1
|
Hassanen EI, Abdelrahman RE, Aboul-Ella H, Ibrahim MA, El-Dek S, Shaalan M. Mechanistic Approach on the Pulmonary Oxido-Inflammatory Stress Induced by Cobalt Ferrite Nanoparticles in Rats. Biol Trace Elem Res 2024; 202:765-777. [PMID: 37191761 PMCID: PMC10764397 DOI: 10.1007/s12011-023-03700-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Cobalt ferrite nanoparticles (CFN) are employed in data storage, imaging, medication administration, and catalysis due to their superparamagnetic characteristics. The widespread use of CFN led to significantly increased exposure to people and the environment to these nanoparticles. Until now, there is not any published paper describing the adverse effect of repeated oral intake of this nanoformulation on rats' lungs. So, the current research aims to elucidate the pulmonary toxicity prompted by different concentrations of CFN in rats as well as to explore the mechanistic way of such toxicity. We used 28 rats that were divided equally into 4 groups. The control group received normal saline, and the experimental groups received CFN at dosage levels 0.05, 0.5, and 5 mg/kg bwt. Our findings revealed that CFN enhanced dose-dependent oxidative stress manifested by raising in the MDA levels and declining in the GSH content. The histopathological examination revealed interstitial pulmonary inflammation along with bronchial and alveolar damage in both 0.5 and 5 mg CFN given groups. All these lesions were confirmed by the immunohistochemical staining that demonstrated strong iNOS and Cox-2 protein expression. There was also a significant upregulation of TNFα, Cox-2, and IL-1β genes with downregulation of IL-10 and TGF-β genes. Additionally, the group receiving 0.05 mg CFN did not exhibit any considerable toxicity in all measurable parameters. We concluded that the daily oral intake of either 0.5 or 5 mg CFN, but not 0.05 mg, could induce pulmonary toxicity via NPs and/or its leached components (cobalt and iron)-mediated oxido-inflammatory stress. Our findings may help to clarify the mechanisms of pulmonary toxicity generated by these nanoparticles through outlining the standards for risk assessment in rats as a human model.
Collapse
Affiliation(s)
- Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt.
| | - Rehab E Abdelrahman
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Samaa El-Dek
- Department of Material Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed Shaalan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt
- Polymer Institute, Slovak Academy of Science, Bratislava, Slovakia
| |
Collapse
|
2
|
Rotunjanu S, Racoviceanu R, Mioc A, Milan A, Negrea-Ghiulai R, Mioc M, Marangoci NL, Şoica C. Newly Synthesized CoFe 2-xDy xO 4 (x = 0; 0.1; 0.2; 0.4) Nanoparticles Reveal Promising Anticancer Activity against Melanoma (A375) and Breast Cancer (MCF-7) Cells. Int J Mol Sci 2023; 24:15733. [PMID: 37958717 PMCID: PMC10650938 DOI: 10.3390/ijms242115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The current study focuses on the synthesis via combustion of dysprosium-doped cobalt ferrites that were subsequently physicochemically analyzed in terms of morphological and magnetic properties. Three types of doped nanoparticles were prepared containing different Dy substitutions and coated with HPGCD for higher dispersion properties and biocompatibility, and were later submitted to biological tests in order to reveal their potential anticancer utility. Experimental data obtained through FTIR, XRD, SEM and TEM confirmed the inclusion of Dy3+ ions in the nanoparticles' structure. The size of the newly formed nanoparticles ranged between 20 and 50 nm revealing an inverse proportional relationship with the Dy content. Magnetic studies conducted by VSM indicated a decrease in remanent and saturation mass magnetization, respectively, in Dy-doped nanoparticles in a direct proportionality with the Dy content; the decrease was further amplified by cyclodextrin complexation. Biological assessment in the presence/absence of red light revealed a significant cytotoxic activity in melanoma (A375) and breast (MCF-7) cancer cells, while healthy keratinocytes (HaCaT) remained generally unaffected, thus revealing adequate selectivity. The investigation of the underlying cytotoxic molecular mechanism revealed an apoptotic process as indicated by nuclear fragmentation and shrinkage, as well as by Western blot analysis of caspase 9, p53 and cyclin D1 proteins. The anticancer activity for all doped Co ferrites varied was in a direct correlation to their Dy content but without being affected by the red light irradiation.
Collapse
Affiliation(s)
- Slaviţa Rotunjanu
- Department of Pharmacology-Pharmacotherapy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.R.); (A.M.); (R.N.-G.); (C.Ş.)
