1
|
Li S, Wu T, Wu J, Chen W, Zhang D. Recognizing the biological barriers and pathophysiological characteristics of the gastrointestinal tract for the design and application of nanotherapeutics. Drug Deliv 2024; 31:2415580. [PMID: 39404464 PMCID: PMC11485891 DOI: 10.1080/10717544.2024.2415580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
The gastrointestinal tract (GIT) is an important and complex system by which humans to digest food and absorb nutrients. The GIT is vulnerable to diseases, which may led to discomfort or even death in humans. Therapeutics for GIT disease treatment face multiple biological barriers, which significantly decrease the efficacy of therapeutics. Recognizing the biological barriers and pathophysiological characteristics of GIT may be helpful to design innovative therapeutics. Nanotherapeutics, which have special targeting and controlled therapeutic release profiles, have been widely used for the treatment of GIT diseases. Herein, we provide a comprehensive review of the biological barrier and pathophysiological characteristics of GIT, which may aid in the design of promising nanotherapeutics for GIT disease treatment. Furthermore, several typical diseases of the upper and lower digestive tracts, such as Helicobacter pylori infection and inflammatory bowel disease, were selected to investigate the application of nanotherapeutics for GIT disease treatment.
Collapse
Affiliation(s)
- Shan Li
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University (Third Military Medical University), Shigatse, Tibet Autonomous Region, China
| | - Tianyu Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jingfeng Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wensheng Chen
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
2
|
Jang S, Jang S, Ko J, Bae JE, Hyung H, Park JY, Lim SG, Park S, Park S, Yi J, Kim S, Kim MO, Cho DH, Ryoo ZY. HSPA9 reduction exacerbates symptoms and cell death in DSS-Induced inflammatory colitis. Sci Rep 2024; 14:5908. [PMID: 38467701 PMCID: PMC10928168 DOI: 10.1038/s41598-024-56216-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition that is influenced by various factors, including environmental factors, immune responses, and genetic elements. Among the factors that influence IBD progression, macrophages play a significant role in generating inflammatory mediators, and an increase in the number of activated macrophages contributes to cellular damage, thereby exacerbating the overall inflammatory conditions. HSPA9, a member of the heat shock protein 70 family, plays a crucial role in regulating mitochondrial processes and responding to oxidative stress. HSPA9 deficiency disrupts mitochondrial dynamics, increasing mitochondrial fission and the production of reactive oxygen species. Based on the known functions of HSPA9, we considered the possibility that HSPA9 reduction may contribute to the exacerbation of colitis and investigated its relevance. In a dextran sodium sulfate-induced colitis mouse model, the downregulated HSPA9 exacerbates colitis symptoms, including increased immune cell infiltration, elevated proinflammatory cytokines, decreased tight junctions, and altered macrophage polarization. Moreover, along with the increased mitochondrial fission, we found that the reduction in HSPA9 significantly affected the superoxide dismutase 1 levels and contributed to cellular death. These findings enhance our understanding of the intricate mechanisms underlying colitis and contribute to the development of novel therapeutic approaches for this challenging condition.
Collapse
Affiliation(s)
- Soyoung Jang
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Soyeon Jang
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jiwon Ko
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji-Eun Bae
- KNU LAMP Research Center, KNU Institute of Basic Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyejin Hyung
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji Yeong Park
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Su-Geun Lim
- Institute of Life Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sijun Park
- Institute of Life Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Song Park
- Department of Animal Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Junkoo Yi
- School of Animal Life Convergence Science, Hankyong National University, Anseong, 17579, Korea
| | - Seonggon Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal Science, Kyungpook National University, Sangju-si, Gyeongsang buk-do, 37224, Republic of Korea
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Organelle Institute, Kyungpook National University, Daegu, 41566, Republic of Korea.
