1
|
Tsuji I, Vang F, Dominguez D, Karwal L, Sanjali A, Livengood JA, Davidson E, Fouch ME, Doranz BJ, Das SC, Dean HJ. Somatic Hypermutation and Framework Mutations of Variable Region Contribute to Anti-Zika Virus-Specific Monoclonal Antibody Binding and Function. J Virol 2022; 96:e0007122. [PMID: 35575481 PMCID: PMC9175631 DOI: 10.1128/jvi.00071-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Zika virus (ZIKV) is a global public health concern due to its ability to cause congenital Zika syndrome and lack of approved vaccine, therapeutic, or other control measures. We discovered eight novel rabbit monoclonal antibodies (MAbs) that bind to distinct ZIKV envelope protein epitopes. The majority of the MAbs were ZIKV specific and targeted the lateral ridge of the envelope (E) protein domain III, while the MAb with the highest neutralizing activity recognized a putative quaternary epitope spanning E protein domains I and III. One of the non-neutralizing MAbs specifically recognized ZIKV precursor membrane protein (prM). Somatic hypermutation of immunoglobulin variable regions increases antibody affinity maturation and triggers antibody class switching. Negative correlations were observed between the somatic hypermutation rate of the immunoglobulin heavy-chain variable region and antibody binding parameters such as equilibrium dissociation constant, dissociation constant, and half-maximal effective concentration value of MAb binding to ZIKV virus-like particles. Complementarity-determining regions recognize the antigen epitopes and are scaffolded by canonical framework regions. Reversion of framework region amino acids to the rabbit germ line sequence decreased anti-ZIKV MAb binding activity of some MAbs. Thus, antibody affinity maturation, including somatic hypermutation and framework region mutations, contributed to the binding and function of these anti-ZIKV MAbs. IMPORTANCE ZIKV is a global health concern against which no vaccine or therapeutics are available. We characterized eight novel rabbit monoclonal antibodies recognizing ZIKV envelope and prM proteins and studied the relationship between somatic hypermutation of complementarity-determining regions, framework regions, mutations, antibody specificity, binding, and neutralizing activity. The results contribute to understanding structural features and somatic mutation pathways by which potent Zika virus-neutralizing antibodies can evolve, including the role of antibody framework regions.
Collapse
Affiliation(s)
- Isamu Tsuji
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - Fue Vang
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - David Dominguez
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - Lovkesh Karwal
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - Ankita Sanjali
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - Jill A. Livengood
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | | | | | | | - Subash C. Das
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| | - Hansi J. Dean
- Vaccine Business Unit, Takeda Pharmaceutical Ltd., Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
The Evolution, Genomic Epidemiology, and Transmission Dynamics of Tembusu Virus. Viruses 2022; 14:v14061236. [PMID: 35746707 PMCID: PMC9227414 DOI: 10.3390/v14061236] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/10/2022] Open
Abstract
Tembusu virus (TMUV) can induce severe egg drop syndrome in ducks, causing significant economic losses. In this study, the possible origin, genomic epidemiology, and transmission dynamics of TMUV were determined. The time to the most recent common ancestor of TMUV was found to be 1924, earlier than that previously reported. The effective population size of TMUV increased rapidly from 2010 to 2013 and was associated with the diversification of different TMUV clusters. TMUV was classified into three clusters (clusters 1, 2, and 3) based on the envelope (E) protein. Subcluster 2.2, within cluster 2, is the most prevalent, and the occurrence of these mutations is accompanied by changes in the virulence and infectivity of the virus. Two positive selections on codons located in the NS3 and NS5 genes (591 of NS3 and 883 of NS5) were identified, which might have caused changes in the ability of the virus to replicate. Based on phylogeographic analysis, Malaysia was the most likely country of origin for TMUV, while Shandong Province was the earliest province of origin in China. This study has important implications for understanding TMUV and provides suggestions for its prevention and control.
Collapse
|
3
|
Fornace K, Manin BO, Matthiopoulos J, Ferguson HM, Drakeley C, Ahmed K, Khoon KT, Ewers RM, Daim S, Chua TH. A protocol for a longitudinal, observational cohort study of infection and exposure to zoonotic and vector-borne diseases across a land-use gradient in Sabah, Malaysian Borneo: a socio-ecological systems approach. Wellcome Open Res 2022; 7:63. [PMID: 35284640 PMCID: PMC8886174 DOI: 10.12688/wellcomeopenres.17678.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction. Landscape changes disrupt environmental, social and biological systems, altering pathogen spillover and transmission risks. This study aims to quantify the impact of specific land management practices on spillover and transmission rates of zoonotic and vector-borne diseases within Malaysian Borneo. This protocol describes a cohort study with integrated ecological sampling to assess how deforestation and agricultural practices impact pathogen flow from wildlife and vector populations to human infection and detection by health facilities. This will focus on malaria, dengue and emerging arboviruses (Chikungunya and Zika), vector-borne diseases with varying contributions of simian reservoirs within this setting. Methods. A prospective longitudinal observational cohort study will be established in communities residing or working within the vicinity of the Stability of Altered Forest Ecosystems (SAFE) Project, a landscape gradient within Malaysian Borneo encompassing different plantation and forest types. The primary outcome of this study will be transmission intensity of selected zoonotic and vector-borne diseases, as quantified by changes in pathogen-specific antibody levels. Exposure will be measured using paired population-based serological surveys conducted at the beginning and end of the two-year cohort study. Secondary outcomes will include the distribution and infection rates of Aedes and Anopheles mosquito vectors, human risk behaviours and clinical cases reported to health facilities. Longitudinal data on human behaviour, contact with wildlife and GPS tracking of mobility patterns will be collected throughout the study period. This will be integrated with entomological surveillance to monitor densities and pathogen infection rates of Aedes and Anopheles mosquitoes relative to land cover. Within surrounding health clinics, continuous health facility surveillance will be used to monitor reported infections and febrile illnesses. Models will be developed to assess spillover and transmission rates relative to specific land management practices and evaluate abilities of surveillance systems to capture these risks.
Collapse
Affiliation(s)
- Kimberly Fornace
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Benny Obrain Manin
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Jason Matthiopoulos
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Heather M. Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Kamruddin Ahmed
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Koay Teng Khoon
- Sabah State Health Department, Ministry of Health, Malaysia, Kota Kinabalu, Malaysia
| | | | - Sylvia Daim
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
- East Malaysia Zoonotic and Infectious Diseases Society, Kota Kinabalu, Malaysia
| | - Tock Hing Chua
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
- East Malaysia Zoonotic and Infectious Diseases Society, Kota Kinabalu, Malaysia
| |
Collapse
|