1
|
Neocleous V, Fanis P, Toumba M, Skordis N, Phylactou LA. Genetic diagnosis of endocrine disorders in Cyprus through the Cyprus Institute of Neurology and Genetics: an ENDO-ERN Reference Center. Orphanet J Rare Dis 2024; 19:167. [PMID: 38637882 PMCID: PMC11027394 DOI: 10.1186/s13023-024-03171-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/30/2024] [Indexed: 04/20/2024] Open
Abstract
The report covers the current and past activities of the department Molecular Genetics-Function and Therapy (MGFT) at the Cyprus Institute of Neurology and Genetics (CING), an affiliated Reference Center for the European Reference Network on Rare Endocrine Conditions (Endo-ERN).The presented data is the outcome of > 15 years long standing collaboration between MGFT and endocrine specialists from the local government hospitals and the private sector. Up-to-date > 2000 genetic tests have been performed for the diagnosis of inherited rare endocrine disorders. The major clinical entities included Congenital Adrenal Hyperplasia (CAH) due to pathogenic variants in CYP21A2 gene and Multiple Endocrine Neoplasia (MEN) type 2 due to pathogenic variants in the RET proto-oncogene. Other rare and novel pathogenic variants in ANOS1, WDR11, FGFR1, RNF216, and CHD7 genes were also found in patients with Congenital Hypogonadotropic Hypogonadism. Interestingly, a few patients with Disorders of Sexual Differentiation (DSD) shared rare pathogenic variants in the SRD5A2, HSD17B3 and HSD3B2 while patients with Glucose and Insulin Homeostasis carried theirs in GCK and HNF1A genes. Lastly, MGFT over the last few years has established an esteemed diagnostic and research program on premature puberty with emphasis on the implication of MKRN3 gene on the onset of the disease and the identification of other prognosis biomarkers.As an Endo-ERN member MGFT department belongs to this large European network and holds the same humanistic ideals which aim toward the improvements of health care for patients with rare endocrine conditions in respect to improved and faster diagnosis.
Collapse
Affiliation(s)
- Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Meropi Toumba
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Department of Pediatrics, Pediatric Endocrinology Clinic, Aretaeio Hospital, Nicosia, Cyprus
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Division of Paediatric Endocrinology, Paedi Center for Specialized Paediatrics, Nicosia, Cyprus
- School of Medicine, University of Nicosia, Nicosia, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| |
Collapse
|
2
|
Zidoune H, Ladjouze A, Chellat-Rezgoune D, Boukri A, Dib SA, Nouri N, Tebibel M, Sifi K, Abadi N, Satta D, Benelmadani Y, Bignon-Topalovic J, El-Zaiat-Munsch M, Bashamboo A, McElreavey K. Novel Genomic Variants, Atypical Phenotypes and Evidence of a Digenic/Oligogenic Contribution to Disorders/Differences of Sex Development in a Large North African Cohort. Front Genet 2022; 13:900574. [PMID: 36110220 PMCID: PMC9468775 DOI: 10.3389/fgene.2022.900574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
In a majority of individuals with disorders/differences of sex development (DSD) a genetic etiology is often elusive. However, new genes causing DSD are routinely reported and using the unbiased genomic approaches, such as whole exome sequencing (WES) should result in an increased diagnostic yield. Here, we performed WES on a large cohort of 125 individuals all of Algerian origin, who presented with a wide range of DSD phenotypes. The study excluded individuals with congenital adrenal hypoplasia (CAH) or chromosomal DSD. Parental consanguinity was reported in 36% of individuals. The genetic etiology was established in 49.6% (62/125) individuals of the total cohort, which includes 42.2% (35/83) of 46, XY non-syndromic DSD and 69.2% (27/39) of 46, XY syndromic DSD. No pathogenic variants were identified in the 46, XX DSD cases (0/3). Variants in the AR, HSD17B3, NR5A1 and SRD5A2 genes were the most common causes of DSD. Other variants were identified in genes associated with congenital hypogonadotropic hypogonadism (CHH), including the CHD7 and PROKR2. Previously unreported pathogenic/likely pathogenic variants (n = 30) involving 25 different genes were identified in 22.4% of the cohort. Remarkably 11.5% of the 46, XY DSD group carried variants classified as pathogenic/likely pathogenic variant in more than one gene known to cause DSD. The data indicates that variants in PLXNA3, a candidate CHH gene, is unlikely to be involved in CHH. The data also suggest that NR2F2 variants may cause 46, XY DSD.
