID: 33879164 PMCID: PMC8056660 DOI: 10.1186/s12936-021-03730-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/08/2021] [Indexed: 11/25/2022] Open
Abstract
Background High altitude settings in Eastern Africa have been reported to experience increased malaria burden due to vector habitat expansion. This study explored possible associations between malaria test positivity rates and its predictors including malaria control measures and meteorological factors at a high-altitude, low malaria transmission setting, south of Mount Kilimanjaro. Methods Malaria cases reported at the Tanganyika Plantation Company (TPC) hospital’s malaria registers, meteorological data recorded at TPC sugar factory and data on bed nets distributed in Lower Moshi from 2009 to 2018 were studied. Correlation between bed nets distributed and malaria test positivity rates were explored by using Pearson correlation analysis and the associations between malaria test positivity rates and demographic and meteorological variables were determined by logistic regression and negative binomial regression analyses, respectively. Results Malaria cases reported at TPC hospital ranged between 0.48 and 2.26% per year and increased slightly at the introduction of malaria rapid diagnostic tests. The risk of testing positive for malaria were significantly highest among individuals aged between 6 and 15 years (OR = 1.65; 1.65 CI = 1.28–2.13; p = 0.001) and 16–30 years (OR = 1.49; CI = 1.17–1.89; p = 0.001) and when adjusted for age, the risk were significantly higher among male individuals when compared to female individuals (OR = 1.54; 1.00–1.31; p = 0.044). Malaria test positivity rates were positively associated with average monthly minimum temperatures and negatively associated with average monthly maximum temperatures (incidence rate ratio (IRR) = 1.37, 95% confidence interval (CI) = 1.05–1.78, p = 0.019 and IRR = 0.72, 95% CI = 0.58–0.91, p = 0.005, respectively). When analysed with one month lag for predictor variables, malaria test positivity rates were still significantly associated with average monthly minimum and maximum temperatures (IRR = 1.67, 95% CI = 1.28–2.19, p = 0.001 and IRR = 0.68, 95% CI = 0.54–0.85, p = 0.001, respectively). Average monthly rainfall and relative humidity with or without a one month lag was not associated with malaria test positivity rates in the adjusted models. Explopring possible associations between distribution of long-lasting insecticidal nets, (LLINs) and malaria test positivity rates showed no apparent correlation between numbers of LLINs distributed in a particular year and malaria test positivity rates. Conclusion In Lower Moshi, the risk of being tested positive for malaria was highest for older children and male individuals. Higher minimum and lower maximum temperatures were the strongest climatic predictors for malaria test positivity rates. In areas with extensive irrigation activity as in Lower Moshi, vector abundance and thus malaria transmission may be less dependent on rainfall patterns and humidity. Mass distribution of LLINs did not have an effect in this area with already very low malaria transmission. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03730-1.
Collapse
Affiliation(s)
- Nancy A Kassam
- Kilimanjaro Christian Medical University College (KCMUCo), P.O. Box 2240, Moshi, Tanzania.
| | - Robert D Kaaya
- Kilimanjaro Christian Medical University College (KCMUCo), P.O. Box 2240, Moshi, Tanzania
| | - Damian J Damian
- School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Christentze Schmiegelow
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Reginald A Kavishe
- Kilimanjaro Christian Medical University College (KCMUCo), P.O. Box 2240, Moshi, Tanzania
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Christian W Wang
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| |
Collapse
|
2
|
Rogers KJ, Vijay R, Butler NS. Anti-malarial humoral immunity: the long and short of it. Microbes Infect 2021; 23:104807. [PMID: 33684519 DOI: 10.1016/j.micinf.2021.104807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 12/17/2022]
Abstract
Humoral immunity is critical for limiting Plasmodium parasite infections and the severity of malaria. Naturally acquired immunity against malaria occurs inefficiently and protection is relatively short-lived. Here we review recent advances and explore emerging hypotheses regarding the molecular and cellular pathways that regulate Plasmodium parasite-specific B cell responses and durable anti-malarial humoral immunity.
Collapse
Affiliation(s)
- Kai J Rogers
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Rahul Vijay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Noah S Butler
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Immunology, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
3
|
Hamre KES, Ondigo BN, Hodges JS, Dutta S, Theisen M, Ayodo G, John CC. Antibody Correlates of Protection from Clinical Plasmodium falciparum Malaria in an Area of Low and Unstable Malaria Transmission. Am J Trop Med Hyg 2020; 103:2174-2182. [PMID: 33124533 DOI: 10.4269/ajtmh.18-0805] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Immune correlates of protection against clinical malaria are difficult to ascertain in low-transmission areas because of the limited number of malaria cases. We collected blood samples from 5,753 individuals in a Kenyan highland area, ascertained malaria incidence in this population over the next 6 years, and then compared antibody responses to 11 Plasmodium falciparum vaccine candidate antigens in individuals who did versus did not develop clinical malaria in a nested case-control study (154 cases and 462 controls). Individuals were matched by age and village. Antigens tested included circumsporozoite protein (CSP), liver-stage antigen (LSA)-1, apical membrane antigen-1 FVO and 3D7 strains, erythrocyte-binding antigen-175, erythrocyte-binding protein-2, merozoite surface protein (MSP)-1 FVO and 3D7 strains, MSP-3, and glutamate-rich protein (GLURP) N-terminal non-repetitive (R0) and C-terminal repetitive (R2) regions. After adjustment for potential confounding factors, the presence of antibodies to LSA-1, GLURP-R2, or GLURP-R0 was associated with decreased odds of developing clinical malaria (odds ratio [OR], [95% CI] 0.56 [0.36-0.89], 0.56 [0.36-0.87], and 0.77 [0.43-1.02], respectively). Levels of antibodies to LSA-1, GLURP-R2, and CSP were associated with decreased odds of developing clinical malaria (OR [95% CI]; 0.61 [0.41-0.89], 0.60 [0.43-0.84], and 0.49 [0.24-0.99], for every 10-fold increase in antibody levels, respectively). The presence of antibodies to CSP, GLURP-R0, GLURP-R2, and LSA-1 combined best-predicted protection from clinical malaria. Antibodies to CSP, GLURP-R0, GLURP-R2, and LSA-1 are associated with protection against clinical malaria in a low-transmission setting. Vaccines containing these antigens should be evaluated in low malaria transmission areas.