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania; (A.M.); (M.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Alexandra Mioc
- Department of Pharmacology-Pharmacotherapy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.R.); (A.M.); (R.N.-G.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Andreea Milan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania; (A.M.); (M.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Roxana Negrea-Ghiulai
- Department of Pharmacology-Pharmacotherapy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.R.); (A.M.); (R.N.-G.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania; (A.M.); (M.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Narcisa Laura Marangoci
- Petru Poni Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Vodă, 700487 Iaşi, Romania;
| | - Codruţa Şoica
- Department of Pharmacology-Pharmacotherapy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.R.); (A.M.); (R.N.-G.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| |
Collapse
|
3
|
Khalili Najafabad B, Attaran N, Barati M, Mohammadi Z, Mahmoudi M, Sazgarnia A. Cobalt ferrite nanoparticle for the elimination of CD133+CD44 + and CD44 +CD24 -, in breast and skin cancer stem cells, using non-ionizing treatments. Heliyon 2023; 9:e19893. [PMID: 37810832 PMCID: PMC10556613 DOI: 10.1016/j.heliyon.2023.e19893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Background Cancer stem cells (CSCs) are the most challenging issue in cancer treatment, because of their high resistance mechanisms, that can cause tumor recurrence after common cancer treatments such as drug and radiation based therapies, and the insufficient efficiency of common treatments in CSCs removal and the recurrence of tumors after these treatments, it is essential to consider other methods, including non-ionizing treatments likes light-based treatments and magnetic hyperthermia (MHT). Method and material After synthesis, characterization and investigation, the toxicity of novel on A375 and MAD-MB-231 cell lines, magnetic hyperthermia and light-based treatments were applied. MTT assay and flow cytometry was employed to determine cell survival. the influence of combination therapy on CD44 + CD24-and CD133 + CD44+ cell population, Comparison and evaluation of combination treatments was done respectively using Combination Indices (CIs). Result The final nanoparticle has a high efficiency in producing hydroxyl radicals and generating heat in MHT. According to CIs, we can conclude that combined using of light-based treatment and MHT in the presence of final synthesized nanoparticle have synergistic effect and a high ability to reduce the population of stem cells in both cell lines compared to single treatments. Conclusion In this study a novel multi-functional nanoplatform acted well in dual and triple combined treatments, and showed a good performance in the eradication of CSCs, in A375 and MAD-MB-231 cell lines.
Collapse
Affiliation(s)
- Bahareh Khalili Najafabad
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Attaran
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Barati
- Department of Pathobiology and Laboratory Sciences, North Khorasan, University of Medical Science, Bojnurd, Iran
| | - Zahra Mohammadi
- Radiological Technology Department of Actually Paramedical Sciences, Babol University of Medical Science, Babol, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Bu-Ali Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ameneh Sazgarnia
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Chauhan M, Basu SM, Qasim M, Giri J. Polypropylene sulphide coating on magnetic nanoparticles as a novel platform for excellent biocompatible, stimuli-responsive smart magnetic nanocarriers for cancer therapeutics. NANOSCALE 2023; 15:7384-7402. [PMID: 36751724 DOI: 10.1039/d2nr05218k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Magnetic nanoparticle (MNP) delivery systems are promising for targeted drug delivery, imaging, and chemo-hyperthermia of cancer; however, their uses remain limited primarily due to their toxicity associated with reactive oxygen species (ROS) generation, targeted delivery, and biodegradation. Attempts employing polymer coatings to minimize the toxicity, along with other challenges, have had limited success. We designed a novel yet generic 'one-for-all' polypropylene sulphide (PPS) coated magnetic nano-delivery system (80 ± 15 nm) as a multi-faceted approach for significant biocompatibility improvement, loading of multiple drugs, ROS-responsive delivery, and combined chemo-hyperthermia therapy for biomedical applications. Three distinct MNP systems (15 ± 1 nm) were fabricated, coated with PPS polymer, and investigated to validate our hypothesis and design. Simultaneous degradation of MNPs and PPS coatings with ROS-scavenging characteristics boosted the biocompatibility of MNPs 2-3 times towards non-cancerous fibroblasts (NIH3T3) and human epithelial cells (HEK293). In an alternating magnetic field, PPS-MNPs (MnFe) had the strongest heating characteristics (SAR value of 240 W g-1). PPS-MNP drug-loaded NPs were efficiently internalised into cells and released 80% of the drugs under tumor microenvironment-mimicking (pH 5-7, ROS) conditions, and demonstrated effective chemo-hyperthermia (45 °C) application for breast cancer cells with 95% cell death in combined treatment vs. 55% and 30% cell death in only hyperthermia and chemotherapy respectively.
