1
|
Rajaram R, Angaiah S, Lee YR. Polymer supported electrospun nanofibers with supramolecular materials for biological applications – a review. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2075871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rajamohan Rajaram
- Electro-Materials Research Laboratory, Centre for Nanoscience and Technology, Pondicherry University, Puducherry, India
- School of Chemical Engineering, Yeungnam University, Gyeongson, Republic of Korea
| | - Subramania Angaiah
- Electro-Materials Research Laboratory, Centre for Nanoscience and Technology, Pondicherry University, Puducherry, India
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongson, Republic of Korea
| |
Collapse
|
2
|
Kellermayer R, Wu Q, Nagy-Szakal D, Queliza K, Ihekweazu FD, Bocchini CE, Magee AR, Oezguen N, Spinler JK, Hollister EB, Shulman RJ, Versalovic J, Luna RA, Savidge TC. Fecal Microbiota Transplantation Commonly Failed in Children With Co-Morbidities. J Pediatr Gastroenterol Nutr 2022; 74:227-235. [PMID: 34724447 PMCID: PMC8799498 DOI: 10.1097/mpg.0000000000003336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Fecal microbiota transplantation (FMT) is arguably the most effective treatment for recurrent Clostridioides difficile infection (rCDI). Clinical reports on pediatric FMT have not systematically evaluated microbiome restoration in patients with co-morbidities. Here, we determined whether FMT recipient age and underlying co-morbidity influenced clinical outcomes and microbiome restoration when treated from shared fecal donor sources. METHODS Eighteen rCDI patients participating in a single-center, open-label prospective cohort study received fecal preparation from a self-designated (single case) or two universal donors. Twelve age-matched healthy children and four pediatric ulcerative colitis (UC) cases from an independent serial FMT trial, but with a shared fecal donor were examined as controls for microbiome restoration using 16S rRNA gene sequencing of longitudinal fecal specimens. RESULTS FMT was significantly more effective in rCDI recipients without underlying chronic co-morbidities where fecal microbiome composition in post-transplant responders was restored to levels of healthy children. Microbiome reconstitution was not associated with symptomatic resolution in some rCDI patients who had co-morbidities. Significant elevation in Bacteroidaceae, Bifidobacteriaceae, Lachnospiraceae, Ruminococcaceae, and Erysipelotrichaceae was consistently observed in pediatric rCDI responders, while Enterobacteriaceae decreased, correlating with augmented complex carbohydrate degradation capacity. CONCLUSION Recipient background disease was a significant risk factor influencing FMT outcomes. Special attention should be taken when considering FMT for pediatric rCDI patients with underlying co-morbidities.
Collapse
Affiliation(s)
- Richard Kellermayer
- Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, USA
- USDA/ARS Children’s Nutrition Research Center, Houston, Texas, USA
| | - Qinglong Wu
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Dorottya Nagy-Szakal
- Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, USA
| | - Karen Queliza
- Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, USA
| | - Faith D. Ihekweazu
- Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, USA
| | - Claire E. Bocchini
- Pediatric Infectious Diseases, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, USA
| | - Abria R. Magee
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Numan Oezguen
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Jennifer K. Spinler
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Emily B. Hollister
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Robert J. Shulman
- Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Ruth Ann Luna
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Tor C. Savidge
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
3
|
Hossain R, Quispe C, Herrera-Bravo J, Islam MS, Sarkar C, Islam MT, Martorell M, Cruz-Martins N, Al-Harrasi A, Al-Rawahi A, Sharifi-Rad J, Ibrayeva M, Daştan SD, Alshehri MM, Calina D, Cho WC. Lasia spinosa Chemical Composition and Therapeutic Potential: A Literature-Based Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1602437. [PMID: 34992714 PMCID: PMC8727140 DOI: 10.1155/2021/1602437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/08/2021] [Accepted: 12/03/2021] [Indexed: 12/14/2022]
Abstract
Lasia spinosa (L.) is used ethnobotanically for the treatment of various diseases, including rheumatoid arthritis, inflammation of the lungs, bleeding cough, hemorrhoids, intestinal diseases, stomach pain, and uterine cancer. This review is aimed at summarizing phytochemistry and pharmacological data with their molecular mechanisms of action. A search was performed in databases such as PubMed, Science Direct, and Google Scholar using the keywords: "Lasia spinosa," then combined with "ethnopharmacological use," "phytochemistry," and "pharmacological activity." This updated review included studies with in vitro, ex vivo, and in vivo experiments with compounds of known concentration and highlighted pharmacological mechanisms. The research results showed that L. spinosa contains many important nutritional and phytochemical components such as alkanes, aldehydes, alkaloids, carotenoids, flavonoids, fatty acids, ketones, lignans, phenolics, terpenoids, steroids, and volatile oil with excellent bioactivity. The importance of this review lies in the fact that scientific pharmacological evidence supports the fact that the plant has antioxidant, anti-inflammatory, antimicrobial, cytotoxic, antidiarrheal, antihelminthic, antidiabetic, antihyperlipidemic, and antinociceptive effects, while protecting the gastrointestinal system and reproductive. Regarding future toxicological and safety data, more research is needed, including studies on human subjects. In light of these data, L. spinosa can be considered a medicinal plant with effective bioactives for the adjuvant treatment of various diseases in humans.
