1
|
Nunez Stosic M, Gomez P. Persistent Hypoglycemia and Hyperinsulinism in a Patient With KMT2D-Associated Kabuki Syndrome. JCEM CASE REPORTS 2023; 1:luad032. [PMID: 37908464 PMCID: PMC10580476 DOI: 10.1210/jcemcr/luad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Indexed: 11/02/2023]
Abstract
We report a 3-year-old girl with persistent hypoglycemia and hyperinsulinism secondary to KMT2D-associated Kabuki syndrome (KS). During the neonatal period, the patient had multiple complications, including gastroesophageal reflux disease, failure to thrive, G-tube dependence, congenital heart disease, and persistent hypoglycemia. The initial workup at 2 weeks of age was suggestive of hyperinsulinism. She was treated with intravenous glucose infusion and diazoxide. She was discharged from the NICU on diazoxide, chlorothiazide, and enteral feeds. Diazoxide was discontinued at 2 months old secondary to adverse effects. Hyperinsulinemic hypoglycemia was ultimately confirmed with a glucagon stimulation test at 5 months of age. At 11 months of age, when the enteral feeds were attempted to be spaced, she presented to our outpatient clinic with persistent hypoglycemia. Review of prior outside records confirmed a negative congenital hyperinsulinism genetic panel. She was treated with maltodextrin, enteral feeds, and close glucose monitoring. We noted that she had dysmorphic features that were suggestive of KS. At 2 years of age, a whole exome sequence confirmed a pathogenic mutation in KMT2D. Persistent hypoglycemia beyond the neonatal period is a rare finding in KS. In addition, it is a more common finding in KS type 2 (KDM6A).
Collapse
Affiliation(s)
| | - Patricia Gomez
- Pediatric Endocrinology, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
2
|
Zenker M, Mohnike K, Palm K. Syndromic forms of congenital hyperinsulinism. Front Endocrinol (Lausanne) 2023; 14:1013874. [PMID: 37065762 PMCID: PMC10098214 DOI: 10.3389/fendo.2023.1013874] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 03/07/2023] [Indexed: 04/18/2023] Open
Abstract
Congenital hyperinsulinism (CHI), also called hyperinsulinemic hypoglycemia (HH), is a very heterogeneous condition and represents the most common cause of severe and persistent hypoglycemia in infancy and childhood. The majority of cases in which a genetic cause can be identified have monogenic defects affecting pancreatic β-cells and their glucose-sensing system that regulates insulin secretion. However, CHI/HH has also been observed in a variety of syndromic disorders. The major categories of syndromes that have been found to be associated with CHI include overgrowth syndromes (e.g. Beckwith-Wiedemann and Sotos syndromes), chromosomal and monogenic developmental syndromes with postnatal growth failure (e.g. Turner, Kabuki, and Costello syndromes), congenital disorders of glycosylation, and syndromic channelopathies (e.g. Timothy syndrome). This article reviews syndromic conditions that have been asserted by the literature to be associated with CHI. We assess the evidence of the association, as well as the prevalence of CHI, its possible pathophysiology and its natural course in the respective conditions. In many of the CHI-associated syndromic conditions, the mechanism of dysregulation of glucose-sensing and insulin secretion is not completely understood and not directly related to known CHI genes. Moreover, in most of those syndromes the association seems to be inconsistent and the metabolic disturbance is transient. However, since neonatal hypoglycemia is an early sign of possible compromise in the newborn, which requires immediate diagnostic efforts and intervention, this symptom may be the first to bring a patient to medical attention. As a consequence, HH in a newborn or infant with associated congenital anomalies or additional medical issues remains a differential diagnostic challenge and may require a broad genetic workup.
