1
|
Burclaff J, Bliton RJ, Breau KA, Ok MT, Gomez-Martinez I, Ranek JS, Bhatt AP, Purvis JE, Woosley JT, Magness ST. A Proximal-to-Distal Survey of Healthy Adult Human Small Intestine and Colon Epithelium by Single-Cell Transcriptomics. Cell Mol Gastroenterol Hepatol 2022; 13:1554-1589. [PMID: 35176508 PMCID: PMC9043569 DOI: 10.1016/j.jcmgh.2022.02.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Single-cell transcriptomics offer unprecedented resolution of tissue function at the cellular level, yet studies analyzing healthy adult human small intestine and colon are sparse. Here, we present single-cell transcriptomics covering the duodenum, jejunum, ileum, and ascending, transverse, and descending colon from 3 human beings. METHODS A total of 12,590 single epithelial cells from 3 independently processed organ donors were evaluated for organ-specific lineage biomarkers, differentially regulated genes, receptors, and drug targets. Analyses focused on intrinsic cell properties and their capacity for response to extrinsic signals along the gut axis across different human beings. RESULTS Cells were assigned to 25 epithelial lineage clusters. Multiple accepted intestinal stem cell markers do not specifically mark all human intestinal stem cells. Lysozyme expression is not unique to human Paneth cells, and Paneth cells lack expression of expected niche factors. Bestrophin 4 (BEST4)+ cells express Neuropeptide Y (NPY) and show maturational differences between the small intestine and colon. Tuft cells possess a broad ability to interact with the innate and adaptive immune systems through previously unreported receptors. Some classes of mucins, hormones, cell junctions, and nutrient absorption genes show unappreciated regional expression differences across lineages. The differential expression of receptors and drug targets across lineages show biological variation and the potential for variegated responses. CONCLUSIONS Our study identifies novel lineage marker genes, covers regional differences, shows important differences between mouse and human gut epithelium, and reveals insight into how the epithelium responds to the environment and drugs. This comprehensive cell atlas of the healthy adult human intestinal epithelium resolves likely functional differences across anatomic regions along the gastrointestinal tract and advances our understanding of human intestinal physiology.
Collapse
Affiliation(s)
- Joseph Burclaff
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - R Jarrett Bliton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, North Carolina
| | - Keith A Breau
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Meryem T Ok
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, North Carolina
| | - Ismael Gomez-Martinez
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jolene S Ranek
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Aadra P Bhatt
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jeremy E Purvis
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John T Woosley
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Scott T Magness
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, North Carolina; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
2
|
Sriram A, Tangirala S, Atmakuri S, Hoque S, Modani S, Srivastava S, Mahajan S, Maji I, Kumar R, Khatri D, Madan J, Singh PK. Budding Multi-matrix Technology-a Retrospective Approach, Deep Insights, and Future Perspectives. AAPS PharmSciTech 2021; 22:264. [PMID: 34734325 DOI: 10.1208/s12249-021-02133-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
The human race is consistently striving for achieving good health and eliminate disease-causing factors. For the last few decades, scientists have been endeavoring to invent and innovate technologies that can substitute the conventional dosage forms and enable targeted and prolonged drug release at a particular site. The novel multi-matrix technology is a type of matrix formulation where the formulation is embraced to have a matrix system with multiple number of matrices. The MMX technology embraces with a combination of outer hydrophilic layer and amphiphilic/lipophilic core layer, within which drug is encapsulated followed by enteric coating for extended/targeted release at the required site. In comparison to conventional oral drug delivery systems and other drug delivery systems, multi-matrix (MMX) technology formulations afford many advantages. Additionally, it attributes for targeting strategy aimed at the colon and offers modified prolonged drug release. Thus, it has emerged rapidly as a potential alternative option in targeted oral drug delivery. However, the development of this MMX technology formulations is a exigent task and also has its own set of limitations. Due to its promising advantages and colon targeting strategy over the other colon targeted drug delivery systems, premier global companies are exploiting its potential. This article review deep insights into the formulation procedures, drug delivery mechanism, advantages, limitations, safety and efficacy studies of various marketed drug formulations of MMX technology including regulatory perspectives and future perspectives.