Collapse
Affiliation(s)
- Meenakshi Chauhan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| | - Mohd Qasim
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
5
|
Večerić-Haler Ž, Kojc N, Wechtersbach K, Perše M, Erman A. Cobalt Ferrite Magnetic Nanoparticles for Tracing Mesenchymal Stem Cells in Tissue: A Preliminary Study. Int J Mol Sci 2022; 23:ijms23158738. [PMID: 35955869 PMCID: PMC9368918 DOI: 10.3390/ijms23158738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Therapy with mesenchymal stem cells (MSCs) is promising in many diseases. Evaluation of their efficacy depends on adequate follow-up of MSCs after transplantation. Several studies have shown that MSCs can be labeled and subsequently visualized with magnetic nanoparticles (NPs). We investigated the homing of MSCs labeled with magnetic cobalt ferrite NPs in experimentally induced acute kidney injury in mice. To explore the homing of MSCs after systemic infusion into mice, we developed a pre-infusion strategy for optimal tracing and identification of MSCs with polyacrylic acid-coated cobalt ferrite (CoFe2O4) NPs by light and transmission electron microscopy (TEM) in various organs of mice with cisplatin-induced acute kidney injury and control mice. By correlative microscopy, we detected MSCs labeled with NPs in the lungs, spleen, kidney, and intestine of cisplatin-treated mice and in the lungs and spleen of control mice. Our results confirm that labeling MSCs with metal NPs did not affect the ultrastructure of MSCs and their ability to settle in various organs. This study demonstrates the usefulness of cobalt ferrite NPs in ex vivo visualization of MSCs and offers correlative microscopy as a useful method in routine histopathology laboratories for tracing MSCs in paraffin-embedded tissue.
Collapse
Affiliation(s)
- Željka Večerić-Haler
- Department of Nephrology, University Medical Center Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nika Kojc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Karmen Wechtersbach
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Martina Perše
- Medical Experimental Centre, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Andreja Erman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-543-7684
| |
Collapse
|
6
|
Mohammadi F, Gholami A, Omidifar N, Amini A, Kianpour S, Taghizadeh SM. The potential of surface nano-engineering in characteristics of cobalt-based nanoparticles and biointerface interaction with prokaryotic and human cells. Colloids Surf B Biointerfaces 2022; 215:112485. [PMID: 35367746 DOI: 10.1016/j.colsurfb.2022.112485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 01/07/2023]
Abstract
Cobalt-based nanoparticles (CBNPs) have recently received great attention in biomedical studies; however, the possible biotoxicity of these nanoparticles (NPs) has remained a foremost concern that should be addressed. As surface functionalization is one of the helpful proposed solutions, we aimed to apply Lipoamino acids (LAAs) as a coating agent to improve biocompatibility. To this purpose, cobalt oxide, cobalt ferrite, and iron oxide nanoparticles (IONs) were synthesized with and without 2-amino-hexadecanoic acid coating to assess the impacts of LAA coating on characteristics and biocompatibility of CBNPs in human cells and compare with IONs, a widely used magnetic NPs in biomedicine. Antibacterial activities of NPs were evaluated against four Gram-negative and Gram-positive bacteria species to assess their biointerface interaction with prokaryotic cells. In addition, the antibacterial activities of synthesized NPs were compared to silver NPs, one of the widely used antimicrobial NPs and standard antibiotics (ampicillin). The structural characteristics properties of NPs were analyzed using TEM, FE-SEM, EDS, FTIR, XRD, and VSM. These NPs exhibited sphere-like to polygon-like morphology with desirable mean size. CBNPs displayed dose-dependent cytotoxicity and antimicrobial activities against human cell lines and all tested microbial species, as well as more cytotoxicity and bacterial inhibition compared to IONs. Besides, the results revealed that LAA coating could significantly improve the biocompatibility and antibacterial activity of NPs while impacting magnetic properties. To sum up, it seems that surface functionalization could provide more potent tools for bioapplications with improving biocompatibility and bacterial inhibition of CBNPs, though; further studies are needed in this regard.
