1
|
Zhong W, Guo F, Chen F, Law MK, Lu J, Shao D, Yu H, Chan G, Chen M. A multifunctional oxidative stress nanoamplifier with ROS amplification and GSH exhaustion for enhanced chemodynamic therapy. Front Pharmacol 2022; 13:1044083. [PMID: 36438812 PMCID: PMC9689698 DOI: 10.3389/fphar.2022.1044083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/26/2022] [Indexed: 10/09/2023] Open
Abstract
Chemodynamic therapy (CDT) eradicates tumors by intratumoral catalytic chemical reaction and subsequently disrupts redox homeostasis, which shows tumor specific reactive oxygen species (ROS)-mediated therapy. However, insufficient ROS generation and high levels of glutathione (GSH) in cancer cells have limited the therapeutic efficacy of CDT. Herein, we constructed a multifunctional oxidative stress nanoamplifier with ROS amplification and GSH exhaustion for enhanced CDT. Such a sandwich-like nanoamplifier comprised layer-by-layer artesunate (AS) and calcium carbonate coatings on the surface of manganese dioxide (MnO2) nanoparticles. The nanoamplifier was disassembled under an acidic environment once accumulated into tumor sites, and subsequently released AS to replenish the intratumoral peroxide pool for ROS amplification. Besides being an AS carrier, MnO2 exhausted GSH to yield Mn2+ ions that catalyzed the overexpression of H2O2 in the tumor, further intensifying the oxidative stress and facilitating cancer cell death. Taken together, our findings not only provide a paradigm for fabricating intratumoral catalytic nanomaterials, but also present a new ROS enhancement strategy to improve anti-tumor efficacy. Our multifunctional oxidative stress nanoamplifier might broaden the future of CDT.
Collapse
Affiliation(s)
- Wenzhao Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Feng Guo
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, China
| | - Fangman Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Man-Kay Law
- State Key Laboratory of Analog and Mixed-Signal VLSI, IME and FST-ECE, University of Macau, Macau, Macau SAR, China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Shao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Ging Chan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| |
Collapse
|
2
|
Geographic Plasmodium falciparum sarcoplasmic reticulum Ca2+ ATPase (PfSERCA) genotype diversity in India. Acta Trop 2020; 202:105095. [PMID: 31323193 DOI: 10.1016/j.actatropica.2019.105095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 11/18/2018] [Accepted: 07/15/2019] [Indexed: 11/22/2022]
Abstract
Plasmodium falciparum sarcoplasmic reticulum Ca2+ ATPase (PfSERCA) is sarcoplasmic reticulum membrane bound transporter to regulate cytosol Ca2+ ions. Ca2+ act as secondary messenger and play important role in differentiation of parasite during its life cycle. Present study is epidemiological surveillance of PfSERCA (Pf3D7_0106300) gene fragment harboring 263, 402, 431 codon to look for its single nucleotide polymorphism which is well documented to be associated with Artemisinin tolerance. Filter paper with finger pricked blood samples for Plasmodium falciparum infected uncomplicated malaria patients were obtained for region as diverse as down the longitude from east to west of India i.e. Mizoram, Tripura, Meghalaya, Jharkhand, Odhisa. There observed no mutation for codon 263 at all study sites. Mizoram showed highest PfSERCA diversity with well known SNPs of L402 V, E431 K, A438 V and novel mutations as well i.e. A338 V, S357Y, S379Y. Tripura reported highest proportion of Plasmodium isolates (18.5%) with E431 K single nucleotide polymorphism. Moving towards the west i.e. Meghalaya, Jharkhand, Odhisa showed no occurrence of most prevalent PfSERCA 431, 402 polymorphism worldwide but some novel mutations and its haplotypes. In present study, significantly increased proportion of novel PfSERCA polymorphism among children suggests the susceptibility of these Plasmodium falciparum strains to acquired immunity. Mizoram, sharing open international border with south east asia, demonstrated highest PfSERCA diversity. Spatial PfSERCA diversity from far north east India to moving towards west implies its association with antimalarial susceptibility.