- ORGASIS Corp., Suwon, Gyeonggido, 16229, Republic of Korea.
| | - Zae Young Ryoo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
3
|
Sipeki N, Kovats PJ, Deutschmann C, Schierack P, Roggenbuck D, Papp M. Location-based prediction model for Crohn's disease regarding a novel serological marker, anti-chitinase 3-like 1 autoantibodies. World J Gastroenterol 2023; 29:5728-5750. [PMID: 38075846 PMCID: PMC10701337 DOI: 10.3748/wjg.v29.i42.5728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/03/2023] [Accepted: 11/02/2023] [Indexed: 11/13/2023] Open
Abstract
BACKGROUND Defective neutrophil regulation in inflammatory bowel disease (IBD) is thought to play an important role in the onset or manifestation of IBD, as it could lead to damage of the intestinal mucosal barrier by the infiltration of neutrophils in the inflamed mucosa and the accumulation of pathogens. Like neutrophils in the context of innate immune responses, immunoglobulin A (IgA) as an acquired immune response partakes in the defense of the intestinal epithelium. Under normal conditions, IgA contributes to the elimination of microbes, but in connection with the loss of tolerance to chitinase 3-like 1 (CHI3L1) in IBD, IgA could participate in CHI3L1-mediated improved adhesion and invasion of potentially pathogenic microorganisms. The tolerance brake to CHI3L1 and the occurrence of IgA autoantibodies to this particular target, the exact role and underlying mechanisms of CHI3L1 in the pathogenesis of IBD are still unclear. AIM To determine the predictive potential of Ig subtypes of a novel serological marker, anti-CHI3L1 autoantibodies (aCHI3L1) in determining the disease phenotype, therapeutic strategy and long-term disease course in a prospective referral cohort of adult IBD patients. METHODS Sera of 257 Crohn's disease (CD) and 180 ulcerative colitis (UC) patients from a tertiary IBD referral center of Hungary (Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen) were assayed for IgG, IgA, and secretory IgA (sIgA) type aCHI3L1 by enzyme-linked immunosorbent assay using recombinant CHI3L1, along with 86 healthy controls (HCONT). RESULTS The IgA type was more prevalent in CD than in UC (29.2% vs 11.1%) or HCONT (2.83%; P < 0.0001 for both). However, sIgA subtype aCHI3L1 positivity was higher in both CD and UC patients than in HCONT (39.3% and 32.8% vs 4.65%, respectively; P < 0.0001). The presence of both IgA and sIgA aCHI3L1 antibodies was associated with colonic involvement (P < 0.0001 and P = 0.038, respectively) in patients with CD. Complicated disease behavior at sample procurement was associated with aCHI3L1 sIgA positivity (57.1% vs 36.0%, P = 0.009). IgA type aCH3L1 was more prevalent in patients with frequent relapse during the disease course in the CD group (46.9% vs 25.7%, P = 0.005). In a group of patients with concomitant presence of pure inflammatory luminal disease and colon involvement at the time of diagnosis, positivity for IgA or sIgA type aCH3L1 predicted faster progression towards a complicated disease course in time-dependent models. This association disappeared after merging subgroups of different disease locations. CONCLUSION CHI3L1 is a novel neutrophil autoantigenic target in IBD. The consideration of antibody classes along with location-based prediction may transform the future of serology in IBD.
Collapse
Affiliation(s)
- Nora Sipeki
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Patricia Julianna Kovats
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
- Kálmán Laki Doctoral School, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Claudia Deutschmann
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg 01968, Germany
| | - Peter Schierack
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg 01968, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg 01968, Germany
| | - Dirk Roggenbuck
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg 01968, Germany
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg 01968, Germany
- Medipan GmbH & GA Generic Assays GmbH, Dahlewitz-Berlin 15827, Germany
| | - Maria Papp
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| |
Collapse
|
4
|
Manai F, Zanoletti L, Arfini D, Micco SGD, Gjyzeli A, Comincini S, Amadio M. Dimethyl Fumarate and Intestine: From Main Suspect to Potential Ally against Gut Disorders. Int J Mol Sci 2023; 24:9912. [PMID: 37373057 DOI: 10.3390/ijms24129912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Dimethyl fumarate (DMF) is a well-characterized molecule that exhibits immuno-modulatory, anti-inflammatory, and antioxidant properties and that is currently approved for the treatment of psoriasis and multiple sclerosis. Due to its Nrf2-dependent and independent mechanisms of action, DMF has a therapeutic potential much broader than expected. In this comprehensive review, we discuss the state-of-the-art and future perspectives regarding the potential repurposing of DMF in the context of chronic inflammatory diseases of the intestine, such as inflammatory bowel disorders (i.e., Crohn's disease and ulcerative colitis) and celiac disease. DMF's mechanisms of action, as well as an exhaustive analysis of the in vitro/in vivo evidence of its beneficial effects on the intestine and the gut microbiota, together with observational studies on multiple sclerosis patients, are here reported. Based on the collected evidence, we highlight the new potential applications of this molecule in the context of inflammatory and immune-mediated intestinal diseases.