Collapse
Affiliation(s)
- Karen E S Hamre
- CDC Foundation, Atlanta, Georgia.,Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota.,Division of Global Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Bartholomew N Ondigo
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.,Department of Biochemistry and Molecular Biology, Egerton University, Nakuru, Kenya
| | - James S Hodges
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota
| | - Sheetij Dutta
- Walter Reed Army Institute for Research, Silver Spring, Maryland
| | | | - George Ayodo
- Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya.,Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Chandy C John
- Division of Global Pediatrics, University of Minnesota, Minneapolis, Minnesota.,Department of Biochemistry and Molecular Biology, Egerton University, Nakuru, Kenya.,Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota.,Department of Pediatrics, Indiana University, Indianapolis, Indiana
| |
Collapse
|
4
|
A micro-epidemiological report on the unstable transmission of malaria in Aligarh, India. Parasite Epidemiol Control 2020; 11:e00161. [PMID: 32642569 PMCID: PMC7334815 DOI: 10.1016/j.parepi.2020.e00161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/14/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022] Open
Abstract
India contributes approximately 70% to the malaria burden of Southeast Asia. The transmission of disease in the country is generally hypoendemic, seasonal and unstable. Most researchers focus upon the hyperendemic malarious regions with stable malaria transmission. There is paucity of data regarding malaria transmission in hypoendemic regions, here we are presenting an epidemiological picture of clinical manifestations through a hospital-based survey in Aligarh, India, during 2016-18. Two thousand sixty-eight patients were diagnosed with malaria infection in Jawaharlal Nehru Medical College and Hospital (JNMCH), out of which 1104 were enrolled for clinical analysis. Ninety per cent of the cases were reported during July-November, and the rest in the dry season. A progressive increase in the prevalence rate was observed during the study period, i.e. 4.8, 7.57 and 8.7% in 2016, 2017 and 2018, respectively. Of the total cases, 75.77% had vivax malaria, while rest suffered from falciparum malaria. The risk of disease was significantly higher in the age group 0-15 years compared to all other age groups (p < .0001). The infection rate was higher in males (61%) compared to females (39%) p < .0001. Overall 8.6% of the patients had severe malaria who fulfilled the WHO criteria. The increasing rate of malaria infection during the study period and a considerable no. of severe vivax malaria cases warrant an efficient disease monitoring system, pointing towards the need to carry out micro-epidemiological studies in order to estimate the real burden of malaria in the country.
Collapse
|
5
|
Achan J, Reuling IJ, Yap XZ, Dabira E, Ahmad A, Cox M, Nwakanma D, Tetteh K, Wu L, Bastiaens GJH, Abebe Y, Manoj A, Kaur H, Miura K, Long C, Billingsley PF, Sim BKL, Hoffman SL, Drakeley C, Bousema T, D’Alessandro U. Serologic Markers of Previous Malaria Exposure and Functional Antibodies Inhibiting Parasite Growth Are Associated With Parasite Kinetics Following a Plasmodium falciparum Controlled Human Infection. Clin Infect Dis 2020; 70:2544-2552. [PMID: 31402382 PMCID: PMC7286377 DOI: 10.1093/cid/ciz740] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/01/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We assessed the impact of exposure to Plasmodium falciparum on parasite kinetics, clinical symptoms, and functional immunity after controlled human malaria infection (CHMI) in 2 cohorts with different levels of previous malarial exposure. METHODS Nine adult males with high (sero-high) and 10 with low (sero-low) previous exposure received 3200 P. falciparum sporozoites (PfSPZ) of PfSPZ Challenge by direct venous inoculation and were followed for 35 days for parasitemia by thick blood smear (TBS) and quantitative polymerase chain reaction. Endpoints were time to parasitemia, adverse events, and immune responses. RESULTS Ten of 10 (100%) volunteers in the sero-low and 7 of 9 (77.8%) in the sero-high group developed parasitemia detected by TBS in the first 28 days (P = .125). The median time to parasitemia was significantly shorter in the sero-low group than the sero-high group (9 days [interquartile range {IQR} 7.5-11.0] vs 11.0 days [IQR 7.5-18.0], respectively; log-rank test, P = .005). Antibody recognition of sporozoites was significantly higher in the sero-high (median, 17.93 [IQR 12.95-24] arbitrary units [AU]) than the sero-low volunteers (median, 10.54 [IQR, 8.36-12.12] AU) (P = .006). Growth inhibitory activity was significantly higher in the sero-high (median, 21.8% [IQR, 8.15%-29.65%]) than in the sero-low group (median, 8.3% [IQR, 5.6%-10.23%]) (P = .025). CONCLUSIONS CHMI was safe and well tolerated in this population. Individuals with serological evidence of higher malaria exposure were able to better control infection and had higher parasite growth inhibitory activity. CLINICAL TRIALS REGISTRATION NCT03496454.