Collapse
|
3
|
Hmar EBL, Paul S, Boruah N, Sarkar P, Borah S, Sharma HK. Apprehending Ulcerative Colitis Management With Springing Up Therapeutic Approaches: Can Nanotechnology Play a Nascent Role? CURRENT PATHOBIOLOGY REPORTS 2021. [DOI: 10.1007/s40139-020-00218-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Bertoni S, Machness A, Tiboni M, Bártolo R, Santos HA. Reactive oxygen species responsive nanoplatforms as smart drug delivery systems for gastrointestinal tract targeting. Biopolymers 2019; 111:e23336. [PMID: 31724750 DOI: 10.1002/bip.23336] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
Abstract
The pharmacological therapy for gastrointestinal (GI) diseases, such as inflammatory bowel diseases, continues to present challenges in targeting efficacy. The need for maximal local drug exposure at the inflamed regions of the GI tract has led research to focus on a disease-targeted drug delivery approach. Smart nanomaterials responsive to the reactive oxygen species (ROS) concentrated in the inflamed areas, can be formulated into nanoplatforms to selectively release the active compounds, avoiding unspecific drug delivery to healthy tissues and limiting systemic absorption. Recent developments of ROS-responsive nanoplatforms include combination with other materials to obtain multi-responsive systems and modifications/derivatization to increase the interactions with biological tissues, cell uptake and targeting. This review describes the applications of ROS-responsive nanosystems for on-demand drug delivery to the GI tract.
Collapse
Affiliation(s)
- Serena Bertoni
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Ariella Machness
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California, USA
| | - Mattia Tiboni
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Raquel Bártolo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Minor EA, Kupec JT, Nickerson AJ, Narayanan K, Rajendran VM. Increased DMT1 and FPN1 expression with enhanced iron absorption in ulcerative colitis human colon. Am J Physiol Cell Physiol 2019; 318:C263-C271. [PMID: 31721611 DOI: 10.1152/ajpcell.00128.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Iron deficiency anemia is a common complication of ulcerative colitis (UC) that can profoundly impact quality of life. Most iron absorption occurs in the duodenum via divalent metal transporter 1 (DMT1)-mediated uptake and ferroportin-1 (FPN1)-mediated export across the apical and basolateral membranes, respectively. However, the colon also contains iron transporters and can participate in iron absorption. Studies have shown increased duodenal DMT1 and FPN1 in patients with UC, but there is conflicting evidence about whether expression is altered in UC colon. We hypothesized that expression of colonic DMT1 and FPN1 will also increase to compensate for iron deficiency. Quantitative RT-PCR and Western blot analyses were performed on duodenal and colonic segmental (right colon, transverse colon, left colon, and rectum) biopsies obtained during colonoscopy. DMT1 mRNA and protein abundances in colonic segments were approximately equal to those in the duodenum, whereas colonic FPN1 mRNA and protein abundances of colonic segments were about one-quarter of those of the duodenum. DMT1 specific mRNA and protein abundances were increased twofold, whereas FPN1 mRNA and protein expressions were increased fivefold in UC distal colon. Immunofluorescence studies revealed enhanced expression of apical membrane- and basolateral membrane-localized DMT1 and FPN1 in UC human colon, respectively. Increased DMT1 expression was associated with enhanced 2-(3-carbamimidoylsulfanylmethyl-benzyl)-isothiourea (CISMBI, DMT1 specific inhibitor)-sensitive 59Fe uptake in UC human colon. We conclude from these results that patients with active UC have increased expression of colonic iron transporters and increased iron absorption, which may be targeted in the treatment of UC-related anemia.
Collapse
Affiliation(s)
- Emily A Minor
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Justin T Kupec
- Department of Medicine, Digestive Diseases Section, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Andrew J Nickerson
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Karthikeyan Narayanan
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Vazhaikkurichi M Rajendran
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Medicine, Digestive Diseases Section, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
6
|
Hong H, Song HK, Hwang ES, Lee AR, Han DS, Kim SE, Oh ES. Up-regulation of syndecan-2 in proximal colon correlates with acute inflammation. FASEB J 2019; 33:11381-11395. [PMID: 31311305 DOI: 10.1096/fj.201900561r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We previously reported that syndecan-2 expression is increased on the colonic epithelium during chronic inflammation. Here, we report that syndecan-2 exhibits a different pattern of site-specific colonic expression during acute inflammation. Syndecan-2 expression was up-regulated predominantly in the proximal colon of dextran sulfate sodium-induced colitis mice. The colitis-associated up-regulation of syndecan-2 was barely detected in Rag-1-/- (recombination activating gene 1 knockout) mice under colitis-inducing conditions. Increased syndecan-2 expression correlated with increased levels of infiltrated CD4+ IL-17A+ T cells in the proximal colon. Serum levels of IL-17A were increased during the acute inflammatory response in normal mice but not Rag-1-/- mice. IL-17A directly induced IL-17 receptor (IL-17RA) and syndecan-2 expression in ex vivo-cultured proximal colon tissues and adenoma cell lines from proximal colon. IL-17RA knockdown reduced the IL-17A-mediated syndecan-2 expression in SNU1235 cells. No elevation of syndecan-2 or IL-17RA was observed in colonic tissues from IL-17A-/- mice during colitis induction. Finally, increased expression of syndecan-2 and IL-17RA was observed in the proximal colons of cecal ligation and puncture-induced sepsis mice and infectious pan colitis patients. Together, these data suggest that acute inflammation induces syndecan-2 expression predominantly in the proximal colon via IL-17A-IL-17RA signaling during the early stage of the inflammatory response and that proximal colonic syndecan-2 might be a biomarker for acute inflammation.-Hong, H., Song, H.-K., Hwang, E. S., Lee, A. R., Han, D. S., Kim, S.-E., Oh, E.-S. Up-regulation of syndecan-2 in proximal colon correlates with acute inflammation.
