Impact of Adenosine Analogue, Adenosine-5'-N-Ethyluronamide (NECA), on Insulin Signaling in Skeletal Muscle Cells.
BIOMED RESEARCH INTERNATIONAL 2021;
2021:9979768. [PMID:
34258288 PMCID:
PMC8257337 DOI:
10.1155/2021/9979768]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/11/2021] [Accepted: 06/14/2021] [Indexed: 12/29/2022]
Abstract
Materials and Methods
Rat L6 skeletal muscle cells were cultured in 25 cm2 flasks. These differentiated cells were treated, and then, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) (probe-based) was used to measure the relative mRNA expression level for metabolic, inflammatory, and nuclear receptor genes including peroxisome proliferator-activated receptor gamma (PGC-1α), carnitine palmitoyl transferase 1 beta (CPT1B), long-chain acyl-CoA de hydrogenase (LCAD), acetyl-CoA carboxylase beta (ACCβ), pyruvate dehydrogenase kinase 4 (PDK4), hexokinase II (HKII), phosphofructokinase (PFK), interleukin-6 (IL-6), and nuclear receptor subfamily 4, group A (NR4A) at different treatment conditions.
Results
Adenosine-5′-N-ethyluronamide (NECA), a stable adenosine analogue, significantly stimulate inflammatory mediator (IL-6) (p < 0.001) and nuclear receptors (NR4A) (p < 0.05) and significantly modulate metabolic (PFK, LCAD, PGC-1α, and CPT1B) gene expressions in skeletal muscle cells (p < 0.05, p < 0.05, p < 0.001, and p < 0.01, respectively). This present study shows that there is a noteworthy crosstalk between NECA and insulin at various metabolic levels including glycolysis (HKII), fatty acid oxidation (ACCβ), and insulin sensitivity (PDK4).
Conclusions
A novel crosstalk between adenosine analogue and insulin has been demonstrated for the first time; evidence has been gathered in vitro for the effects of NECA and insulin treatment on intracellular signaling pathways, in particular glycolysis and insulin sensitivity in skeletal muscle cells.
Collapse