Collapse
Affiliation(s)
- Jane Achan
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Isaie J Reuling
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Xi Zen Yap
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Edgard Dabira
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Abdullahi Ahmad
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Momodou Cox
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Davis Nwakanma
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Kevin Tetteh
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Lindsey Wu
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Guido J H Bastiaens
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Harparkash Kaur
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Carole Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | | | | | | | - Chris Drakeley
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Umberto D’Alessandro
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| |
Collapse
|
6
|
Maraka M, Akala HM, Amolo AS, Juma D, Omariba D, Cheruiyot A, Opot B, Okello Okudo C, Mwakio E, Chemwor G, Juma JA, Okoth R, Yeda R, Andagalu B. A seven-year surveillance of epidemiology of malaria reveals travel and gender are the key drivers of dispersion of drug resistant genotypes in Kenya. PeerJ 2020; 8:e8082. [PMID: 32201636 PMCID: PMC7073242 DOI: 10.7717/peerj.8082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/21/2019] [Indexed: 11/20/2022] Open
Abstract
Malaria drug resistance is a global public health concern. Though parasite mutations have been associated with resistance, other factors could influence the resistance. A robust surveillance system is required to monitor and help contain the resistance. This study established the role of travel and gender in dispersion of chloroquine resistant genotypes in malaria epidemic zones in Kenya. A total of 1,776 individuals presenting with uncomplicated malaria at hospitals selected from four malaria transmission zones in Kenya between 2008 and 2014 were enrolled in a prospective surveillance study assessing the epidemiology of malaria drug resistance patterns. Demographic and clinical information per individual was obtained using a structured questionnaire. Further, 2 mL of blood was collected for malaria diagnosis, parasitemia quantification and molecular analysis. DNA extracted from dried blood spots collected from each of the individuals was genotyped for polymorphisms in Plasmodium falciparum chloroquine transporter gene (Pfcrt 76), Plasmodium falciparum multidrug resistant gene 1 (Pfmdr1 86 and Pfmdr1 184) regions that are putative drug resistance genes using both conventional polymerase chain reaction (PCR) and real-time PCR. The molecular and demographic data was analyzed using Stata version 13 (College Station, TX: StataCorp LP) while mapping of cases at the selected geographic zones was done in QGIS version 2.18. Chloroquine resistant (CQR) genotypes across gender revealed an association with chloroquine resistance by both univariate model (p = 0.027) and by multivariate model (p = 0.025), female as reference group in both models. Prior treatment with antimalarial drugs within the last 6 weeks before enrollment was associated with carriage of CQR genotype by multivariate model (p = 0.034). Further, a significant relationship was observed between travel and CQR carriage both by univariate model (p = 0.001) and multivariate model (p = 0.002). These findings suggest that gender and travel are significantly associated with chloroquine resistance. From a gender perspective, males are more likely to harbor resistant strains than females hence involved in strain dispersion. On the other hand, travel underscores the role of transport network in introducing spread of resistant genotypes, bringing in to focus the need to monitor gene flow and establish strategies to minimize the introduction of resistance strains by controlling malaria among frequent transporters.
Collapse
Affiliation(s)
- Moureen Maraka
- School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Siaya, Kenya
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Hoseah M. Akala
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Asito S. Amolo
- School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Siaya, Kenya
| | - Dennis Juma
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Duke Omariba
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Agnes Cheruiyot
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Benjamin Opot
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Charles Okello Okudo
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Edwin Mwakio
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Gladys Chemwor
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Jackline A. Juma
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Raphael Okoth
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Redemptah Yeda
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| | - Ben Andagalu
- Department of Emerging Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa Kenya (USAMRD-A Kenya)/Kenya Medical Research Institute (KEMRI), Kisumu, Kisumu, Kenya
| |
Collapse
|
7
|
Imported Malaria in Countries where Malaria Is Not Endemic: a Comparison of Semi-immune and Nonimmune Travelers. Clin Microbiol Rev 2020; 33:33/2/e00104-19. [PMID: 32161068 DOI: 10.1128/cmr.00104-19] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The continuous increase in long-distance travel and recent large migratory movements have changed the epidemiological characteristics of imported malaria in countries where malaria is not endemic (here termed non-malaria-endemic countries). While malaria was primarily imported to nonendemic countries by returning travelers, the proportion of immigrants from malaria-endemic regions and travelers visiting friends and relatives (VFRs) in malaria-endemic countries has continued to increase. VFRs and immigrants from malaria-endemic countries now make up the majority of malaria patients in many nonendemic countries. Importantly, this group is characterized by various degrees of semi-immunity to malaria, resulting from repeated exposure to infection and a gradual decline of protection as a result of prolonged residence in non-malaria-endemic regions. Most studies indicate an effect of naturally acquired immunity in VFRs, leading to differences in the parasitological features, clinical manifestation, and odds for severe malaria and clinical complications between immune VFRs and nonimmune returning travelers. There are no valid data indicating evidence for differing algorithms for chemoprophylaxis or antimalarial treatment in semi-immune versus nonimmune malaria patients. So far, no robust biomarkers exist that properly reflect anti-parasite or clinical immunity. Until they are found, researchers should rigorously stratify their study results using surrogate markers, such as duration of time spent outside a malaria-endemic country.
Collapse
|
8
|
Surendra H, Supargiyono, Ahmad RA, Kusumasari RA, Rahayujati TB, Damayanti SY, Tetteh KKA, Chitnis C, Stresman G, Cook J, Drakeley C. Using health facility-based serological surveillance to predict receptive areas at risk of malaria outbreaks in elimination areas. BMC Med 2020; 18:9. [PMID: 31987052 PMCID: PMC6986103 DOI: 10.1186/s12916-019-1482-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/09/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND In order to improve malaria burden estimates in low transmission settings, more sensitive tools and efficient sampling strategies are required. This study evaluated the use of serological measures from repeated health facility-based cross-sectional surveys to investigate Plasmodium falciparum and Plasmodium vivax transmission dynamics in an area nearing elimination in Indonesia. METHODS Quarterly surveys were conducted in eight public health facilities in Kulon Progo District, Indonesia, from May 2017 to April 2018. Demographic data were collected from all clinic patients and their companions, with household coordinates collected using participatory mapping methods. In addition to standard microscopy tests, bead-based serological assays were performed on finger-prick bloodspot samples from 9453 people. Seroconversion rates (SCR, i.e. the proportion of people in the population who are expected to seroconvert per year) were estimated by fitting a simple reversible catalytic model to seroprevalence data. Mixed effects logistic regression was used to examine factors associated with malaria exposure, and spatial analysis was performed to identify areas with clustering of high antibody responses. RESULTS Parasite prevalence by microscopy was extremely low (0.06% (95% confidence interval 0.03-0.14, n = 6) and 0 for P. vivax and P. falciparum, respectively). However, spatial analysis of P. vivax antibody responses identified high-risk areas that were subsequently the site of a P. vivax outbreak in August 2017 (62 cases detected through passive and reactive detection systems). These areas overlapped with P. falciparum high-risk areas and were detected in each survey. General low transmission was confirmed by the SCR estimated from a pool of the four surveys in people aged 15 years old and under (0.020 (95% confidence interval 0.017-0.024) and 0.005 (95% confidence interval 0.003-0.008) for P. vivax and P. falciparum, respectively). The SCR estimates in those over 15 years old were 0.066 (95% confidence interval 0.041-0.105) and 0.032 (95% confidence interval 0.015-0.069) for P. vivax and P. falciparum, respectively. CONCLUSIONS These findings demonstrate the potential use of health facility-based serological surveillance to better identify and target areas still receptive to malaria in an elimination setting. Further implementation research is needed to enable integration of these methods with existing surveillance systems.