Collapse
Affiliation(s)
- Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Md. Shahazul Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, And Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile
| | - Natália Cruz-Martins
- Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
- TOXRUN – Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Almouz, 616, Oman
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Almouz, 616, Oman
| | | | - Manshuk Ibrayeva
- Faculty of Science and Technology, The Caspian University of Technology and Engineering Named after Sh. Yessenov, Aktau, Kazakhstan
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
4
|
Kellermayer R. Fecal microbiota transplantation: great potential with many challenges. Transl Gastroenterol Hepatol 2019; 4:40. [PMID: 31231707 DOI: 10.21037/tgh.2019.05.10] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 12/17/2022] Open
Abstract
In January of 2019, Samuel P. Costello and colleagues published a wonderfully executed, double blind placebo-controlled trial on fecal microbiota transplantation (FMT) versus autologous stool as placebo in mild to moderately active adult ulcerative colitis [UC: one type of inflammatory bowel disease (IBD)] patients. This review-commentary examines the current state of knowledge on human gut microbiome (live microbiota + their products and surrounding environment, i.e., fecal matter) and microbial therapeutics from a gastrointestinal (GI) clinician's standpoint. The varied forms of dysbiosis as the target of FMT, recipient donor and placebo considerations are also discussed in respect to randomized control trials in IBD [and the lack thereof in Crohn's disease (CD)] with this unconventional treatment modality.
Collapse
Affiliation(s)
- Richard Kellermayer
- Section of Pediatric Gastroenterology, Texas Children's Hospital Baylor College of Medicine, Houston, TX, USA.,USDA/ARS Children's Nutrition Research Center, Houston, TX, USA
| |
Collapse
|
5
|
Burdening questions about Clostridium difficile in pediatric inflammatory bowel diseases. J Pediatr Gastroenterol Nutr 2015; 60:421-2. [PMID: 25658059 DOI: 10.1097/mpg.0000000000000756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Houghteling PD, Walker WA. Why is initial bacterial colonization of the intestine important to infants' and children's health? J Pediatr Gastroenterol Nutr 2015; 60:294-307. [PMID: 25313849 PMCID: PMC4340742 DOI: 10.1097/mpg.0000000000000597] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microbial colonization of the infant occurs during a critical time window for immune and gastrointestinal development. Infant colonization sets the stage for the adult microbiome. This review is a broad survey of the factors affecting infant colonization and the downstream effects on gastrointestinal health and disease. Major topics affecting colonization include initial inoculation dependent on birth mode, the impact of breast-feeding, and inside-out modulation of the developing microbiome by the immune system. Major outcomes of colonization include the timing-dependent education of the neonatal immune system, which is interconnected with barrier function and metabolism. These all engage in further continuing cross-talk with the microbiome, genetics, and nutrition. This review also briefly examines mechanisms of disease resulting from disrupted colonization as well as nutritional and microbial therapies.
Collapse
Affiliation(s)
- Pearl D. Houghteling
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16th Street (114-3505), Charlestown, MA02129-4404, USA
- University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - W. Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16th Street (114-3505), Charlestown, MA02129-4404, USA
| |
Collapse
|
7
|
Tsuchida S, Ushida K. Characterization of intestinal bacterial communities of western lowland gorillas ( Gorilla gorilla gorilla), central chimpanzees ( Pan troglodytes troglodytes), and a forest elephant ( Loxodonta africana cyclotis) living in Moukalaba-Doudou National Park in Gabon. TROPICS 2015. [DOI: 10.3759/tropics.23.175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Sayaka Tsuchida
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University
| | - Kazunari Ushida
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University
| |
Collapse
|
8
|
Juhász J, Kertész-Farkas A, Szabó D, Pongor S. Emergence of collective territorial defense in bacterial communities: horizontal gene transfer can stabilize microbiomes. PLoS One 2014; 9:e95511. [PMID: 24755769 PMCID: PMC3995721 DOI: 10.1371/journal.pone.0095511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/26/2014] [Indexed: 12/13/2022] Open
Abstract
Multispecies bacterial communities such as the microbiota of the gastrointestinal tract can be remarkably stable and resilient even though they consist of cells and species that compete for resources and also produce a large number of antimicrobial agents. Computational modeling suggests that horizontal transfer of resistance genes may greatly contribute to the formation of stable and diverse communities capable of protecting themselves with a battery of antimicrobial agents while preserving a varied metabolic repertoire of the constituent species. In other words horizontal transfer of resistance genes makes a community compatible in terms of exoproducts and capable to maintain a varied and mature metagenome. The same property may allow microbiota to protect a host organism, or if used as a microbial therapy, to purge pathogens and restore a protective environment.
Collapse
Affiliation(s)
- János Juhász
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Attila Kertész-Farkas
- Group of Protein Structure and Bioinformatics, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Dóra Szabó
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Sándor Pongor
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary; Group of Protein Structure and Bioinformatics, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|