Collapse
Affiliation(s)
- Federico Manai
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Lisa Zanoletti
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
- Department of Chronic Diseases and Metabolism (CHROMETA), Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Davide Arfini
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Simone Giorgio De Micco
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Arolda Gjyzeli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Sergio Comincini
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Marialaura Amadio
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
5
|
Holman J, Hurd M, Moses PL, Mawe GM, Zhang T, Ishaq SL, Li Y. Interplay of broccoli/broccoli sprout bioactives with gut microbiota in reducing inflammation in inflammatory bowel diseases. J Nutr Biochem 2023; 113:109238. [PMID: 36442719 PMCID: PMC9974906 DOI: 10.1016/j.jnutbio.2022.109238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/21/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Inflammatory Bowel Diseases (IBD) are chronic, reoccurring, and debilitating conditions characterized by inflammation in the gastrointestinal tract, some of which can lead to more systemic complications and can include autoimmune dysfunction, a change in the taxonomic and functional structure of microbial communities in the gut, and complicated burdens in a person's daily life. Like many diseases based in chronic inflammation, research on IBD has pointed towards a multifactorial origin involving factors of the person's lifestyle, immune system, associated microbial communities, and environmental conditions. Treatment currently exists only as palliative care, and seeks to disrupt the feedback loop of symptoms by reducing inflammation and allowing as much of a return to homeostasis as possible. Various anti-inflammatory options have been explored, and this review focuses on the use of diet as an alternative means of improving gut health. Specifically, we highlight the connection between the role of sulforaphane from cruciferous vegetables in regulating inflammation and in modifying microbial communities, and to break down the role they play in IBD.
Collapse
Affiliation(s)
- Johanna Holman
- School of Food and Agriculture, University of Maine, Orono, Maine, USA
| | - Molly Hurd
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Peter L Moses
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA; Finch Therapeutics, Somerville, Massachusetts, USA
| | - Gary M Mawe
- Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Tao Zhang
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, New York, USA
| | - Suzanne L Ishaq
- School of Food and Agriculture, University of Maine, Orono, Maine, USA.
| | - Yanyan Li
- School of Food and Agriculture, University of Maine, Orono, Maine, USA.
| |
Collapse
|
6
|
Garg SS, Gupta J. Guar gum-based nanoformulations: Implications for improving drug delivery. Int J Biol Macromol 2023; 229:476-485. [PMID: 36603711 DOI: 10.1016/j.ijbiomac.2022.12.271] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023]
Abstract
Poorly soluble drugs are reported to easily degrade in the gastrointestinal tract and contribute in limiting the effect of drug to its targeted site. Oral administration of drug is one of the prominent ways to deliver a drug, although, it experiences barriers like acidic pH, presence of microflora and enzymes in the gastrointestinal tract. Collectively all of these participate in the degradation of drug before it reaches its target site and thus, they impede the sustained effect of drug. A quest of choosing a polymer with good stability profile and releasing the drug to its targeted site is always been a challenge for the scientists worldwide. Many polymers have been reported to prevent the degradation of drug and one such naturally occurring biocompatible polymer is guar gum. Guar gum-based nanoformulations have been extensively used in past decades to achieve controlled drug release which defines its importance. The coating of guar gum over the drug improves the bioavailability of the drug and thus helps in minimizing the risk of drug degradation. This review intends to highlight the beneficial role of guar gum-based nanoformulations to improve drug delivery by ameliorating the bioavailibility.