Collapse
Affiliation(s)
- Henry Surendra
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT UK
- Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Medika, Yogyakarta, 55281 Indonesia
| | - Supargiyono
- Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Medika, Yogyakarta, 55281 Indonesia
- Department of Parasitology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281 Indonesia
| | - Riris A. Ahmad
- Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Medika, Yogyakarta, 55281 Indonesia
- Department of Biostatistics, Epidemiology and Population Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281 Indonesia
| | - Rizqiani A. Kusumasari
- Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Medika, Yogyakarta, 55281 Indonesia
- Department of Parasitology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Sekip Utara, Yogyakarta, 55281 Indonesia
| | | | - Siska Y. Damayanti
- District Health Office of Kulon Progo, Jln. Suparman No 1, Wates, 55611 Indonesia
| | - Kevin K. A. Tetteh
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT UK
| | | | - Gillian Stresman
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT UK
| | - Jackie Cook
- MRC Tropical Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT UK
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT UK
| |
Collapse
|
9
|
Surendra H, Wijayanti MA, Murhandarwati EH, Irnawati, Yuniarti T, Mardiati, Herdiana, Sumiwi ME, Hawley WA, Lobo NF, Cook J, Drakeley C, Supargiyono. Analysis of serological data to investigate heterogeneity of malaria transmission: a community-based cross-sectional study in an area conducting elimination in Indonesia. Malar J 2019; 18:227. [PMID: 31286973 PMCID: PMC6615161 DOI: 10.1186/s12936-019-2866-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/03/2019] [Indexed: 01/22/2023] Open
Abstract
Background Analysis of anti-malarial antibody responses has the potential to improve characterization of the variation in exposure to infection in low transmission settings, where conventional measures, such as entomological estimates and parasitaemia point prevalence become less sensitive and expensive to measure. This study evaluates the use of sero-epidemiological analysis to investigate heterogeneity of transmission in area conducting elimination in Indonesia. Methods Filter paper bloodspots and epidemiological data were collected through a community-based cross-sectional study conducted in two sub-districts in Sabang municipality, Aceh province, Indonesia in 2013. Antibody responses to merozoite surface protein 1 (MSP-119) and apical membrane antigen 1 (AMA-1) for Plasmodium falciparum and Plasmodium vivax were measured using indirect enzyme-linked immunosorbent assay (ELISA). Seroconversion rates (SCR) were estimated by fitting a simple reversible catalytic model to seroprevalence data for each antibody. Spatial analysis was performed using a Normal model (SaTScan v.9.4.2) to identify the clustering of higher values of household antibody responses. Multiple logistic regression was used to investigate factors associated with exposure. Results 1624 samples were collected from 605 households. Seroprevalence to any P. falciparum antigen was higher than to any P. vivax antigen, 6.9% (95% CI 5.8–8.2) vs 2.0% (95% CI 1.4–2.8). SCR estimates suggest that there was a significant change in P. falciparum transmission with no exposure seen in children under 5 years old. Plasmodium falciparum SCR in over 5 years old was 0.008 (95% CI 0.003–0.017) and 0.012 (95% CI 0.005–0.030) in Sukakarya and Sukajaya sub-districts, respectively. Clusters of exposure were detected for both P. falciparum and P. vivax, most of them in Sukajaya sub-district. Higher age, P. vivax seropositivity and use of long-lasting insecticide-treated bed net (LLIN) were associated with higher P. falciparum exposure. Conclusion Analysis of community-based serological data helps describe the level of transmission, heterogeneity and factors associated with malaria transmission in Sabang. This approach could be an important additional tool for malaria monitoring and surveillance in low transmission settings in Indonesia. Electronic supplementary material The online version of this article (10.1186/s12936-019-2866-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Henry Surendra
- Infection Biology Department, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK. .,Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
| | - Mahardika A Wijayanti
- Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.,Department of Parasitology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Elsa H Murhandarwati
- Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.,Department of Parasitology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Irnawati
- Sabang Municipal Health Office, Sabang, Aceh, Indonesia
| | | | - Mardiati
- Sabang Municipal Health Office, Sabang, Aceh, Indonesia
| | - Herdiana
- Child Survival and Development Cluster, UNICEF Aceh Field Office, Jakarta, Indonesia
| | - Maria E Sumiwi
- Child Survival and Development Cluster, UNICEF Aceh Field Office, Jakarta, Indonesia
| | - William A Hawley
- Child Survival and Development Cluster, UNICEF Indonesia Country Office, Jakarta, Indonesia
| | - Neil F Lobo
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Jackie Cook
- MRC Tropical Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Chris Drakeley
- Infection Biology Department, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Supargiyono
- Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.,Department of Parasitology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
10
|
Ourives SS, Borges QI, Dos Santos DSA, Melo ECM, de Souza RM, Damazo AS. Analysis of the lymphocyte cell population during malaria caused by Plasmodium vivax and its correlation with parasitaemia and thrombocytopaenia. Malar J 2018; 17:303. [PMID: 30126413 PMCID: PMC6102853 DOI: 10.1186/s12936-018-2443-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/04/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The mechanisms of activation and regulation of T lymphocytes and their cytokines in malaria caused by Plasmodium vivax are complex and poorly understood. Previous data suggest that T cells balance protective immune responses with immune mediated pathology in malaria. This study investigates the lymphocytic profile of patients infected with P. vivax by identifying and quantifying the specific sub-populations of Th1, Th2, Th17 and Treg cells and observing the correlation between parasitaemia and the number of platelets. METHODS A cross-sectional study was carried out in an endemic area of the state of Acre, Brazil. In order to obtain identification and quantification of lymphocyte sub-populations through flow cytometry, blood samples were collected from 50 individuals infected with P. vivax and 20 non-infected controls. To differentiate Th1 from Th2, the presence of cytokines IL-4 and TNF was examined by enzyme-linked immunosorbent assay. Utilizing the Mann-Whitney and Spearman coefficient tests, comparison and correlation analysis were rendered to test the parasitaemia and the number of platelets relationship. RESULTS The data indicate that individuals infected with P. vivax present a significant reduction in Th1, Th2 and Th17 cell sub-populations when compared to the non-infected control group. A negative correlation exists between parasitaemia and platelet counts in individuals infected with P. vivax. There is no correlation of parasitaemia or thrombocytopaenia with any sub-population of T lymphocytes analysed. Interestingly, patients with serum Th1 cytokine profile present inversely proportional parasitaemia to the increase in the number of Th1, Th2, Th17 and Treg cells while patients with serum Th2 cytokine profile present directly proportional parasitaemia to the increase in number of Th1 and Th2 cells. Regarding the number of platelets, patients with serum Th1 cytokine profile show a correlation directly proportional to the Th17 sub-population. In contrast, platelet counts are directly proportional only to Treg and activated Treg cells in patients with serum Th2 cytokine profile. CONCLUSIONS During the P. vivax infection patients with serum Th1 versus Th2 cytokine profile present different biological mechanisms for activating the immune system against parasite load.