Collapse
Affiliation(s)
- Heejeong Hong
- Department of Life Sciences, Ewha Womans University, Seoul, South Korea.,Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Hyun-Kuk Song
- Department of Life Sciences, Ewha Womans University, Seoul, South Korea.,Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| | - Eun Sook Hwang
- Department of Pharmacy, Ewha Womans University, Seoul, South Korea.,Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - A Reum Lee
- Department of Internal Medicine, Hanyang University College of Medicine, Guri, South Korea
| | - Dong Soo Han
- Department of Internal Medicine, Hanyang University College of Medicine, Guri, South Korea
| | - Seong-Eun Kim
- Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Institute, Seoul, South Korea
| | - Eok-Soo Oh
- Department of Life Sciences, Ewha Womans University, Seoul, South Korea.,Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
7
|
Barnicle A, Seoighe C, Golden A, Greally JM, Egan LJ. Differential DNA methylation patterns of homeobox genes in proximal and distal colon epithelial cells. Physiol Genomics 2016; 48:257-73. [PMID: 26812987 DOI: 10.1152/physiolgenomics.00046.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 01/13/2016] [Indexed: 12/24/2022] Open
Abstract
Region and cell-type specific differences in the molecular make up of colon epithelial cells have been reported. Those differences may underlie the region-specific characteristics of common colon epithelial diseases such as colorectal cancer and inflammatory bowel disease. DNA methylation is a cell-type specific epigenetic mark, essential for transcriptional regulation, silencing of repetitive DNA and genomic imprinting. Little is known about any region-specific variations in methylation patterns in human colon epithelial cells. Using purified epithelial cells and whole biopsies (n= 19) from human subjects, we generated epigenome-wide DNA methylation data (using the HELP-tagging assay), comparing the methylation signatures of the proximal and distal colon. We identified a total of 125 differentially methylated sites (DMS) mapping to transcription start sites of protein-coding genes, most notably several members of the homeobox (HOX) family of genes. Patterns of differential methylation were validated with MassArray EpiTYPER. We also examined DNA methylation in whole biopsies, applying a computational technique to deconvolve variation in methylation within cell types and variation in cell-type composition across biopsies. Including inferred epithelial proportions as a covariate in differential methylation analysis applied to the whole biopsies resulted in greater overlap with the results obtained from purified epithelial cells compared with when the covariate was not included. Results obtained from both approaches highlight region-specific methylation patterns of HOX genes in colonic epithelium. Regional variation in methylation patterns has implications for the study of diseases that exhibit regional expression patterns in the human colon, such as inflammatory bowel disease and colorectal cancer.
Collapse
Affiliation(s)
- Alan Barnicle
- Clinical Pharmacology, School of Medicine, National University of Ireland, Galway, Ireland; School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland; and
| | - Cathal Seoighe
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland; and
| | - Aaron Golden
- Center of Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York
| | - John M Greally
- Center of Epigenomics and Department of Genetics (Division of Computational Genetics), Albert Einstein College of Medicine, Bronx, New York
| | - Laurence J Egan
- Clinical Pharmacology, School of Medicine, National University of Ireland, Galway, Ireland;
| |
Collapse
|
8
|
Chaudhry KK, Shukla PK, Mir H, Manda B, Gangwar R, Yadav N, McMullen M, Nagy LE, Rao R. Glutamine supplementation attenuates ethanol-induced disruption of apical junctional complexes in colonic epithelium and ameliorates gut barrier dysfunction and fatty liver in mice. J Nutr Biochem 2015; 27:16-26. [PMID: 26365579 DOI: 10.1016/j.jnutbio.2015.08.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/23/2015] [Accepted: 08/08/2015] [Indexed: 12/12/2022]
Abstract
Previous in vitro studies showed that glutamine (Gln) prevents acetaldehyde-induced disruption of tight junctions and adherens junctions in Caco-2 cell monolayers and human colonic mucosa. In the present study, we evaluated the effect of Gln supplementation on ethanol-induced gut barrier dysfunction and liver injury in mice in vivo. Ethanol feeding caused a significant increase in inulin permeability in distal colon. Elevated permeability was associated with a redistribution of tight junction and adherens junction proteins and depletion of detergent-insoluble fractions of these proteins, suggesting that ethanol disrupts apical junctional complexes in colonic epithelium and increases paracellular permeability. Ethanol-induced increase in colonic mucosal permeability and disruption of junctional complexes were most severe in mice fed Gln-free diet. Gln supplementation attenuated ethanol-induced mucosal permeability and disruption of tight junctions and adherens junctions in a dose-dependent manner, indicating the potential role of Gln in nutritional intervention to alcoholic tissue injury. Gln supplementation dose-dependently elevated reduced-protein thiols in colon without affecting the level of oxidized-protein thiols. Ethanol feeding depleted reduced protein thiols and elevated oxidized protein thiols. Ethanol-induced protein thiol oxidation was most severe in mice fed with Gln-free diet and absent in mice fed with Gln-supplemented diet, suggesting that antioxidant effect is one of the likely mechanisms involved in Gln-mediated amelioration of ethanol-induced gut barrier dysfunction. Ethanol feeding elevated plasma transaminase and liver triglyceride, which was accompanied by histopathologic lesions in the liver; ethanol-induced liver damage was attenuated by Gln supplementation. These results indicate that Gln supplementation ameliorates alcohol-induced gut and liver injury.
