1
|
Fukuda K, Miura Y, Maeda T, Hayashi S, Kikuchi K, Takashima Y, Matsumoto T, Kuroda R. LIGHT regulated gene expression in rheumatoid synovial fibroblasts. Mol Biol Rep 2024; 51:356. [PMID: 38401037 PMCID: PMC10894125 DOI: 10.1007/s11033-024-09311-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/01/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Synovial hyperplasia caused by rheumatoid arthritis (RA), an autoimmune inflammatory disease, leads to the destruction of the articular cartilage and bone. A member of the tumor necrosis factor superfamily, Lymphotoxin-related inducible ligand that competes for glycoprotein D binding to herpes virus entry mediator on T cells (LIGHT) has been shown to correlate with the pathogenesis of RA. METHODS We used cDNA microarray analysis to compare the expression of genes in rheumatoid fibroblast-like synoviocytes with and without LIGHT stimulation. RESULTS Significant changes in gene expression (P-values < 0.05 and fold change ≥ 2.0) were associated mainly with biological function categories of glycoprotein, glycosylation site as N-linked, plasma membrane part, integral to plasma membrane, intrinsic to plasma membrane, signal, plasma membrane, signal peptide, alternative splicing, and topological domain as extracellular. CONCLUSIONS Our results indicate that LIGHT may regulate the expression in RA-FLS of genes which are important in the differentiation of several cell types and in cellular functions.
Collapse
Affiliation(s)
- Koji Fukuda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yasushi Miura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan.
- Division of Orthopedic Science, Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma, Kobe, Hyogo, 654-0142, Japan.
| | - Toshihisa Maeda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Kenichi Kikuchi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yoshinori Takashima
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
2
|
Bolognesi E, Guerini FR, Carta A, Chiappedi M, Sotgiu S, Mensi MM, Agliardi C, Zanzottera M, Clerici M. The Role of SNAP-25 in Autism Spectrum Disorders Onset Patterns. Int J Mol Sci 2023; 24:14042. [PMID: 37762342 PMCID: PMC10531097 DOI: 10.3390/ijms241814042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Autism spectrum disorders (ASD) can present with different onset and timing of symptom development; children may manifest symptoms early in their first year of life, i.e., early onset (EO-ASD), or may lose already achieved skills during their second year of life, thus showing a regressive-type onset (RO-ASD). It is still controversial whether regression represents a neurobiological subtype of ASD, resulting from distinct genetic and environmental causes. We focused this study on the 25 kD synaptosomal-associated protein (SNAP-25) gene involved in both post-synaptic formation and adhesion and considered a key player in the pathogenesis of ASD. To this end, four single nucleotide polymorphisms (SNPs) of the SNAP-25 gene, rs363050, rs363039, rs363043, and rs1051312, already known to be involved in neurodevelopmental and psychiatric disorders, were analyzed in a cohort of 69 children with EO-ASD and 58 children with RO-ASD. Both the rs363039 G allele and GG genotype were significantly more frequently carried by patients with EO-ASD than those with RO-ASD and healthy controls (HC). On the contrary, the rs1051312 T allele and TT genotype were more frequent in individuals with RO-ASD than those with EO-ASD and HC. Thus, two different SNAP-25 alleles/genotypes seem to discriminate between EO-ASD and RO-ASD. Notably, rs1051312 is located in the 3' untranslated region (UTR) of the gene and is the target of microRNA (miRNA) regulation, suggesting a possible epigenetic role in the onset of regressive autism. These SNPs, by discriminating two different onset patterns, may represent diagnostic biomarkers of ASD and may provide insight into the different biological mechanisms towards the development of better tailored therapeutic and rehabilitative approaches.