Collapse
Affiliation(s)
- Fatemeh Mohammadi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Navid Omidifar
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Amini
- Centre for Infrastructure Engineering, Western Sydney University, Penrith 2751, NSW, Australia; Department of Mechanical Engineering, Australian University-Kuwait, Mishref, Safat 13015, Kuwait
| | - Sedigheh Kianpour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
7
|
Farinha P, Coelho JMP, Reis CP, Gaspar MM. A Comprehensive Updated Review on Magnetic Nanoparticles in Diagnostics. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3432. [PMID: 34947781 PMCID: PMC8706278 DOI: 10.3390/nano11123432] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Magnetic nanoparticles (MNPs) have been studied for diagnostic purposes for decades. Their high surface-to-volume ratio, dispersibility, ability to interact with various molecules and superparamagnetic properties are at the core of what makes MNPs so promising. They have been applied in a multitude of areas in medicine, particularly Magnetic Resonance Imaging (MRI). Iron oxide nanoparticles (IONPs) are the most well-accepted based on their excellent superparamagnetic properties and low toxicity. Nevertheless, IONPs are facing many challenges that make their entry into the market difficult. To overcome these challenges, research has focused on developing MNPs with better safety profiles and enhanced magnetic properties. One particularly important strategy includes doping MNPs (particularly IONPs) with other metallic elements, such as cobalt (Co) and manganese (Mn), to reduce the iron (Fe) content released into the body resulting in the creation of multimodal nanoparticles with unique properties. Another approach includes the development of MNPs using other metals besides Fe, that possess great magnetic or other imaging properties. The future of this field seems to be the production of MNPs which can be used as multipurpose platforms that can combine different uses of MRI or different imaging techniques to design more effective and complete diagnostic tests.
Collapse
Affiliation(s)
- Pedro Farinha
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - João M. P. Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
8
|
Innovative Gold/Cobalt Ferrite Nanocomposite: Physicochemical and Cytotoxicity Properties. Processes (Basel) 2021. [DOI: 10.3390/pr9122264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The combination of plasmonic material and magnetic metal oxide nanoparticles is widely used in multifunctional nanosystems. Here we propose a method for the fabrication of a gold/cobalt ferrite nanocomposite for biomedical applications. The composite includes gold cores of ~10 nm in diameter coated with arginine, which are surrounded by small cobalt ferrite nanoparticles with diameters of ~5 nm covered with dihydrocaffeic acid. The structure and elemental composition, morphology and dimensions, magnetic and optical properties, and biocompatibility of new nanocomposite were studied. The magnetic properties of the composite are mostly determined by the superparamagnetic state of cobalt ferrite nanoparticles, and optical properties are influenced by the localized plasmon resonance in gold nanoparticles. The cytotoxicity of gold/cobalt ferrite nanocomposite was tested using T-lymphoblastic leukemia and peripheral blood mononuclear cells. Studied composite has selective citotoxic effect on cancerous cells while it has no cytotoxic effect on healtly cells. The results suggest that this material can be explored in the future for combined photothermal treatment and magnetic theranostic.
Collapse
|
9
|
Effect of Magnesium Substitution on Structural, Magnetic and Biological Activity of Co(1-x)Mg(x)Fe2O4 Nano-colloids. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01862-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Lucht N, Friedrich RP, Draack S, Alexiou C, Viereck T, Ludwig F, Hankiewicz B. Biophysical Characterization of (Silica-coated) Cobalt Ferrite Nanoparticles for Hyperthermia Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1713. [PMID: 31805707 PMCID: PMC6956109 DOI: 10.3390/nano9121713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022]
Abstract
Magnetic hyperthermia is a technique that describes the heating of material through an external magnetic field. Classic hyperthermia is a medical condition where the human body overheats, being usually triggered by a heat stroke, which can lead to severe damage to organs and tissue due to the denaturation of cells. In modern medicine, hyperthermia can be deliberately induced to specified parts of the body to destroy malignant cells. Magnetic hyperthermia describes the way that this overheating is induced and it has the inherent advantage of being a minimal invasive method when compared to traditional surgery methods. This work presents a particle system that offers huge potential for hyperthermia treatments, given its good loss value, i.e., the particles dissipate a lot of heat to their surroundings when treated with an ac magnetic field. The measurements were performed in a low-cost custom hyperthermia setup. Additional toxicity assessments on Jurkat cells show a very low short-term toxicity on the particles and a moderate low toxicity after two days due to the prevalent health concerns towards nanoparticles in organisms.
Collapse
Affiliation(s)
- Niklas Lucht
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Ralf P. Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Glückstraße 10a, 91054 Erlangen, Germany
| | - Sebastian Draack
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering, Technical University of Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Glückstraße 10a, 91054 Erlangen, Germany
| | - Thilo Viereck
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering, Technical University of Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany
| | - Frank Ludwig
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering, Technical University of Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany
| | - Birgit Hankiewicz
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| |
Collapse
|
11
|
Jiang Z, Shan K, Song J, Liu J, Rajendran S, Pugazhendhi A, Jacob JA, Chen B. Toxic effects of magnetic nanoparticles on normal cells and organs. Life Sci 2019; 220:156-161. [DOI: 10.1016/j.lfs.2019.01.056] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
|