Collapse
Affiliation(s)
- Kamaljit K Chaudhry
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN
| | - Pradeep K Shukla
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN
| | - Hina Mir
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN
| | - Bhargavi Manda
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN
| | - Ruchika Gangwar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN
| | - Nikki Yadav
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN
| | | | | | - RadhaKrishna Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN.
| |
Collapse
|
9
|
Tsuboi K, Nishitani M, Takakura A, Imai Y, Komatsu M, Kawashima H. Autophagy Protects against Colitis by the Maintenance of Normal Gut Microflora and Secretion of Mucus. J Biol Chem 2015; 290:20511-26. [PMID: 26149685 DOI: 10.1074/jbc.m114.632257] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Indexed: 12/27/2022] Open
Abstract
Genome-wide association studies of inflammatory bowel diseases identified susceptible loci containing an autophagy-related gene. However, the role of autophagy in the colon, a major affected area in inflammatory bowel diseases, is not clear. Here, we show that colonic epithelial cell-specific autophagy-related gene 7 (Atg7) conditional knock-out (cKO) mice showed exacerbation of experimental colitis with more abundant bacterial invasion into the colonic epithelium. Quantitative PCR analysis revealed that cKO mice had abnormal microflora with an increase of some genera. Consistently, expression of antimicrobial or antiparasitic peptides such as angiogenin-4, Relmβ, intelectin-1, and intelectin-2 as well as that of their inducer cytokines was significantly reduced in the cKO mice. Furthermore, secretion of colonic mucins that function as a mucosal barrier against bacterial invasion was also significantly diminished in cKO mice. Taken together, our results indicate that autophagy in colonic epithelial cells protects against colitis by the maintenance of normal gut microflora and secretion of mucus.
Collapse
Affiliation(s)
- Koichiro Tsuboi
- From the Department of Biochemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, the Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, and
| | - Mayo Nishitani
- the Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, and
| | - Atsushi Takakura
- the Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, and
| | - Yasuyuki Imai
- the Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, and
| | - Masaaki Komatsu
- the Department of Biochemistry, School of Medicine, Niigata University, Niigata 951-8510, Japan
| | - Hiroto Kawashima
- From the Department of Biochemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, the Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, and
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Anemia and iron deficiency are the most common extraintestinal complications of inflammatory bowel diseases (IBDs) and are often undertreated. We review the evidence on intravenous (i.v.) iron overcoming the limitations of oral iron in IBD. RECENT FINDINGS Recent reports demonstrate that i.v. iron is at least as effective, quicker, and better tolerated than oral iron. Moreover, experimental data confirm that oral and parenteral iron have divergent effects on intestinal mucosa: oral iron severely increasing inflammation. Observational and randomized studies prove that i.v. iron is not only effective but also well tolerated with no negative influence in the activity of IBD. A new formulation, iron carboxymaltose, which permits higher individual doses, has been shown more effective and less costly than standard iron sucrose. Another formulation, iron isomaltoside, shows promising in in-vitro and small clinical studies, but data from large trials are not available yet. SUMMARY Oral iron is not an ideal option for treating anemia and iron deficiency in IBD. i.v. iron should be preferred at least in five scenarios: intolerance to oral iron, severe anemia, failure of oral therapy, need for a quick recovery, and use of erythropoietin. Direct evidence in IBD patients not only confirms the effectiveness of i.v. iron, but also demonstrates that new, more convenient preparations probably will become the standard in the near future.
Collapse
|