Collapse
Affiliation(s)
- Sourbh Suren Garg
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India.
| |
Collapse
|
7
|
Cicio A, Serio R, Zizzo MG. Anti-Inflammatory Potential of Brassicaceae-Derived Phytochemicals: In Vitro and In Vivo Evidence for a Putative Role in the Prevention and Treatment of IBD. Nutrients 2022; 15:nu15010031. [PMID: 36615689 PMCID: PMC9824272 DOI: 10.3390/nu15010031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of intestinal disorders, of unknown etiology, characterized by chronic inflammation within the gut. They are gradually becoming critical because of the increasing incidence worldwide and improved diagnosis. Due to the important side effects observed during conventional therapy, natural bioactive components are now under intense investigation for the prevention and treatment of chronic illnesses. The Brassicaceae family comprises vegetables widely consumed all over the world. In recent decades, a growing body of literature has reported that extracts from the Brassicaceae family and their purified constituents have anti-inflammatory properties, which has generated interest from both the scientific community and clinicians. In this review, data from the literature are scrutinized and concisely presented demonstrating that Brassicaceae may have anti-IBD potential. The excellent biological activities of Brassicacea are widely attributable to their ability to regulate the levels of inflammatory and oxidant mediators, as well as their capacity for immunomodulatory regulation, maintenance of intestinal barrier integrity and intestinal flora balance. Possible future applications of bioactive-derived compounds from Brassicaceae for promoting intestinal health should be investigated.
Collapse
Affiliation(s)
- Adele Cicio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, ed 16, 90128 Palermo, Italy
| | - Rosa Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, ed 16, 90128 Palermo, Italy
| | - Maria Grazia Zizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, ed 16, 90128 Palermo, Italy
- ATeN (Advanced Technologies Network) Center, Viale delle Scienze, University of Palermo, 90128 Palermo, Italy
- Correspondence:
| |
Collapse
|
8
|
Hadji H, Bouchemal K. Advances in the treatment of inflammatory bowel disease: Focus on polysaccharide nanoparticulate drug delivery systems. Adv Drug Deliv Rev 2022; 181:114101. [PMID: 34999122 DOI: 10.1016/j.addr.2021.114101] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023]
Abstract
The complex pathogenesis of inflammatory bowel disease (IBD) explains the several hurdles for finding an efficient approach to cure it. Nowadays, therapeutic protocols aim to reduce inflammation during the hot phase or maintain remission during the cold phase. Nonetheless, these drugs suffer from severe side effects or poor efficacy due to low bioavailability in the inflamed region of the intestinal tract. New protocols based on antibodies that target proinflammatory cytokines are clinically relevant. However, besides being expensive, their use is associated with a primary nonresponse or a loss of response following a long administration period. Accordingly, many researchers exploited the physiological changes of the mucosal barrier for designing nanoparticulate drug delivery systems to target inflamed tissues. Others exploited biocompatibility and relative affordability of polysaccharides to test their intrinsic anti-inflammatory and healing properties in IBD models. This critical review updates state of the art on advances in IBD treatment. Data on using polysaccharide nanoparticulate drug delivery systems for IBD treatment are reviewed and discussed.
Collapse
Affiliation(s)
- Hicheme Hadji
- Institut Galien Paris Saclay, CNRS UMR 8612, Université Paris-Saclay, Faculté de Pharmacie, 5 rue J-B Clément, 92296 Châtenay-Malabry, France
| | - Kawthar Bouchemal
- Institut Galien Paris Saclay, CNRS UMR 8612, Université Paris-Saclay, Faculté de Pharmacie, 5 rue J-B Clément, 92296 Châtenay-Malabry, France.