Collapse
Affiliation(s)
- Samantha Soares Ourives
- Faculty of Medicine (FM), Federal University of Mato Grosso (UFMT), Cuiabá, Mato Grosso, 78060-900, Brazil
| | - Quessi Irias Borges
- Faculty of Medicine (FM), Federal University of Mato Grosso (UFMT), Cuiabá, Mato Grosso, 78060-900, Brazil
| | | | | | - Rodrigo Medeiros de Souza
- Centre for Health Sciences and Sport, Federal University of Acre (UFAC), Cruzeiro do Sul, AC, 69980000, Brazil
| | - Amílcar Sabino Damazo
- Faculty of Medicine (FM), Federal University of Mato Grosso (UFMT), Cuiabá, Mato Grosso, 78060-900, Brazil. .,Department of Basic Science in Health Faculty of Medicine (FM), Federal University of Mato Grosso (UFMT), Cuiabá, Mato Grosso, 78060-900, Brazil.
| |
Collapse
|
11
|
Analysis of the spatial and temporal distribution of malaria in an area of Northern Guatemala with seasonal malaria transmission. Parasitol Res 2018; 117:2807-2822. [PMID: 29936621 DOI: 10.1007/s00436-018-5968-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022]
Abstract
The risk of malaria infection displays spatial and temporal variability that is likely due to interaction between the physical environment and the human population. In this study, we performed a spatial analysis at three different time points, corresponding to three cross-sectional surveys conducted as part of an insecticide-treated bed nets efficacy study, to reveal patterns of malaria incidence distribution in an area of Northern Guatemala characterized by low malaria endemicity. A thorough understanding of the spatial and temporal patterns of malaria distribution is essential for targeted malaria control programs. Two methods, the local Moran's I and the Getis-Ord G*(d), were used for the analysis, providing two different statistical approaches and allowing for a comparison of results. A distance band of 3.5 km was considered to be the most appropriate distance for the analysis of data based on epidemiological and entomological factors. Incidence rates were higher at the first cross-sectional survey conducted prior to the intervention compared to the following two surveys. Clusters or hot spots of malaria incidence exhibited high spatial and temporal variations. Findings from the two statistics were similar, though the G*(d) detected cold spots using a higher distance band (5.5 km). The high spatial and temporal variability in the distribution of clusters of high malaria incidence seems to be consistent with an area of unstable malaria transmission. In such a context, a strong surveillance system and the use of spatial analysis may be crucial for targeted malaria control activities.
Collapse
|
12
|
Ayieko C, Ogola BS, Ochola L, Ngwena GAM, Ayodo G, Hodges JS, Noland GS, John CC. Interferon- γ responses to Plasmodium falciparum vaccine candidate antigens decrease in the absence of malaria transmission. PeerJ 2017; 5:e2855. [PMID: 28097063 PMCID: PMC5228499 DOI: 10.7717/peerj.2855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/02/2016] [Indexed: 01/29/2023] Open
Abstract
Background Malaria elimination campaigns are planned or active in many countries. The effects of malaria elimination on immune responses such as antigen-specific IFN- γ responses are not well characterized. Methods IFN- γ responses to the P. falciparum antigens circumsporozoite protein, liver stage antigen-1, thrombospondin-related adhesive protein, apical membrane antigen-1, MB2, and merozoite surface protein-1 were tested by ELISA in 243 individuals in highland Kenya in April 2008, October 2008, and April 2009, after a one-year period of interrupted malaria transmission from April 2007 to March 2008. Results While one individual (0.4%) tested positive for P. falciparum by PCR inOctober 2008 and another two (0.9%) tested positive in April 2009, no clinical malaria cases were detected during weekly visits. Levels of IFN-γ to all antigens decreased significantly from April 2008 to April 2009 (all P < 0.001). Discussion Naturally acquired IFN- γ responses to P. falciparum antigensare short-lived in the absence of repeated P. falciparum infection. Even short periods of malaria interruption may significantly decrease IFN-γ responses to P. falciparum antigens.
Collapse
Affiliation(s)
- Cyrus Ayieko
- Department of Zoology, Maseno University, Maseno, Kenya
| | - Bilha S Ogola
- Department of Biological Sciences, Masai Mara University, Narok, Kenya
| | - Lyticia Ochola
- Department Biological Sciences, Kabianga University, Kericho, Kenya
| | | | - George Ayodo
- School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - James S Hodges
- School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Gregory S Noland
- Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Chandy C John
- Medical School, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
13
|
Wanjala CL, Kweka EJ. Impact of Highland Topography Changes on Exposure to Malaria Vectors and Immunity in Western Kenya. Front Public Health 2016; 4:227. [PMID: 27790610 PMCID: PMC5063849 DOI: 10.3389/fpubh.2016.00227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/29/2016] [Indexed: 11/13/2022] Open
Abstract
Background It is almost an axiom that in the African highlands (above 1,500 m) transmission of Plasmodium falciparum is limited primarily by low ambient temperature and that small changes in temperature could result in temporary favorable conditions for unstable transmission within populations that have acquired little functional immunity. The pattern of malaria transmission in the highland plateau ecosystems is less distinct due to the flat topography and diffuse hydrology resulting from numerous streams. The non-homogeneous distribution of larval breeding habitats in east African highlands obviously affects Anopheles spatial distribution which, consequently, leads to heterogeneous human exposure to malaria. Another delicate parameter in the fragile transmission risk of malaria in the highlands is the rapid loss of primary forest due to subsistence agriculture. The implication of this change in land cover on malaria transmission is that deforestation can lead to changes in microclimate of both adult and larval habitats hence increase larvae survival, population density, and gametocytes development in adult mosquitoes. Deforestation has been documented to enhancing vectorial capacity of Anopheles gambiae by nearly 100% compared to forested areas. Method The study was conducted in five different ecosystems in the western Kenya highlands, two U-shaped valleys (Iguhu, Emutete), two V-shaped valleys (Marani, Fort Ternan), and one plateau (Shikondi) for 16 months among 6- to 15-year-old children. Exposure to malaria was tested using circumsporozoite protein (CSP) and merozoite surface protein immunochromatographic antibody tests. Malaria parasite was examined using different tools, which include microscopy based on blood smears, rapid diagnostic test based on HRP 2 proteins, and serology based on human immune response to parasite and vector antigens have been also examined in the highlands in comparison with different topographical systems of western Kenya. Results The results suggested that changes in the topography had implication on transmission in highlands of western Kenya and appropriate diagnosis, treatment, and control tool needed to be considered accordingly. Both plateau and U-shaped valley found to have higher parasite density than V-shaped valley. People in V-valley were less immune than in plateau and U-valley residents. Conclusion Topography diversity in western Kenya highlands has a significant impact on exposure rates of human to malaria vectors and parasite. The residents of V-shaped valleys are at risk of having explosive malaria outbreaks during hyper-transmission periods due to low exposure to malaria parasite; hence, they have low immune response to malaria, while the U-shaped valleys have stable malaria transmission, therefore, the human population has developed immunity to malaria due to continuous exposure to malaria.