Collapse
Affiliation(s)
- Housna Zidoune
- Human Developmental Genetics Unit, Institut Pasteur, CNRS, Paris, France
- Laboratory of Molecular and Cellular Biology, Department of Animal Biology, University Frères Mentouri Constantine 1, Constantine, Algeria
- Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | | | - Djalila Chellat-Rezgoune
- Laboratory of Molecular and Cellular Biology, Department of Animal Biology, University Frères Mentouri Constantine 1, Constantine, Algeria
- Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | - Asma Boukri
- Department of Endocrinology and Diabetology, CHU Ibn Badis Constantine, Constantine, Algeria
| | | | - Nassim Nouri
- Department of Endocrinology and Diabetology, CHU Ibn Badis Constantine, Constantine, Algeria
| | - Meryem Tebibel
- Department of Pediatric Surgery, CHU Beni Messous, Algiers, Algeria
| | - Karima Sifi
- Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | - Noureddine Abadi
- Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | - Dalila Satta
- Laboratory of Molecular and Cellular Biology, Department of Animal Biology, University Frères Mentouri Constantine 1, Constantine, Algeria
- Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | - Yasmina Benelmadani
- Department of Medicine, Laboratory of Biology and Molecular Genetics, University Salah Boubnider Constantine 3, Constantine, Algeria
| | | | | | - Anu Bashamboo
- Human Developmental Genetics Unit, Institut Pasteur, CNRS, Paris, France
| | - Ken McElreavey
- Human Developmental Genetics Unit, Institut Pasteur, CNRS, Paris, France
- *Correspondence: Ken McElreavey,
| |
Collapse
|
3
|
Sertedaki A, Tatsi EB, Vasilakis IA, Fylaktou I, Nikaina E, Iacovidou N, Siahanidou T, Kanaka-Gantenbein C. Whole Exome Sequencing Points towards a Multi-Gene Synergistic Action in the Pathogenesis of Congenital Combined Pituitary Hormone Deficiency. Cells 2022; 11:cells11132088. [PMID: 35805171 PMCID: PMC9265573 DOI: 10.3390/cells11132088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 12/21/2022] Open
Abstract
Combined pituitary hormone deficiency (CPHD) is characterized by deficiency of growth hormone and at least one other pituitary hormone. Pathogenic variants in more than 30 genes expressed during the development of the head, hypothalamus, and/or pituitary have been identified so far to cause genetic forms of CPHD. However, the etiology of around 85% of the cases remains unknown. The aim of this study was to unveil the genetic etiology of CPHD due to congenital hypopituitarism employing whole exome sequencing (WES) in two newborn patients, initially tested and found to be negative for PROP1, LHX3, LHX4 and HESX1 pathogenic variants by Sanger sequencing and for copy number variations by MLPA. In this study, the application of WES in these CPHD newborns revealed the presence of three different heterozygous gene variants in each patient. Specifically in patient 1, the variants BMP4; p.Ala42Pro, GNRH1; p.Arg73Ter and SRA1; p.Gln32Glu, and in patient 2, the SOX9; p.Val95Ile, HS6ST1; p.Arg306Gln, and IL17RD; p.Pro566Ser were identified as candidate gene variants. These findings further support the hypothesis that CPHD constitutes an oligogenic rather than a monogenic disease and that there is a genetic overlap between CPHD and congenital hypogonadotropic hypogonadism.
Collapse
Affiliation(s)
- Amalia Sertedaki
- Division of Endocrinology, Diabetes and Metabolism, Center for Rare Paediatric Endocrine Diseases, First Department of Pediatrics, Medical School, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.B.T.); (I.A.V.); (I.F.); (C.K.-G.)
- Correspondence:
| | - Elizabeth Barbara Tatsi
- Division of Endocrinology, Diabetes and Metabolism, Center for Rare Paediatric Endocrine Diseases, First Department of Pediatrics, Medical School, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.B.T.); (I.A.V.); (I.F.); (C.K.-G.)
| | - Ioannis Anargyros Vasilakis
- Division of Endocrinology, Diabetes and Metabolism, Center for Rare Paediatric Endocrine Diseases, First Department of Pediatrics, Medical School, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.B.T.); (I.A.V.); (I.F.); (C.K.-G.)
| | - Irene Fylaktou
- Division of Endocrinology, Diabetes and Metabolism, Center for Rare Paediatric Endocrine Diseases, First Department of Pediatrics, Medical School, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.B.T.); (I.A.V.); (I.F.); (C.K.-G.)
| | - Eirini Nikaina
- Neonatology Unit, First Department of Pediatrics, Medical School, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.N.); (T.S.)
| | - Nicoletta Iacovidou
- Department of Neonatology, Medical School, Aretaieion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Tania Siahanidou
- Neonatology Unit, First Department of Pediatrics, Medical School, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.N.); (T.S.)
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism, Center for Rare Paediatric Endocrine Diseases, First Department of Pediatrics, Medical School, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.B.T.); (I.A.V.); (I.F.); (C.K.-G.)
| |
Collapse
|
4
|
Aerobic exercise improves adipogenesis in diet-induced obese mice via the LncSRA/p38/JNK/PPARγ pathway. Nutr Res 2022; 105:20-32. [DOI: 10.1016/j.nutres.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022]
|
5
|
Gach A, Pinkier I, Wysocka U, Sałacińska K, Salachna D, Szarras-Czapnik M, Pietrzyk A, Sakowicz A, Nykel A, Rutkowska L, Rybak-Krzyszkowska M, Socha M, Jamsheer A, Jakubowski L. New findings in oligogenic inheritance of congenital hypogonadotropic hypogonadism. Arch Med Sci 2022; 18:353-364. [PMID: 35316923 PMCID: PMC8924836 DOI: 10.5114/aoms.2020.98909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/11/2020] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Congenital hypogonadotropic hypogonadism results from a dysfunction of the hypothalamic-pituitary-gonadal axis, which is essential for the development and function of the reproductive system. It may be associated with anosmia, referred to as Kallmann syndrome, or a normal sense of smell. Numerous studies have proven that hypogonadotropic hypogonadism is not simply a monogenic Mendelian disease, but that more than one gene may be involved in its pathogenesis in a single patient. The oligogenic complex architecture underlying the disease is still largely unknown. MATERIAL AND METHODS Targeted next-generation sequencing (NGS) was used to screen for DNA variants in a cohort of 47 patients with congenital hypogonadotropic hypogonadism. The NGS panel consists of over 50 well-known and candidate genes, associated with hypogonadotropic state. RESULTS Here we report the identification of new oligogenic variants in SPRY4/SEMA3A, SRA1/SEMA7A, CHD7/SEMA7A, CCDC141/POLR3B/POLR3B, and PROKR2/SPRY4/NSMF. These genes are known to contribute to the phenotype of hypogonadotropic hypogonadism, yet our results point to potential new "partners" underlying digenic and trigenic patterns. CONCLUSIONS The finding supports the importance of oligogenic inheritance and demonstrates the complexity of genetic architecture in hypogonadotropic hypogonadism. It also underlines the necessity for developing fine-tuned guidelines to provide a tool for adequate and precise sequence variant classification in non-Mendelian conditions.