Collapse
Affiliation(s)
- Elisabetta Bolognesi
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (E.B.); (C.A.); (M.Z.); (M.C.)
| | - Franca Rosa Guerini
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (E.B.); (C.A.); (M.Z.); (M.C.)
| | - Alessandra Carta
- Unit of Child Neuropsychiatry, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (S.S.)
| | - Matteo Chiappedi
- Child Neuropsychiatry Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.C.); (M.M.M.)
| | - Stefano Sotgiu
- Unit of Child Neuropsychiatry, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (S.S.)
| | - Martina Maria Mensi
- Child Neuropsychiatry Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (M.C.); (M.M.M.)
| | - Cristina Agliardi
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (E.B.); (C.A.); (M.Z.); (M.C.)
| | - Milena Zanzottera
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (E.B.); (C.A.); (M.Z.); (M.C.)
| | - Mario Clerici
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy; (E.B.); (C.A.); (M.Z.); (M.C.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
3
|
Clarkson BDS, Grund E, David K, Johnson RK, Howe CL. ISGylation is induced in neurons by demyelination driving ISG15-dependent microglial activation. J Neuroinflammation 2022; 19:258. [PMID: 36261842 PMCID: PMC9583544 DOI: 10.1186/s12974-022-02618-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/07/2022] [Indexed: 11/22/2022] Open
Abstract
The causes of grey matter pathology and diffuse neuron injury in MS remain incompletely understood. Axonal stress signals arising from white matter lesions has been suggested to play a role in initiating this diffuse grey matter pathology. Therefore, to identify the most upstream transcriptional responses in neurons arising from demyelinated axons, we analyzed the transcriptome of actively translating neuronal transcripts in mouse models of demyelinating disease. Among the most upregulated genes, we identified transcripts associated with the ISGylation pathway. ISGylation refers to the covalent attachment of the ubiquitin-like molecule interferon stimulated gene (ISG) 15 to lysine residues on substrates targeted by E1 ISG15-activating enzyme, E2 ISG15-conjugating enzymes and E3 ISG15-protein ligases. We further confirmed that ISG15 expression is increased in MS cortical and deep gray matter. Upon investigating the functional impact of neuronal ISG15 upregulation, we noted that ISG15 expression was associated changes in neuronal extracellular vesicle protein and miRNA cargo. Specifically, extracellular vesicle-associated miRNAs were skewed toward increased frequency of proinflammatory and neurotoxic miRNAs and decreased frequency of anti-inflammatory and neuroprotective miRNAs. Furthermore, we found that ISG15 directly activated microglia in a CD11b-dependent manner and that microglial activation was potentiated by treatment with EVs from neurons expressing ISG15. Further study of the role of ISG15 and ISGylation in neurons in MS and neurodegenerative diseases is warranted.
Collapse
Affiliation(s)
- Benjamin D. S. Clarkson
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Guggenheim 1521C, 200 First Street SW, Rochester, MN 55905 USA
| | - Ethan Grund
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XMayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine and Mayo Clinic Medical Scientist Training Program, MN 55905 Rochester, USA
| | - Kenneth David
- grid.418935.20000 0004 0436 053XConcordia College, Moorhead, MN USA
| | - Renee K. Johnson
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Charles L. Howe
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XDivision of Experimental Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XCenter for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
4
|
Özdemir Ç, Şahin N, Edgünlü T. Vesicle trafficking with snares: a perspective for autism. Mol Biol Rep 2022; 49:12193-12202. [PMID: 36198849 DOI: 10.1007/s11033-022-07970-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
Abstract
Vesicle-mediated membrane traffic is the mechanism fundamental to many biological events, especially the release of neurotransmitters. The main proteins of the mechanism that mediates membrane fusion in vesicle-mediated membrane traffic are N-ethylmaleimide sensitive factor (NSF) supplemental protein (SNAP) receptor (SNAREs) proteins. SNAREs are classified into vesicle-associated SNAREs (vesicle-SNAREs/v-SNAREs) and target membrane-associated SNAREs (target-SNARE/t-SNAREs). Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by many symptoms, especially complications in social communication and stereotypical behaviours. Defects in synaptogenesis and neurotransmission, oxidative stress, and developmental defects in the early stages of development are defined in the pathogenesis of the disease. SNARE proteins are on the basis of synaptogenesis and neurotransmission. Although the formation mechanisms and underlying causes of the SNARE complex are not fully understood, expression differences, polymorphisms, abnormal expressions or dysfunctions of the proteins that make up the SNARE complex have been associated with many neurodevelopmental diseases, including autism. Further understanding of SNARE mechanisms is crucial both for understanding ASD and for developing new treatments. In this review, the formation mechanisms of the SNARE complex and the roles of various factors involved in this process are explained. In addition, a brief evaluation of clinical and basic studies on the SNARE complex in autism spectrum disorders was made.