Collapse
Affiliation(s)
- Christine Ludwin Wanjala
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya; Department of Medical Laboratory Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Eliningaya J Kweka
- Mosquito Section, Division of Livestock and Human Diseases Vector Control, Tropical Pesticides Research Institute, Arusha, Tanzania; Department of Medical Parasitology and Entomology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| |
Collapse
|
14
|
Baidjoe AY, Stevenson J, Knight P, Stone W, Stresman G, Osoti V, Makori E, Owaga C, Odongo W, China P, Shagari S, Kariuki S, Drakeley C, Cox J, Bousema T. Factors associated with high heterogeneity of malaria at fine spatial scale in the Western Kenyan highlands. Malar J 2016; 15:307. [PMID: 27259286 PMCID: PMC4893231 DOI: 10.1186/s12936-016-1362-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/27/2016] [Indexed: 11/24/2022] Open
Abstract
Background The East African highlands are fringe regions between stable and unstable malaria transmission. What factors contribute to the heterogeneity of malaria exposure on different spatial scales within larger foci has not been extensively studied. In a comprehensive, community-based cross-sectional survey an attempt was made to identify factors that drive the macro- and micro epidemiology of malaria in a fringe region using parasitological and serological outcomes. Methods A large cross-sectional survey including 17,503 individuals was conducted across all age groups in a 100 km2 area in the Western Kenyan highlands of Rachuonyo South district. Households were geo-located and prevalence of malaria parasites and malaria-specific antibodies were determined by PCR and ELISA. Household and individual risk-factors were recorded. Geographical characteristics of the study area were digitally derived using high-resolution satellite images. Results Malaria antibody prevalence strongly related to altitude (1350–1600 m, p < 0.001). A strong negative association with increasing altitude and PCR parasite prevalence was found. Parasite carriage was detected at all altitudes and in all age groups; 93.2 % (2481/2663) of malaria infections were apparently asymptomatic. Malaria parasite prevalence was associated with age, bed net use, house construction features, altitude and topographical wetness index. Antibody prevalence was associated with all these factors and distance to the nearest water body. Conclusion Altitude was a major driver of malaria transmission in this study area, even across narrow altitude bands. The large proportion of asymptomatic parasite carriers at all altitudes and the age-dependent acquisition of malaria antibodies indicate stable malaria transmission; the strong correlation between current parasite carriage and serological markers of malaria exposure indicate temporal stability of spatially heterogeneous transmission.
Collapse
Affiliation(s)
- Amrish Y Baidjoe
- Department of Medical Microbiology, Radboud University Medical Centre, Geert Grooteplein 26-28, 6525, GA, Nijmegen, The Netherlands.,European Programme for Public Health Microbiology Training, European Centre of Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Jennifer Stevenson
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK.,Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Philip Knight
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - William Stone
- Department of Medical Microbiology, Radboud University Medical Centre, Geert Grooteplein 26-28, 6525, GA, Nijmegen, The Netherlands
| | - Gillian Stresman
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Victor Osoti
- Kenya Medical Research Institute, Mumias Road, Kisumu Station, Kisian, Kisumu, Kenya
| | - Euniah Makori
- Kenya Medical Research Institute, Mumias Road, Kisumu Station, Kisian, Kisumu, Kenya
| | - Chrispin Owaga
- Kenya Medical Research Institute, Mumias Road, Kisumu Station, Kisian, Kisumu, Kenya
| | - Wycliffe Odongo
- Kenya Medical Research Institute, Mumias Road, Kisumu Station, Kisian, Kisumu, Kenya
| | - Pauline China
- Kenya Medical Research Institute, Mumias Road, Kisumu Station, Kisian, Kisumu, Kenya
| | - Shehu Shagari
- Kenya Medical Research Institute, Mumias Road, Kisumu Station, Kisian, Kisumu, Kenya
| | - Simon Kariuki
- Kenya Medical Research Institute, Mumias Road, Kisumu Station, Kisian, Kisumu, Kenya
| | - Chris Drakeley
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Jonathan Cox
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Centre, Geert Grooteplein 26-28, 6525, GA, Nijmegen, The Netherlands. .,Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK.