Collapse
Affiliation(s)
- Agnieszka Gach
- Department of Genetics, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Iwona Pinkier
- Department of Genetics, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Urszula Wysocka
- Department of Genetics, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Kinga Sałacińska
- Department of Genetics, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Dominik Salachna
- Department of Genetics, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Maria Szarras-Czapnik
- Department of Endocrinology and Diabetology, Children’s Memorial Health Institute, Warsaw, Poland
| | - Aleksandra Pietrzyk
- Department of Genetics and Pathomorphology, Faculty of Medicine and Health Sciences, University of Zielona Gora, Poland
| | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Lodz, Poland
| | - Anna Nykel
- Department of Genetics, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Lena Rutkowska
- Department of Genetics, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | | | - Magda Socha
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Lucjusz Jakubowski
- Department of Genetics, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| |
Collapse
|
6
|
Abstract
Idiopathic hypogonadotropic hypogonadism (IHH) is a group of rare developmental disorders characterized by low gonadotropin levels in the face of low sex steroid hormone concentrations. IHH is practically divided into two major groups according to the olfactory function: normal sense of smell (normosmia) nIHH, and reduced sense of smell (hyposmia/anosmia) Kallmann syndrome (KS). Although mutations in more than 50 genes have been associated with IHH so far, only half of those cases were explained by gene mutations. Various combinations of deleterious variants in different genes as causes of IHH have been increasingly recognized (Oligogenic etiology). In addition to the complexity of inheritance patterns, the spontaneous or sex steroid-induced clinical recovery from IHH, which is seen in approximately 10–20% of cases, blurs further the phenotype/genotype relationship in IHH, and poses challenging steps in new IHH gene discovery. Beyond helping for clinical diagnostics, identification of the genetic mutations in the pathophysiology of IHH is hoped to shed light on the central governance of the hypothalamo-pituitary-gonadal axis through life stages. This review aims to summarize the genetic etiology of IHH and discuss the clinical and physiological ramifications of the gene mutations.
Collapse
|
7
|
Adipose Tissue Steroid Receptor RNA Activator 1 (SRA1) Expression Is Associated with Obesity, Insulin Resistance, and Inflammation. Cells 2021; 10:cells10102602. [PMID: 34685582 PMCID: PMC8534244 DOI: 10.3390/cells10102602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Steroid receptor RNA activator 1 (SRA1) is involved in pathophysiological responses of adipose tissue (AT) in obesity. In vitro and animal studies have elucidated its role in meta-inflammation. Since SRA1 AT expression in obesity/type 2 diabetes (T2D) and the relationship with immune-metabolic signatures remains unclear, we assessed AT SRA1 expression and its association with immune–metabolic markers in individuals with obesity/T2D. For this, 55 non-diabetic and 53 T2D individuals classified as normal weight (NW; lean), overweight, and obese were recruited and fasting blood and subcutaneous fat biopsy samples were collected. Plasma metabolic markers were assessed using commercial kits and AT expression of SRA1 and selected immune markers using RT-qPCR. SRA1 expression was significantly higher in non-diabetic obese compared with NW individuals. SRA1 expression associated with BMI, PBF, serum insulin, and HOMA-IR in the total study population and people without diabetes. SRA1 associated with waist circumference in people without diabetes and NW participants, whereas it associated inversely with HbA1c in overweight participants. In most study subgroups AT SRA1 expression associated directly with CXCL9, CXCL10, CXCL11, TNF-α, TGF-β, IL2RA, and IL18, but inversely with CCL19 and CCR2. TGF-β/IL18 independently predicted the SRA1 expression in people without diabetes and in the total study population, while TNF-α/IL-2RA predicted SRA1 only in people with diabetes. TNF-α also predicted SRA1 in both NW and obese people regardless of the diabetes status. In conclusion, AT SRA1 expression is elevated in people with obesity which associates with typical immunometabolic markers of obesity/T2D, implying that SRA1 may have potential as a biomarker of metabolic derangements.
Collapse
|
8
|
Oleari R, Massa V, Cariboni A, Lettieri A. The Differential Roles for Neurodevelopmental and Neuroendocrine Genes in Shaping GnRH Neuron Physiology and Deficiency. Int J Mol Sci 2021; 22:9425. [PMID: 34502334 PMCID: PMC8431607 DOI: 10.3390/ijms22179425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/19/2023] Open
Abstract
Gonadotropin releasing hormone (GnRH) neurons are hypothalamic neuroendocrine cells that control sexual reproduction. During embryonic development, GnRH neurons migrate from the nose to the hypothalamus, where they receive inputs from several afferent neurons, following the axonal scaffold patterned by nasal nerves. Each step of GnRH neuron development depends on the orchestrated action of several molecules exerting specific biological functions. Mutations in genes encoding for these essential molecules may cause Congenital Hypogonadotropic Hypogonadism (CHH), a rare disorder characterized by GnRH deficiency, delayed puberty and infertility. Depending on their action in the GnRH neuronal system, CHH causative genes can be divided into neurodevelopmental and neuroendocrine genes. The CHH genetic complexity, combined with multiple inheritance patterns, results in an extreme phenotypic variability of CHH patients. In this review, we aim at providing a comprehensive and updated description of the genes thus far associated with CHH, by dissecting their biological relevance in the GnRH system and their functional relevance underlying CHH pathogenesis.