Collapse
|
3
|
Thapliyal N, Chiwunze TE, Karpoormath R, Goyal RN, Patel H, Cherukupalli S. Research progress in electroanalytical techniques for determination of antimalarial drugs in pharmaceutical and biological samples. RSC Adv 2016. [DOI: 10.1039/c6ra05025e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The review focusses on the role of electroanalytical methods for determination of antimalarial drugs in biological matrices and pharmaceutical formulations with a critical analysis of published voltammetric and potentiometric methods.
Collapse
Affiliation(s)
- Neeta Thapliyal
- Department of Pharmaceutical Chemistry
- College of Health Sciences
- University of KwaZulu-Natal
- Durban 4000
- South Africa
| | - Tirivashe E. Chiwunze
- Department of Pharmaceutical Chemistry
- College of Health Sciences
- University of KwaZulu-Natal
- Durban 4000
- South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry
- College of Health Sciences
- University of KwaZulu-Natal
- Durban 4000
- South Africa
| | - Rajendra N. Goyal
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| | - Harun Patel
- Department of Pharmaceutical Chemistry
- College of Health Sciences
- University of KwaZulu-Natal
- Durban 4000
- South Africa
| | - Srinivasulu Cherukupalli
- Department of Pharmaceutical Chemistry
- College of Health Sciences
- University of KwaZulu-Natal
- Durban 4000
- South Africa
| |
Collapse
|
4
|
Kumar A, Chen F, Mozhi A, Zhang X, Zhao Y, Xue X, Hao Y, Zhang X, Wang PC, Liang XJ. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation. NANOSCALE 2013; 5:8307-8325. [PMID: 23860639 PMCID: PMC3934102 DOI: 10.1039/c3nr01525d] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The advent of nanotechnology has reignited interest in the field of pharmaceutical science for the development of nanomedicine. Nanomedicinal formulations are nanometer-sized carrier materials designed for increasing the drug tissue bioavailability, thereby improving the treatment of systemically applied chemotherapeutic drugs. Nanomedicine is a new approach to deliver the pharmaceuticals through different routes of administration with safer and more effective therapies compared to conventional methods. To date, various kinds of nanomaterials have been developed over the years to make delivery systems more effective for the treatment of various diseases. Even though nanomaterials have significant advantages due to their unique nanoscale properties, there are still significant challenges in the improvement and development of nanoformulations with composites and other materials. Here in this review, we highlight the nanomedicinal formulations aiming to improve the balance between the efficacy and the toxicity of therapeutic interventions through different routes of administration and how to design nanomedicine for safer and more effective ways to improve the treatment quality. We also emphasize the environmental and health prospects of nanomaterials for human health care.
Collapse
Affiliation(s)
- Anil Kumar
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, No. 11, First North Road, Beijing100190, P. R. China
- University of Chinese Academy of Science, Beijing, P. R. China
| | - Fei Chen
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, No. 11, First North Road, Beijing100190, P. R. China
- University of Chinese Academy of Science, Beijing, P. R. China
| | - Anbu Mozhi
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, No. 11, First North Road, Beijing100190, P. R. China
- University of Chinese Academy of Science, Beijing, P. R. China
| | - Xu Zhang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, No. 11, First North Road, Beijing100190, P. R. China
| | - Yuanyuan Zhao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, No. 11, First North Road, Beijing100190, P. R. China
| | - Xiangdong Xue
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, No. 11, First North Road, Beijing100190, P. R. China
- University of Chinese Academy of Science, Beijing, P. R. China
| | - Yanli Hao
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaoning Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Paul C. Wang
- Laboratory of Molecular Imaging, Department of Radiology, Howard University, Washington DC 20060, USA
| | - Xing-Jie Liang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, No. 11, First North Road, Beijing100190, P. R. China
| |
Collapse
|