Collapse
Affiliation(s)
- Çilem Özdemir
- Department of Medical Biology, Health Sciences Institution, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - Nilfer Şahin
- Department of Child and Adolescent Mental Health Diseases School of Medicine, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - Tuba Edgünlü
- Department of Medical Biology, School of Medicine, Muğla Sıtkı Koçman University, 48000, Mugla, Turkey.
| |
Collapse
|
5
|
Costa AS, Ferri E, Guerini FR, Rossi PD, Arosio B, Clerici M. VAMP2 Expression and Genotype Are Possible Discriminators in Different Forms of Dementia. Front Aging Neurosci 2022; 14:858162. [PMID: 35360211 PMCID: PMC8964122 DOI: 10.3389/fnagi.2022.858162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/22/2022] [Indexed: 12/03/2022] Open
Abstract
Vascular alterations often overlap with neurodegeneration, resulting in mixed forms of dementia (MD) that are hard to differentiate from Alzheimer’s Disease (AD). The 26 bp intergenic polymorphism of VAMP2, a key component of SNARE complex, as well as its mRNA and protein levels are associated with neurological diseases. We evaluated ApoE4 and VAMP2 26 bp Ins/Del genotype distribution in 177 AD, 132 MD, 115 Mild Cognitive Impairment (MCI) and 250 individuals without cognitive decline (CT), as well as VAMP2 gene expression in a subset of 73 AD, 122 MD, 103 MCI and 140 CT. Forty-two MCI evolved to AD (22 MCI-AD) or MD (20 MCI-MD) over time. VAMP2 mRNA was higher in MD compared to AD (p = 0.0013) and CT (p = 0.0017), and in MCI-MD compared to MCI-AD (p < 0.001) after correcting for age, gender, MMSE and ApoE4 +/− covariates (pc = 0.004). A higher VAMP2 expression was observed in subjects carrying the minor allele Del compared to those carrying the Ins/Ins genotype (p = 0.012). Finally, Del/Del genotype was more frequently carried by MD/MCI-MD compared to CT (pc = 0.036). These results suggest that VAMP2 mRNA expression can discriminate mixed form of dementia from AD, possibly being a biomarker of AD evolution in MCI patients.
Collapse
Affiliation(s)
| | - Evelyn Ferri
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Franca Rosa Guerini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- *Correspondence: Franca Rosa Guerini,
| | - Paolo Dionigi Rossi
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Chen B, Zhang Q, Yan Y, Zhang T. MST1-knockdown protects against impairment of working memory via regulating neural activity in depression-like mice. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12782. [PMID: 35044088 PMCID: PMC9744549 DOI: 10.1111/gbb.12782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 12/31/2022]
Abstract
We reported that over-expression of MST1 induced the impairment of spatial memory via disturbing neural oscillation patterns in mice. Meanwhile, the P-MST1 is increased in the hippocampus after chronic unpredictable mild stress (CUMS). However, it is unclear if MST1 knockdown protects against stress-induced memory deficits via modulating neural activities. In the study, a CUMS mouse model was established and an intrahippocampal injection of AAV-shMST1 was used to knockdown MST1 in the hippocampus. The data showed that there were memory deficits with over-expressed P-MST1 level in CUMS mice. However, MST1 knockdown can significantly prevent the damages of CUMS-induced working memory and synaptic plasticity via regulating neural oscillation patterns. It suggests that MST1 down-regulation effectively protected against stress-induced behavioral dysfunctions. Moreover, as a more convenient way, neural oscillation analysis could provide some assistance for the auxiliary diagnosis and treatment of depression.
Collapse
Affiliation(s)
- Bin Chen
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of EducationNankai UniversityTianjinChina
| | - Qiyue Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of EducationNankai UniversityTianjinChina
| | - Yuxing Yan
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of EducationNankai UniversityTianjinChina
| | - Tao Zhang
- College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of EducationNankai UniversityTianjinChina
| |
Collapse
|