| |
Collapse
|
9
|
Tkachenko AS, Gubina-Vakulyck GI, Klochkov VK, Kavok NS, Onishchenko AI, Gorbach TV, Nakonechna OA. Experimental Evaluation of the Impact of Gadolinium Orthovanadate GdVO4:Eu3+ Nanoparticles on the Carrageenan-Induced Intestinal Inflammation. ACTA MEDICA (HRADEC KRÁLOVÉ) 2021; 63:18-24. [PMID: 32422112 DOI: 10.14712/18059694.2020.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AIM To evaluate the effects of orally administered gadolinium orthovanadate GdVO4:Eu3+ nanoparticles (VNPs) on the course of chronic carrageenan-induced intestinal inflammation. METHODS Samples of small intestinal tissue were collected from four groups of rats (intact, after administration of VNPs, with carrageenaninduced intestinal inflammation, with carrageenan-induced intestinal inflammation orally exposed to VNPs) to assess the intestinal morphology and HSP90α expression. Levels of seromucoid, C-reactive protein, TNF-α, IL-1β and IL-10 were determined in blood serum. RESULTS Oral exposure to VNPs was associated with neither elevation of inflammation markers in blood serum nor HSP90α overexpression in the small intestine, i.e. no toxic effects of VNPs were observed. Carrageenan-induced intestinal inflammation was accompanied by higher levels of TNF-α and IL-1β, as well as HSP90α upregulation in the intestinal mucosa, compared with controls. Administration of VNPs to rats with enteritis did not lead to statistically significant changes in concentrations of circulating pro-inflammatory cytokines with the trend towards their increase. CONCLUSION No adverse effects were observed in rats orally exposed to VNPs at a dose of 20 μg/kg during two weeks. Using the experimental model of carrageenan-induced enteritis, it was demonstrated that VNPs at the dose used in our study did not affect the course of intestinal inflammation.
Collapse
Affiliation(s)
- Anton S Tkachenko
- Department of Biochemistry, Kharkiv National Medical University, Kharkiv, Ukraine.
| | | | - Vladimir K Klochkov
- Institute for Scintillation Materials National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Nataliya S Kavok
- Institute for Scintillation Materials National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | | | - Tatyana V Gorbach
- Department of Biochemistry, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Oksana A Nakonechna
- Department of Biochemistry, Kharkiv National Medical University, Kharkiv, Ukraine
| |
Collapse
|
10
|
The Interrelationships between Intestinal Permeability and Phlegm Syndrome and Therapeutic Potential of Some Medicinal Herbs. Biomolecules 2021; 11:biom11020284. [PMID: 33671865 PMCID: PMC7918952 DOI: 10.3390/biom11020284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal (GI) tract has an intriguing and critical role beyond digestion in both modern and complementary and alternative medicine (CAM), as demonstrated by its link with the immune system. In this review, we attempted to explore the interrelationships between increased GI permeability and phlegm, an important pathological factor in CAM, syndrome, and therapeutic herbs for two disorders. The leaky gut and phlegm syndromes look considerably similar with respect to related symptoms, diseases, and suitable herbal treatment agents, including phytochemicals even though limitations to compare exist. Phlegm may be spread throughout the body along with other pathogens via the disruption of the GI barrier to cause several diseases sharing some parts of symptoms, diseases, and mechanisms with leaky gut syndrome. Both syndromes are related to inflammation and gut microbiota compositions. Well-designed future research should be conducted to verify the interrelationships for evidence based integrative medicine to contribute to the promotion of public health. In addition, systems biology approaches should be adopted to explore the complex synergistic effects of herbal medicine and phytochemicals on conditions associated with phlegm and leaky gut syndromes.
Collapse
|
11
|
Dang H, Sun J, Wang G, Renner G, Layfield L, Hilli J. Management of pembrolizumab-induced steroid refractory mucositis with infliximab: A case report. World J Clin Cases 2020; 8:4100-4108. [PMID: 33024767 PMCID: PMC7520797 DOI: 10.12998/wjcc.v8.i18.4100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/30/2020] [Accepted: 08/21/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Pembrolizumab is an anti-programmed death receptor 1 (PD-1) that was shown to have a tolerable safety profile with 17% of grade 3-4 drug-related adverse events, notable response rate of 16% with median duration of response of 8 mo, and median overall survival of 8 mo. Severe mucositis is a very rare complication with only two cases of grade 4 mucositis reported, and both cases had good response to intravenous methylprednisolone and subsequent oral prednisone tapering. We report the first case of pembrolizumab-induced severe mucositis that was refractory to steroid treatment.