| |
Collapse
|
15
|
Noland GS, Jansen P, Vulule JM, Park GS, Ondigo BN, Kazura JW, Moormann AM, John CC. Effect of transmission intensity and age on subclass antibody responses to Plasmodium falciparum pre-erythrocytic and blood-stage antigens. Acta Trop 2015; 142:47-56. [PMID: 25446174 DOI: 10.1016/j.actatropica.2014.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/27/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
Abstract
Cytophilic immunoglobulin (IgG) subclass responses (IgG1 and IgG3) to Plasmodium falciparum antigens have been associated with protection from malaria, yet the relative importance of transmission intensity and age in generation of subclass responses to pre-erythrocytic and blood-stage antigens have not been clearly defined. We analyzed IgG subclass responses to the pre-erythrocytic antigens CSP, LSA-1, and TRAP and the blood-stage antigens AMA-1, EBA-175, and MSP-1 in asymptomatic residents age 2 years or older in stable (n=116) and unstable (n=96) transmission areas in Western Kenya. In the area of stable malaria transmission, a high prevalence of cytophilic (IgG1 and IgG3) antibodies to each antigen was seen in all age groups. Prevalence and levels of cytophilic antibodies to pre-erythrocytic and blood-stage P. falciparum antigens increased with age in the unstable transmission area, yet IgG1 and IgG3 responses to most antigens for all ages in the unstable transmission area were less prevalent and lower in magnitude than even the youngest age group from the stable transmission area. The dominance of cytophilic responses over non-cytophilic (IgG2 and IgG4) was more pronounced in the stable transmission area, and the ratio of IgG3 over IgG1 generally increased with age. In the unstable transmission area, the ratio of cytophilic to non-cytophilic antibodies did not increase with age, and tended to be IgG3-biased for pre-erythrocytic antigens yet IgG1-biased for blood-stage antigens. The differences between areas could not be attributed to active parasitemia status, as there were minimal differences in antibody responses between those positive and negative for Plasmodium infection by microscopy in the stable transmission area. Individuals in areas of unstable transmission have low cytophilic to non-cytophilic IgG subclass ratios and low IgG3:IgG1 ratios to P. falciparum antigens. These imbalances could contribute to the persistent risk of clinical malaria in these areas and serve as population-level, age-specific biomarkers of transmission.
Collapse
|
16
|
Changes in antigen-specific cytokine and chemokine responses to Plasmodium falciparum antigens in a highland area of Kenya after a prolonged absence of malaria exposure. Infect Immun 2014; 82:3775-82. [PMID: 24958707 DOI: 10.1128/iai.01924-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Individuals naturally exposed to Plasmodium falciparum lose clinical immunity after a prolonged lack of exposure. P. falciparum antigen-specific cytokine responses have been associated with protection from clinical malaria, but the longevity of P. falciparum antigen-specific cytokine responses in the absence of exposure is not well characterized. A highland area of Kenya with low and unstable malaria transmission provided an opportunity to study this question. The levels of antigen-specific cytokines and chemokines associated in previous studies with protection from clinical malaria (gamma interferon [IFN-γ], interleukin-10 [IL-10], and tumor necrosis factor alpha [TNF-α]), with increased risk of clinical malaria (IL-6), or with pathogenesis of severe disease in malaria (IL-5 and RANTES) were assessed by cytometric bead assay in April 2008, October 2008, and April 2009 in 100 children and adults. During the 1-year study period, none had an episode of clinical P. falciparum malaria. Two patterns of cytokine responses emerged, with some variation by antigen: a decrease at 6 months (IFN-γ and IL-5) or at both 6 and 12 months (IL-10 and TNF-α) or no change over time (IL-6 and RANTES). These findings document that P. falciparum antigen-specific cytokine responses associated in prior studies with protection from malaria (IFN-γ, TNF-α, and IL-10) decrease significantly in the absence of P. falciparum exposure, whereas those associated with increased risk of malaria (IL-6) do not. The study findings provide a strong rationale for future studies of antigen-specific IFN-γ, TNF-α, and IL-10 responses as biomarkers of increased population-level susceptibility to malaria after prolonged lack of P. falciparum exposure.
Collapse
|
17
|
Mutanda AL, Cheruiyot P, Hodges JS, Ayodo G, Odero W, John CC. Sensitivity of fever for diagnosis of clinical malaria in a Kenyan area of unstable, low malaria transmission. Malar J 2014; 13:163. [PMID: 24885660 PMCID: PMC4021053 DOI: 10.1186/1475-2875-13-163] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/25/2014] [Indexed: 12/05/2022] Open
Abstract
Background Malaria in highland areas of Kenya affects children and adults. Local clinicians include symptoms other than fever when screening for malaria because they believe that fever alone does not capture all cases of malaria. Methods Individuals who presented to dispensaries in a highland Kenya site of low, unstable malaria transmission from 2007–2011 with 1 or more of 11 symptoms were tested by microscopy for malaria. Clinical malaria was defined as asexual Plasmodium falciparum infection on peripheral blood smear in an individual with any screening symptom. Asymptomatic P. falciparum infection was assessed in a cohort at ten time points to determine the extent to which symptomatic episodes with parasitaemia might be attributable to baseline (asymptomatic) parasitaemia in the community. Results 3,420 individuals were screened for malaria, 634 < 5 years of age and 2,786 ≥ 5 years of age. For the diagnosis of clinical malaria, the symptom of fever had a sensitivity and specificity of 88.9% and15.4% in children <5 years, and 55.8% and 54.4% in children ≥5 years, respectively. Adding the symptom of headache increased sensitivity to 94. 4% in children <5 years and 96.8% in individuals ≥5 years, but decreased specificity to 9.9% and 11.6%, respectively, and increased the number of individuals who would be tested by 6% and 92%, respectively. No combination of symptoms improved upon the presence fever or headache for detection of clinical malaria. In the cohort of asymptomatic individuals, P. falciparum parasitaemia was infrequent (0.1%). Conclusion In areas of low, unstable malaria transmission, fever is a sensitive indicator of clinical malaria in children <5 years, but not in older children and adults. Adding headache to fever as screening symptom increases sensitivity of detection in individuals ≥5 years old at the cost of decreased specificity. Screening for symptoms in addition to fever may be required to accurately capture all cases of clinical malaria in individuals ≥5 years old in areas of low malaria transmission.