Collapse
Affiliation(s)
- Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Valentina Massa
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Antonella Lettieri
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| |
Collapse
|
9
|
Louden ED, Poch A, Kim HG, Ben-Mahmoud A, Kim SH, Layman LC. Genetics of hypogonadotropic Hypogonadism-Human and mouse genes, inheritance, oligogenicity, and genetic counseling. Mol Cell Endocrinol 2021; 534:111334. [PMID: 34062169 DOI: 10.1016/j.mce.2021.111334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
Hypogonadotropic hypogonadism, which may be normosmic (nHH) or anosmic/hyposmic, known as Kallmann syndrome (KS), is due to gonadotropin-releasing hormone deficiency, which results in absent puberty and infertility. Investigation of the genetic basis of nHH/KS over the past 35 years has yielded a substantial increase in our understanding, as variants in 44 genes in OMIM account for ~50% of cases. The first genes for KS (ANOS1) and nHH (GNRHR) were followed by the discovery that FGFR1 variants may cause either nHH or KS. Associated anomalies include midline facial defects, neurologic deficits, cardiac anomalies, and renal agenesis, among others. Mouse models for all but one gene (ANOS1) generally support findings in humans. About half of the known genes implicated in nHH/KS are inherited as autosomal dominant and half are autosomal recessive, whereas only 7% are X-linked recessive. Digenic and oligogenic inheritance has been reported in 2-20% of patients, most commonly with variants in genes that may result in either nHH or KS inherited in an autosomal dominant fashion. In vitro analyses have only been conducted for both gene variants in eight cases and for one gene variant in 20 cases. Rigorous confirmation that two gene variants in the same individual cause the nHH/KS phenotype is lacking for most. Clinical diagnosis is probably best accomplished by targeted next generation sequencing of the known candidate genes with confirmation by Sanger sequencing. Elucidation of the genetic basis of nHH/KS has resulted in an enhanced understanding of this disorder, as well as normal puberty, which makes genetic diagnosis clinically relevant.
Collapse
Affiliation(s)
- Erica D Louden
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Department of Neuroscience & Regenerative Medicine, Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Alexandra Poch
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Department of Neuroscience & Regenerative Medicine, Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Soo-Hyun Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, United Kingdom
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility, & Genetics, Department of Obstetrics & Gynecology, Department of Neuroscience & Regenerative Medicine, Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
10
|
Greer C, Bhakta H, Ghanem L, Refai F, Linn E, Avella M. Deleterious variants in genes regulating mammalian reproduction in Neanderthals, Denisovans and extant humans. Hum Reprod 2021; 36:734-755. [PMID: 33417716 DOI: 10.1093/humrep/deaa347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
STUDY QUESTION Were Neanderthals and Denisovans (referred here also as extinct hominidae) carrying deleterious variants in genes regulating reproduction? SUMMARY ANSWER The majority of extinct hominidae analyzed here, presented a considerable number of deleterious variants per individual in proteins regulating different aspects of reproduction, including gonad and uterine function, and gametogenesis. WHAT IS KNOWN ALREADY Neanderthals, Denisovans and extant humans were interfertile and hybridized while occupying geographically overlapping areas in Europe and Asia. This is evidenced by the small archaic genome component (average ∼2%) present in non-African extant humans. STUDY DESIGN, SIZE, DURATION The genome of eight extinct hominidae, together with five human genome databases, plus 44 mothers and 48 fathers (fertile controls), were screened to look for deleterious variants in 1734 protein-coding genes regulating reproduction. PARTICIPANTS/MATERIALS, SETTING, METHODS Ancient DNA from six Neanderthals and two Denisovans dated between ∼82 000 and 43 000 calibrated years was retrieved from the public European Nucleotide Archive. The hominins analyzed include Altai, Vindija 33.15, 33.19, 33.25 and 33.26, El Sidron 1253, Denisova 3 and 11. Their DNA was analyzed using the CLC Genomics Workbench 12, by mapping overlapping paired-end reads (Illumina, FASTQ files) to the human genome assembly GRCh37 (hg19) (Vindija 33.19, 33.25, 33.26, Denisova 3 and Denisova 11) or by analyzing BAM files (Altai, El Sidron 1253 and Vindija 33.15) (human genome reference, GRCh37 (hg19)). Non-synonymous reproductive variants were classified as deleterious or tolerated (PolyPhen-2 and SIFT analyses) and were compared to deleterious variants obtained from extant human genome databases (Genome Aggregation Database (GnomAD), 1000 Genomes, the Haplotype Map (HapMap), Single Nucleotide Polymorphism Database (dbSNPs)) across different populations. A genetic intersection between extant or extinct DNA variants