CASE SUMMARY An 80-year-old woman with a past medical history of recurrent right cheek nodular melanoma status post resection and new right lung metastatic melanoma on immunotherapy presented with dysphagia and odynophagia for 2 mo. She initially received 2 doses of ipilimumab 1 year ago with good outcome, but treatment was discontinued after developing severe diarrhea and rash. Pembrolizumab was then initiated 4 mo after disease progression. Significant improvement was noted after 3 doses. However, after 6 cycles of pembrolizumab, patient developed odynophagia and malnutrition. Improvement of symptoms was noted after discontinuation of pembrolizumab and initiation of steroids. 3 mo later, patient developed pharyngeal swelling with hoarseness and new oxygen requirement due to impending airway obstruction while being on prednisone tapering regimen, finally ended up with intubation and tracheostomy. Histologic analysis of left laryngeal and epiglottis tissue showed granulation tissue with acute on chronic inflammation, negative for malignancy and infection. Patient achieved marked improvement after 2 doses of infliximab of 5 mg/kg every 2 wk while continuing on prednisone tapering course.
CONCLUSION We report the first case of pembrolizumab-induced grade 4 mucositis that had limited recovery with prolonged steroid course but had rapid response with addition of infliximab. The patient had recurrent mucositis symptoms whenever steroids was tapered but achieved complete response after receiving two doses of infliximab while continuing to be on tapering steroids. The success of infliximab in this patient with pembrolizumab-induced severe mucositis presents a potentially safe approach to reduce prolonged steroid course and accelerate recovery in managing this rare complication.
Collapse
Affiliation(s)
- Harry Dang
- Department of Medicine, University of Missouri, Columbia, MO 65212, United States
| | - Jiyuan Sun
- Department of Hematology-Oncology, University of Missouri, Columbia, MO 65212, United States
| | - Guoliang Wang
- Department of Pathology, University of Missouri, Columbia, MO 65212, United States
| | - Gregory Renner
- Department of Otolaryngology - Head and Neck Surgery, University of Missouri, Columbia, MO 65212, United States
| | - Lester Layfield
- Department of Pathology, University of Missouri, Columbia, MO 65212, United States
| | - Jaffar Hilli
- Department of Hematology-Oncology, University of Missouri, Columbia, MO 65212, United States
| |
Collapse
|
12
|
Sandborn WJ, Abreu MT, Dubinsky MC. A Noninvasive Method to Assess Mucosal Healing in Patients* With Crohn's Disease. Gastroenterol Hepatol (N Y) 2018; 14:1-12. [PMID: 29991933 PMCID: PMC6018319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ongoing inflammation in the gastrointestinal tract and loss of the mucosal barrier are key components of Crohn's disease. Current treatment paradigms, including treat-to-target, are based on improvement of both clinical and endoscopic symptoms. Endoscopy is an essential tool for the evaluation of mucosal healing, but patients may be reluctant to undergo repeated procedures. Surrogate markers of inflammation, such as C-reactive protein and fecal calprotectin, are being used, yet they have several limitations in the assessment of mucosal healing. A new strategy, known as the Monitr test, assesses mucosal healing status by evaluating serum levels of 13 biomarkers in patients with Crohn's disease. The 13 biomarkers are associated with cell adhesion, inflammation, angiogenesis, extracellular matrix remodeling, cell proliferation and repair, and immune cell recruitment. Monitr testing yields a mucosal healing index score that reflects disease severity. Validation of the test showed an overall accuracy of 90%, with a negative predictive value of 92% and a positive predictive value of 87% for identifying patients with endoscopic evidence of Crohn's disease. Use of this noninvasive test may aid in the monitoring and management of patients with Crohn's disease, while potentially reducing the need for repeated endoscopy.
Collapse
Affiliation(s)
- William J Sandborn
- Professor of Medicine and Adjunct Professor of Surgery Chief, Division of Gastroenterology Director, UCSD IBD Center University of California San Diego University of California San Diego Health System La Jolla, California
| | - Maria T Abreu
- Director, Crohn's and Colitis Center Professor of Medicine, Microbiology, and Immunology University of Miami Miller School of Medicine Miami, Florida
| | - Marla C Dubinsky
- Professor of Pediatrics Chief, Pediatric Gastroenterology and Hepatology and Nutrition Co-Director, Susan and Leonard Feinstein IBD Clinical Center Icahn School of Medicine at Mount Sinai New York, New York
| |
Collapse
|
13
|
Sharma S, Sinha VR. Current pharmaceutical strategies for efficient site specific delivery in inflamed distal intestinal mucosa. J Control Release 2018; 272:97-106. [DOI: 10.1016/j.jconrel.2018.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 02/07/2023]
|