Collapse
Affiliation(s)
- Martin Zenker
- Institute of Human Genetics, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- *Correspondence: Martin Zenker,
| | - Klaus Mohnike
- Department of Pediatrics, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Katja Palm
- Department of Pediatrics, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
4
|
Rouxel F, Yauy K, Boursier G, Gatinois V, Barat-Houari M, Sanchez E, Lacombe D, Arpin S, Giuliano F, Haye D, Rio M, Toutain A, Dieterich K, Brischoux-Boucher E, Julia S, Nizon M, Afenjar A, Keren B, Jacquette A, Moutton S, Jacquemont ML, Duflos C, Capri Y, Amiel J, Blanchet P, Lyonnet S, Sanlaville D, Genevieve D. Using deep-neural-network-driven facial recognition to identify distinct Kabuki syndrome 1 and 2 gestalt. Eur J Hum Genet 2021; 30:682-686. [PMID: 34803161 DOI: 10.1038/s41431-021-00994-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 10/06/2021] [Accepted: 10/25/2021] [Indexed: 11/09/2022] Open
Abstract
Kabuki syndrome (KS) is a rare genetic disorder caused by mutations in two major genes, KMT2D and KDM6A, that are responsible for Kabuki syndrome 1 (KS1, OMIM147920) and Kabuki syndrome 2 (KS2, OMIM300867), respectively. We lack a description of clinical signs to distinguish KS1 and KS2. We used facial morphology analysis to detect any facial morphological differences between the two KS types. We used a facial-recognition algorithm to explore any facial morphologic differences between the two types of KS. We compared several image series of KS1 and KS2 individuals, then compared images of those of Caucasian origin only (12 individuals for each gene) because this was the main ethnicity in this series. We also collected 32 images from the literature to amass a large series. We externally validated results obtained by the algorithm with evaluations by trained clinical geneticists using the same set of pictures. Use of the algorithm revealed a statistically significant difference between each group for our series of images, demonstrating a different facial morphotype between KS1 and KS2 individuals (mean area under the receiver operating characteristic curve = 0.85 [p = 0.027] between KS1 and KS2). The algorithm was better at discriminating between the two types of KS with images from our series than those from the literature (p = 0.0007). Clinical geneticists trained to distinguished KS1 and KS2 significantly recognised a unique facial morphotype, which validated algorithm findings (p = 1.6e-11). Our deep-neural-network-driven facial-recognition algorithm can reveal specific composite gestalt images for KS1 and KS2 individuals.
Collapse
Affiliation(s)
- Flavien Rouxel
- Montpellier University, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Centre de référence anomalies du développement SOOR, INSERM U1183, Montpellier, France
| | - Kevin Yauy
- Montpellier University, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Centre de référence anomalies du développement SOOR, INSERM U1183, Montpellier, France
| | - Guilaine Boursier
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique des Maladies Rares et Auto-inflammatoires, CHU Montpellier, Université de Montpellier, Montpellier, France
| | - Vincent Gatinois
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, laboratoire de génétique chromosomique, CHU Montpellier, Université de Montpellier, Montpellier, France
| | - Mouna Barat-Houari
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique des Maladies Rares et Auto-inflammatoires, CHU Montpellier, Université de Montpellier, Montpellier, France
| | - Elodie Sanchez
- Montpellier University, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Centre de référence anomalies du développement SOOR, INSERM U1183, Montpellier, France
| | - Didier Lacombe
- Service de génétique médicale, Centre de référence anomalies du développement SOOR, CHU Bordeaux, INSERM U1211, Université de Bordeaux, Bordeaux, France
| | - Stéphanie Arpin
- Service de Génétique, CHU Tours, UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Fabienne Giuliano
- Service de Médecine Génétique, CHUV, Université de Lausanne, Lausanne, France
| | - Damien Haye
- Génétique médicale, Hôpital Robert Debré, APHP, Paris, France.,Génétique médicale, Hôpital Pitié-Salpétrière, APHP, Paris, France
| | - Marlène Rio
- Fédération de génétique, et Institut Imagine, UMR-1163, Hôpital Universitaire Necker-Enfants Malades, APHP, Paris, France
| | - Annick Toutain
- Service de Génétique, CHU Tours, UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Klaus Dieterich
- Service de Génétique Médicale, CHU Grenoble Alpes, Univ. Grenoble Alpes, Inserm, U1216, GIN, 38000, Grenoble, France
| | | | - Sophie Julia
- Service de génétique clinique, CHU Toulouse, Toulouse, France
| | - Mathilde Nizon
- CHU Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093, Nantes, CEDEX 1, France
| | - Alexandra Afenjar
- APHP, Département de génétique, Sorbonne Université, GRC n°19, ConCer-LD, Centre de Référence déficiences intellectuelles de causes rares, Hôpital Armand Trousseau, F-75012, Paris, France
| | - Boris Keren
- Génétique médicale, Hôpital Pitié-Salpétrière, APHP, Paris, France
| | | | - Sebastien Moutton
- Centre Pluridisciplinaire de Diagnostic PréNatal, Pôle mère enfant, Maison de Santé Protestante Bordeaux Bagatelle, 33400, Talence, France
| | | | - Claire Duflos
- Département d'information médicale, CHU de Montpellier, Montpellier, France
| | - Yline Capri
- Génétique médicale, Hôpital Robert Debré, APHP, Paris, France
| | - Jeanne Amiel
- Fédération de génétique, et Institut Imagine, UMR-1163, Hôpital Universitaire Necker-Enfants Malades, APHP, Paris, France
| | - Patricia Blanchet
- Montpellier University, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Centre de référence anomalies du développement SOOR, INSERM U1183, Montpellier, France
| | - Stanislas Lyonnet
- Fédération de génétique, et Institut Imagine, UMR-1163, Hôpital Universitaire Necker-Enfants Malades, APHP, Paris, France
| | | | - David Genevieve
- Montpellier University, Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Centre de référence anomalies du développement SOOR, INSERM U1183, Montpellier, France.
| |
Collapse
|