and other genetic disorders was evaluated by annotating the obtained variants with the Clinical Variant (ClinVar) database. MAIN RESULTS AND THE ROLE OF CHANCE Among the eight extinct hominidae analyzed, a total of 9650 non-synonymous variants (only coverage ≥20 reads included; frameshift mutations were excluded) in 1734 reproductive protein-coding genes were found, 24% of which were classified as deleterious. The majority (73%) of the deleterious alleles present in extant humans that are shared between extant humans and extinct hominidae were found to be rare (<1%) in extant human populations. A set of 8044 variants were found uniquely in extinct hominidae. At the single-gene level, no extinct individual was found to be homozygous for deleterious variants in genes necessary for gamete recognition and fusion, and no higher chance of embryo-lethality (calculated by Mendelian Genetics) was found upon simulated mating between extant human and extinct hominidae compared to extant human-extant human. However, three of the eight extinct hominidae were found to be homozygous for 48-69 deleterious variants in 55 genes controlling ovarian and uterine functions, or oogenesis (AKAP1, BUB1B, CCDC141, CDC73, DUSP6, ESR1, ESR2, PATL2, PSMC3IP, SEMA3A, WT1 and WNT4). Moreover, we report the distribution of nine Neanderthal variants in genes associated with a human fertility phenotype found in extant human populations, one of which has been associated with polycystic ovarian syndrome and primary congenital glaucoma. LIMITATIONS, REASONS FOR CAUTION While analyzing archaic DNA, stringent filtering criteria were adopted to screen for deleterious variants in Neanderthals and Denisovans, which could result in missing a number of variants. Such restraints preserve the potential for detection of additional deleterious variants in reproductive proteins in extinct hominidae. WIDER IMPLICATIONS OF THE FINDINGS This study provides a comprehensive overview of putatively deleterious variants in extant human populations and extinct individuals occurring in 1734 protein-coding genes controlling reproduction and provides the fundaments for future functional studies of extinct variants in human reproduction. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Department of Biological Science and by the Office of Research and Sponsored Programs at the University of Tulsa (Faculty Research Grant and Faculty Research Summer Fellowship) to M.A. and the University of Tulsa, Tulsa Undergraduate Research Challenge (TURC) program to E.L.; no conflict of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Cory Greer
- Department of Biological Science, College of Engineering and Natural Sciences, University of Tulsa, Tulsa, OK 74104, USA
| | - Hanisha Bhakta
- Department of Biological Science, College of Engineering and Natural Sciences, University of Tulsa, Tulsa, OK 74104, USA
| | - Lillian Ghanem
- Department of Biological Science, College of Engineering and Natural Sciences, University of Tulsa, Tulsa, OK 74104, USA
| | - Fares Refai
- Department of Biological Science, College of Engineering and Natural Sciences, University of Tulsa, Tulsa, OK 74104, USA
| | - Emma Linn
- Department of Biological Science, College of Engineering and Natural Sciences, University of Tulsa, Tulsa, OK 74104, USA
| | - Matteo Avella
- Department of Biological Science, College of Engineering and Natural Sciences, University of Tulsa, Tulsa, OK 74104, USA
| |
Collapse
|
11
|
Zhang J, Tang SY, Zhu XB, Li P, Lu JQ, Cong JS, Wang LB, Zhang F, Li Z. Whole exome sequencing and trio analysis to broaden the variant spectrum of genes in idiopathic hypogonadotropic hypogonadism. Asian J Androl 2021; 23:288-293. [PMID: 33208564 PMCID: PMC8152424 DOI: 10.4103/aja.aja_65_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Dozens of genes are associated with idiopathic hypogonadotropic hypogonadism (IHH) and an oligogenic etiology has been suggested. However, the associated genes may account for only approximately 50% cases. In addition, a genomic systematic pedigree analysis is still lacking. Here, we conducted whole exome sequencing (WES) on 18 unrelated men affected by IHH and their corresponding parents. Notably, one reported and 10 novel variants in eight known IHH causative genes (AXL, CCDC141, CHD7, DMXL2, FGFR1, PNPLA6, POLR3A, and PROKR2), nine variants in nine recently reported candidate genes (DCAF17, DCC, EGF, IGSF10, NOTCH1, PDE3A, RELN, SLIT2, and TRAPPC9), and four variants in four novel candidate genes for IHH (CCDC88C, CDON, GADL1, and SPRED3) were identified in 77.8% (14/18) of IHH cases. Among them, eight (8/18, 44.4%) cases carried more than one variant in IHH-related genes, supporting the oligogenic model. Interestingly, we found that those variants tended to be maternally inherited (maternal with n = 17 vs paternal with n = 7; P = 0.028). Our further retrospective investigation of published reports replicated the maternal bias (maternal with n = 46 vs paternal with n = 28; P = 0.024). Our study extended a variant spectrum for IHH and provided thefirst evidence that women are probably more tolerant to variants of IHH-related genes than men.