Collapse
Affiliation(s)
- Albino L Mutanda
- School of Public Health and Community Development, Maseno University, Kisumu, Kenya.
| | | | | | | | | | | |
Collapse
|
18
|
Ochola LA, Ng'wena GM, Noland GS, Ondigo BN, Ayodo G, John CC. The Plasmodium falciparum Antigen MB2 Induces Interferon-γ and Interleukin-10 Responses in Adults in Malaria Endemic Areas of Western Kenya. J Glob Infect Dis 2014; 5:131-7. [PMID: 24672173 PMCID: PMC3958981 DOI: 10.4103/0974-777x.122001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND MB2 is a novel Plasmodium falciparum antigen of unknown function expressed in pre-erythrocytic and blood stages of infection in the human host. Interferon-gamma (IFN-γ) and interleukin (IL)-10 responses to other P. falciparum antigens have been associated with protection from clinical malaria, but these responses have not been studied for MB2. The present study was undertaken to characterize IFN-γ and IL-10 responses to P. falciparum MB2 antigen in adults living in areas of differing malaria transmission in Western Kenya. MATERIALS AND METHODS Cytokine responses to two 9-mer MB2 peptides predicted to be human leukocyte antigen (HLA) class I restricted T-cell epitopes were measured by enzyme-linked immunosorbent assay (ELISA) (IFN-γ and IL-10) and enzyme-linked immunosorbent spot (ELISPOT) (IFN-γ) in adults (n = 228) in areas of unstable and stable malaria transmission. HLA class I restriction of responses was assessed in a sub-group of the study population. RESULTS IFN-γ and IL-10 responses to MB2 peptides by ELISA were observed in both sites with no significant difference in prevalence (IFN-γ, unstable transmission area, 18.8%, stable transmission area, 27.5%, P = 0.33; IL-10, unstable transmission area, 22.5%, stable transmission area, 25.0%, P = 0.78). Prevalence of IFN-γ responses by ELISPOT was also similar in both areas (unstable, 10.8%, stable, 10.9%, P = 0.98). Neither IFN-γ nor IL-10 responses showed evidence of HLA class I restriction. CONCLUSIONS MB2 induces IFN-γ and IL-10 responses in adults living in both stable and unstable malaria transmission areas. Future studies should assess if these responses are associated with protection from clinical malaria.
Collapse
Affiliation(s)
- Lyticia A Ochola
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno ; Kenya Medical Research Institute, University of Minnesota Malaria Program, Kisumu, Kenya
| | - Gideon M Ng'wena
- Department of Medical Physiology, School of Medicine, Maseno University, Maseno, Kenya
| | - Gregory S Noland
- Department of Pediatrics, University of Minnesota, Minneapolis, USA
| | - Bartholomew N Ondigo
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno
| | - George Ayodo
- Kenya Medical Research Institute, University of Minnesota Malaria Program, Kisumu, Kenya
| | - Chandy C John
- Department of Pediatrics, University of Minnesota, Minneapolis, USA
| |
Collapse
|
19
|
Baum E, Badu K, Molina DM, Liang X, Felgner PL, Yan G. Protein microarray analysis of antibody responses to Plasmodium falciparum in western Kenyan highland sites with differing transmission levels. PLoS One 2013; 8:e82246. [PMID: 24312649 PMCID: PMC3846730 DOI: 10.1371/journal.pone.0082246] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/22/2013] [Indexed: 01/01/2023] Open
Abstract
Malaria represents a major public health problem in Africa. In the East African highlands, the high-altitude areas were previously considered too cold to support vector population and parasite transmission, rendering the region particularly prone to epidemic malaria due to the lack of protective immunity of the population. Since the 1980’s, frequent malaria epidemics have been reported and these successive outbreaks may have generated some immunity against Plasmodium falciparum amongst the highland residents. Serological studies reveal indirect evidence of human exposure to the parasite, and can reliably assess prevalence of exposure and transmission intensity in an endemic area. However, the vast majority of serological studies of malaria have been, hereto, limited to a small number of the parasite’s antigens. We surveyed and compared the antibody response profiles of age-stratified sera from residents of two endemic areas in the western Kenyan highlands with differing malaria transmission intensities, during two distinct seasons, against 854 polypeptides of P. falciparum using high-throughput proteomic microarray technology. We identified 107 proteins as serum antibody targets, which were then characterized for their gene ontology biological process and cellular component of the parasite, and showed significant enrichment for categories related to immune evasion, pathogenesis and expression on the host’s cell and parasite’s surface. Additionally, we calculated age-fitted annual seroconversion rates for the immunogenic proteins, and contrasted the age-dependent antibody acquisition for those antigens between the two sampling sites. We observed highly immunogenic antigens that produce stable antibody responses from early age in both sites, as well as less immunogenic proteins that require repeated exposure for stable responses to develop and produce different seroconversion rates between sites. We propose that a combination of highly and less immunogenic proteins could be used in serological surveys to detect differences in malaria transmission levels, distinguishing sites of unstable and stable transmission.
Collapse
Affiliation(s)
- Elisabeth Baum
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| | - Kingsley Badu
- Department of Immunology, Noguchi Memorial Institute for Medical Sciences, College of Health Science, University of Ghana, Accra, Ghana
| | - Douglas M. Molina
- Antigen Discovery Inc., Irvine, California, United States of America
| | - Xiaowu Liang
- Antigen Discovery Inc., Irvine, California, United States of America
| | - Philip L. Felgner
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, California, United States of America
| | - Guiyun Yan
- Program in Public Health, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
20
|
Characteristic age distribution of Plasmodium vivax infections after malaria elimination on Aneityum Island, Vanuatu. Infect Immun 2013; 82:243-52. [PMID: 24166950 DOI: 10.1128/iai.00931-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resurgence is a major concern after malaria elimination. After the initiation of the elimination program on Aneityum Island in 1991, microscopy showed that Plasmodium falciparum disappeared immediately, whereas P. vivax disappeared from 1996 onward, until P. vivax cases were reported in January 2002. By conducting malariometric surveys of the entire population of Aneityum, we investigated the age distribution of individuals with parasites during this epidemic in the context of antimalarial antibody levels and parasite antigen diversity. In July 2002, P. vivax infections were detected by microscopy in 22/759 individuals: 20/298 born after the beginning of the elimination program in 1991, 2/126 born between 1982 and 1991, and none of 335 born before 1982. PCR increased the number of infections detected to 77, distributed among all age groups. Prevalences were 12.1%, 16.7%, and 6.0%, respectively (P < 0.001). In November, a similar age pattern was found, but with fewer infections: 6/746 and 39/741 individuals were found to be infected by microscopy and PCR, respectively. The frequencies of antibody responses to P. vivax were significantly higher in individuals born before 1991 than in younger age groups and were similar to those on Malakula Island, an area of endemicity. Remarkably low antigen diversity (h, 0.15) of P. vivax infections was observed on Aneityum compared with the other islands (h, 0.89 to 1.0). A P. vivax resurgence was observed among children and teenagers on Aneityum, an age distribution similar to those before elimination and on islands where P. vivax is endemic, suggesting that in the absence of significant exposure, immunity may persist, limiting infection levels in adults. The limited parasite gene pool on islands may contribute to this protection.
Collapse
|