Collapse
Affiliation(s)
- Jian Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai 200011, China
| | - Shu-Yan Tang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai 200011, China
| | - Xiao-Bin Zhu
- Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Peng Li
- Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Jian-Qi Lu
- Department of Research Institute, Reproduction Medical Center, The first Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jiang-Shan Cong
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai 200011, China
| | - Ling-Bo Wang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai 200011, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Life Sciences, Fudan University, Shanghai 200011, China
| | - Zheng Li
- Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| |
Collapse
|
12
|
Butz H, Nyírő G, Kurucz PA, Likó I, Patócs A. Molecular genetic diagnostics of hypogonadotropic hypogonadism: from panel design towards result interpretation in clinical practice. Hum Genet 2020; 140:113-134. [PMID: 32222824 PMCID: PMC7864839 DOI: 10.1007/s00439-020-02148-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022]
Abstract
Congenital hypogonadotropic hypogonadism (CHH) is a clinically and genetically heterogeneous congenital disease. Symptoms cover a wide spectrum from mild forms to complex phenotypes due to gonadotropin-releasing hormone (GnRH) deficiency. To date, more than 40 genes have been identified as pathogenic cause of CHH. These genes could be grouped into two major categories: genes controlling development and GnRH neuron migration and genes being responsible for neuroendocrine regulation and GnRH neuron function. High-throughput, next-generation sequencing (NGS) allows to analyze numerous gene sequences at the same time. Nowadays, whole exome or whole genome datasets could be investigated in clinical genetic diagnostics due to their favorable cost-benefit. The increasing genetic data generated by NGS reveal novel candidate genes and gene variants with unknown significance (VUSs). To provide clinically valuable genetic results, complex clinical and bioinformatics work are needed. The multifaceted genetics of CHH, the variable mode of inheritance, the incomplete penetrance, variable expressivity and oligogenic characteristics further complicate the interpretation of the genetic variants detected. The objective of this work, apart from reviewing the currently known genes associated with CHH, was to summarize the advantages and disadvantages of the NGS-based platforms and through the authors' own practice to guide through the whole workflow starting from gene panel design, performance analysis and result interpretation. Based on our results, a genetic diagnosis was clearly identified in 21% of cases tested (8/38).
Collapse
Affiliation(s)
- Henriett Butz
- Department of Laboratory Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary.,Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.,Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Gábor Nyírő
- Department of Laboratory Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary.,Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.,2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Petra Anna Kurucz
- Department of Laboratory Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - István Likó
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Attila Patócs
- Department of Laboratory Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary. .,Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary. .,Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
13
|
Barbu MC, Spiliopoulou A, Colombo M, McKeigue P, Clarke TK, Howard DM, Adams MJ, Shen X, Lawrie SM, McIntosh AM, Whalley HC. Expression quantitative trait loci-derived scores and white matter microstructure in UK Biobank: a novel approach to integrating genetics and neuroimaging. Transl Psychiatry 2020; 10:55. [PMID: 32066731 PMCID: PMC7026054 DOI: 10.1038/s41398-020-0724-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 01/01/2023] Open
Abstract
Expression quantitative trait loci (eQTL) are genetic variants associated with gene expression. Using genome-wide genotype data, it is now possible to impute gene expression using eQTL mapping efforts. This approach can be used to analyse previously unexplored relationships between gene expression and heritable in vivo measures of human brain structural connectivity. Using large-scale eQTL mapping studies, we computed 6457 gene expression scores (eQTL scores) using genome-wide genotype data in UK Biobank, where each score represents a genetic proxy measure of gene expression. These scores were then tested for associations with two diffusion tensor imaging measures, fractional anisotropy (NFA = 14,518) and mean diffusivity (NMD = 14,485), representing white matter structural integrity. We found FDR-corrected significant associations between 8 eQTL scores and structural connectivity phenotypes, including global and regional measures (βabsolute FA = 0.0339-0.0453; MD = 0.0308-0.0381) and individual tracts (βabsolute FA = 0.0320-0.0561; MD = 0.0295-0.0480). The loci within these eQTL scores have been reported to regulate expression of genes involved in various brain-related processes and disorders, such as neurite outgrowth and Parkinson's disease (DCAKD, SLC35A4, SEC14L4, SRA1, NMT1, CPNE1, PLEKHM1, UBE3C). Our findings indicate that eQTL scores are associated with measures of in vivo brain connectivity and provide novel information not previously found by conventional genome-wide association studies. Although the role of expression of these genes regarding white matter microstructural integrity is not yet clear, these results suggest it may be possible, in future, to map potential trait- and disease-associated eQTL to in vivo brain connectivity and better understand the mechanisms of psychiatric disorders and brain traits, and their associated imaging findings.
Collapse
Affiliation(s)
- Miruna C. Barbu
- grid.4305.20000 0004 1936 7988Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Athina Spiliopoulou
- grid.4305.20000 0004 1936 7988Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK ,grid.4305.20000 0004 1936 7988Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Marco Colombo
- grid.4305.20000 0004 1936 7988Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Paul McKeigue
- grid.4305.20000 0004 1936 7988Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Toni-Kim Clarke
- grid.4305.20000 0004 1936 7988Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - David M. Howard
- grid.4305.20000 0004 1936 7988Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK ,grid.13097.3c0000 0001 2322 6764Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Mark J. Adams
- grid.4305.20000 0004 1936 7988Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Xueyi Shen
- grid.4305.20000 0004 1936 7988Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Stephen M. Lawrie
- grid.4305.20000 0004 1936 7988Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Andrew M. McIntosh
- grid.4305.20000 0004 1936 7988Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK ,grid.4305.20000 0004 1936 7988Centre for Cognitive Ageing and Cognitive Epidemiology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, UK
| | - Heather C. Whalley
- grid.4305.20000 0004 1936 7988Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
14
|
Neocleous V, Fanis P, Toumba M, Tanteles GA, Schiza M, Cinarli F, Nicolaides NC, Oulas A, Spyrou GM, Mantzoros CS, Vlachakis D, Skordis N, Phylactou LA. GnRH Deficient Patients With Congenital Hypogonadotropic Hypogonadism: Novel Genetic Findings in ANOS1, RNF216, WDR11, FGFR1, CHD7, and POLR3A Genes in a Case Series and Review of the Literature. Front Endocrinol (Lausanne) 2020; 11:626. [PMID: 32982993 PMCID: PMC7485345 DOI: 10.3389/fendo.2020.00626] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disease caused by Gonadotropin-Releasing Hormone (GnRH) deficiency. So far a limited number of variants in several genes have been associated with the pathogenesis of the disease. In this original research and review manuscript the retrospective analysis of known variants in ANOS1 (KAL1), RNF216, WDR11, FGFR1, CHD7, and POLR3A genes is described, along with novel variants identified in patients with CHH by the present study. Methods: Seven GnRH deficient unrelated Cypriot patients underwent whole exome sequencing (WES) by Next Generation Sequencing (NGS). The identified novel variants were initially examined by in silico computational algorithms and structural analysis of their predicted pathogenicity at the protein level was confirmed. Results: In four non-related GnRH males, a novel X-linked pathogenic variant in ANOS1 gene, two novel autosomal dominant (AD) probably pathogenic variants in WDR11 and FGFR1 genes and one rare AD probably pathogenic variant in CHD7 gene were identified. A rare autosomal recessive (AR) variant in the SRA1 gene was identified in homozygosity in a female patient, whilst two other male patients were also, respectively, found to carry novel or previously reported rare pathogenic variants in more than one genes; FGFR1/POLR3A and SRA1/RNF216. Conclusion: This report embraces the description of novel and previously reported rare pathogenic variants in a series of genes known to be implicated in the biological development of CHH. Notably, patients with CHH can harbor pathogenic rare variants in more than one gene which raises the hypothesis of locus-locus interactions providing evidence for digenic inheritance. The identification of such aberrations by NGS can be very informative for the management and future planning of these patients.
Collapse
Affiliation(s)
- Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Meropi Toumba
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Pediatric Endocrine Clinic, IASIS Hospital, Paphos, Cyprus
| | - George A. Tanteles
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Clinical Genetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Melpo Schiza
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Feride Cinarli
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Nicolas C. Nicolaides
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, “Aghia Sophia” Childrens Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Anastasis Oulas
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George M. Spyrou
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christos S. Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Section of Endocrinology, Diabetes and Metabolism, Boston VA Healthcare System, Boston, MA, United States
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
- Lab of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Division of Pediatric Endocrinology, Paedi Center for Specialized Pediatrics, Nicosia, Cyprus
- St George's, University of London Medical School at the University of Nicosia, Nicosia, Cyprus
- *Correspondence: Nicos Skordis
| | - Leonidas A. Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Leonidas A. Phylactou
| |
Collapse
|
15
|
Sunderhaus ER, Law AD, Kretzschmar D. Disease-Associated PNPLA6 Mutations Maintain Partial Functions When Analyzed in Drosophila. Front Neurosci 2019; 13:1207. [PMID: 31780887 PMCID: PMC6852622 DOI: 10.3389/fnins.2019.01207] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/25/2019] [Indexed: 12/22/2022] Open
Abstract
Mutations in patatin-like phospholipase domain-containing protein 6 (PNPLA6) have been linked with a number of inherited diseases with clinical symptoms that include spastic paraplegia, ataxia, and chorioretinal dystrophy. PNPLA6 is an evolutionary conserved protein whose ortholog in Drosophila is Swiss-Cheese (SWS). Both proteins are phospholipases hydrolyzing lysophosphatidylcholine (LPC) and phosphatidylcholine (PC). Consequently, loss of SWS/PNPLA6 in flies and mice increases both lipids and leads to locomotion deficits and neurodegeneration. PNPLA6 knock-out mice are embryonic lethal, and a mutation creating an early stop codon in human PNPLA6 has only been identified in compound heterozygote patients. In contrast, disease-causing point mutations are found in homozygous patients, with some localized in the phospholipase domain while others are in a region that contains several cNMP binding sites. To investigate how different mutations affect the function of PNPLA6 in an in vivo model, we expressed them in the Drosophila sws1 null mutant. Expressing wild-type PNPLA6 suppressed the locomotion and degenerative phenotypes in sws 1 and restored lipid levels, confirming that the human protein can replace fly SWS. In contrast, none of the mutant proteins restored lipid levels, although they suppressed the behavioral and degenerative phenotypes, at least in early stages. These results show that these mutant forms of PNPLA6 retain some biological function, indicating that disruption of lipid homeostasis is only part of the pathogenic mechanism. Furthermore, our finding that mutations in the cNMP binding sites prevented the restoration of normal lipid levels supports previous evidence that cNMP regulates the phospholipase activity of PNPLA6.
Collapse
Affiliation(s)
| | | | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
16
|
Abstract
Male infertility is a multifactorial pathological condition affecting approximately 7% of the male population. The genetic landscape of male infertility is highly complex as semen and testis histological phenotypes are extremely heterogeneous, and at least 2,000 genes are involved in spermatogenesis. The highest frequency of known genetic factors contributing to male infertility (25%) is in azoospermia, but the number of identified genetic anomalies in other semen and aetiological categories is constantly growing. Genetic screening is relevant for its diagnostic value, clinical decision making, and appropriate genetic counselling. Anomalies in sex chromosomes have major roles in severe spermatogenic impairment. Autosome-linked gene mutations are mainly involved in central hypogonadism, monomorphic teratozoospermia or asthenozoospermia, congenital obstructive azoospermia, and familial cases of quantitative spermatogenic disturbances. Results from whole-genome association studies suggest a marginal role for common variants as causative factors; however, some of these variants can be important for pharmacogenetic purposes. Results of studies on copy number variations (CNVs) demonstrate a considerably higher CNV load in infertile patients than in normozoospermic men, whereas whole-exome analysis has proved to be a highly successful diagnostic tool in familial cases of male infertility. Despite such efforts, the aetiology of infertility remains unknown in about 40% of patients, and the discovery of novel genetic factors in idiopathic infertility is a major challenge for the field of androgenetics. Large, international, and consortium-based whole-exome and whole-genome studies are the most promising approach for the discovery of the missing genetic aetiology of idiopathic male infertility.
Collapse
|
17
|
Sheng L, Ye L, Zhang D, Cawthorn WP, Xu B. New Insights Into the Long Non-coding RNA SRA: Physiological Functions and Mechanisms of Action. Front Med (Lausanne) 2018; 5:244. [PMID: 30238005 PMCID: PMC6135885 DOI: 10.3389/fmed.2018.00244] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNA) are emerging as new genetic/epigenetic regulators that can impact almost all physiological functions. Here, we focus on the long non-coding steroid receptor RNA activator (SRA), including new insights into its effects on gene expression, the cell cycle, and differentiation; how these relate to physiology and disease; and the mechanisms underlying these effects. We discuss how SRA acts as an RNA coactivator in nuclear receptor signaling; its effects on steroidogenesis, adipogenesis, and myocyte differentiation; the impact on breast and prostate cancer tumorigenesis; and, finally, its ability to modulate hepatic steatosis through several signaling pathways. Genome-wide analysis reveals that SRA regulates hundreds of target genes in adipocytes and breast cancer cells and binds to thousands of genomic sites in human pluripotent stem cells. Recent studies indicate that SRA acts as a molecular scaffold and forms networks with numerous coregulators and chromatin-modifying regulators in both activating and repressive complexes. We discuss how modifications to SRA's unique stem-loop secondary structure are important for SRA function, and highlight the various SRA isoforms and mutations that have clinical implications. Finally, we discuss the future directions for better understanding the molecular mechanisms of SRA action and how this might lead to new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Liang Sheng
- Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing, China.,Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Nanjing, China
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Dong Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - William P Cawthorn
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Bin Xu
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical Center Ann Arbor, MI, United States
| |
Collapse
|
18
|
Klinge CM. Non-coding RNAs: long non-coding RNAs and microRNAs in endocrine-related cancers. Endocr Relat Cancer 2018; 25:R259-R282. [PMID: 29440232 DOI: 10.1530/erc-17-0548] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
Abstract
The human genome is 'pervasively transcribed' leading to a complex array of non-coding RNAs (ncRNAs) that far outnumber coding mRNAs. ncRNAs have regulatory roles in transcription and post-transcriptional processes as well numerous cellular functions that remain to be fully described. Best characterized of the 'expanding universe' of ncRNAs are the ~22 nucleotide microRNAs (miRNAs) that base-pair to target mRNA's 3' untranslated region within the RNA-induced silencing complex (RISC) and block translation and may stimulate mRNA transcript degradation. Long non-coding RNAs (lncRNAs) are classified as >200 nucleotides in length, but range up to several kb and are heterogeneous in genomic origin and function. lncRNAs fold into structures that interact with DNA, RNA and proteins to regulate chromatin dynamics, protein complex assembly, transcription, telomere biology and splicing. Some lncRNAs act as sponges for miRNAs and decoys for proteins. Nuclear-encoded lncRNAs can be taken up by mitochondria and lncRNAs are transcribed from mtDNA. Both miRNAs and lncRNAs are dysregulated in endocrine cancers. This review provides an overview on the current understanding of the regulation and function of selected lncRNAs and miRNAs, and their interaction, in endocrine-related cancers: breast, prostate, endometrial and thyroid.
Collapse
|
19
|
Abstract
Traditionally, idiopathic hypogonadotropic hypogonadism (IHH) is divided into two major categories: Kallmann syndrome (KS) and normosmic IHH (nIHH). To date, inactivating variants in more than 50 genes have been reported to cause IHH. These mutations are estimated to account for up to 50% of all apparently hereditary cases. Identification of further causative gene mutations is expected to be more feasible with the increasing use of whole exome/genome sequencing. Presence of more than one IHH-associated mutant gene in a given patient/pedigree (oligogenic inheritance) is seen in 10-20% of all IHH cases. It is now well established that about 10-20% of IHH cases recover from IHH either spontaneously or after receiving some sex steroid replacement therapy. Moreover, there may be an overlap or transition between constitutional delay in growth and puberty (CDGP) and IHH. It has been increasingly observed that oligogenic inheritance and clinical recovery complicates the phenotype/genotype relationship in IHH, thus making it challenging to find new IHH-associated genes. In a clinical sense, recognizing those IHH genes and associated phenotypes may improve our diagnostic capabilities by enabling us to prioritize the screening of particular gene(s) such as synkinesia (ANOS1), dental agenesis (FGF8/FGFR1) and hearing loss (CHD7). Also, IHH-associated gene studies may be translated into new therapies such as for polycystic ovary syndrome. In a scientific sense, the most significant contribution of IHH-associated gene studies has been the characterization of the long-sought gonadotropin releasing hormone pulse generator. It appears that genetic studies of IHH will continue to advance our knowledge in both the biological and clinical domains.
Collapse
Affiliation(s)
- A. Kemal Topaloğlu
- University of Mississippi Medical Center, Department of Pediatrics, Division of Pediatric Endocrinology and Department of Neurobiology and Anatomical Sciences, Jackson, Mississippi, USA
,
Çukurova University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology, Adana, Turkey
,* Address for Correspondence: University of Mississippi Medical Center, Division of Pediatric Endocrinology, Jackson, Mississippi, USA E-mail:
| |
Collapse
|