1
|
Rodrigues-Amorim D, Iglesias-Martínez-Almeida M, Rivera-Baltanás T, Fernández-Palleiro P, Freiría-Martínez L, Rodríguez-Jamardo C, Comís-Tuche M, Vallejo-Curto MDC, Álvarez-Ariza M, López-García M, de las Heras E, García-Caballero A, Olivares JM, Spuch C. The Role of the Second Extracellular Loop of Norepinephrine Transporter, Neurotrophin-3 and Tropomyosin Receptor Kinase C in T Cells: A Peripheral Biomarker in the Etiology of Schizophrenia. Int J Mol Sci 2021; 22:ijms22168499. [PMID: 34445205 PMCID: PMC8395201 DOI: 10.3390/ijms22168499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/29/2022] Open
Abstract
The neurobiology of schizophrenia is multifactorial, comprising the dysregulation of several biochemical pathways and molecules. This research proposes a peripheral biomarker for schizophrenia that involves the second extracellular loop of norepinephrine transporter (NEText), the tropomyosin receptor kinase C (TrkC), and the neurotrophin-3 (NT-3) in T cells. The study of NEText, NT-3, and TrkC was performed in T cells and plasma extracted from peripheral blood of 54 patients with schizophrenia and 54 healthy controls. Levels of NT-3, TrkC, and NET were significantly lower in plasma and T cells of patients compared to healthy controls. Co-immunoprecipitation (co-IPs) showed protein interactions with Co-IP NEText–NT-3 and Co-IP NEText–TrkC. Computational modelling of protein–peptide docking by CABS-dock provided a medium–high accuracy model for NT-3–NEText (4.6935 Å) and TrkC–NEText (2.1365 Å). In summary, immunocomplexes reached statistical relevance in the T cells of the control group contrary to the results obtained with schizophrenia. The reduced expression of NT-3, TrkC, and NET, and the lack of molecular complexes in T cells of patients with schizophrenia may lead to a peripheral dysregulation of intracellular signaling pathways and an abnormal reuptake of norepinephrine (NE) by NET. This peripheral molecular biomarker underlying schizophrenia reinforces the role of neurotrophins, and noradrenergic and immune systems in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Daniela Rodrigues-Amorim
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
| | - Marta Iglesias-Martínez-Almeida
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
- Translational Neuroscience Group, Universidade de Vigo, 36310 Vigo, Spain
| | - Tania Rivera-Baltanás
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
| | - Patricia Fernández-Palleiro
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
- Translational Neuroscience Group, Universidade de Vigo, 36310 Vigo, Spain
| | - Luis Freiría-Martínez
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
- Translational Neuroscience Group, Universidade de Vigo, 36310 Vigo, Spain
| | - Cynthia Rodríguez-Jamardo
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
- Translational Neuroscience Group, Universidade de Vigo, 36310 Vigo, Spain
| | - María Comís-Tuche
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
| | - María del Carmen Vallejo-Curto
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
| | - María Álvarez-Ariza
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
| | - Marta López-García
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
| | - Elena de las Heras
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
| | - Alejandro García-Caballero
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
| | - Jose Manuel Olivares
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
- Department of Psychiatry, Hospital Álvaro Cunqueiro, 36213 Vigo, Spain
- Correspondence: (J.M.O.); (C.S.)
| | - Carlos Spuch
- Translational Neuroscience Research Group, Galicia Sur Health Research Institute, CIBERSAM, Hospital Álvaro Cunqueiro, Bloque Técnico, Planta 2, Sala de Investigación, Estrada Clara Campoamor, 341, 36212 Vigo, Spain; (D.R.-A.); (M.I.-M.-A.); (T.R.-B.); (P.F.-P.); (L.F.-M.); (C.R.-J.); (M.C.-T.); (M.d.C.V.-C.); (M.Á.-A.); (M.L.-G.); (E.d.l.H.); (A.G.-C.)
- Correspondence: (J.M.O.); (C.S.)
| |
Collapse
|
2
|
Zhao X, Zhang Y, Li H, Liu Q, Zhang Q, Li H. Genetic Association of the Norepinephrine Transporter Gene G1287A Polymorphism with Risk of Schizophrenia: A Case-Control Study and Meta-Analysis. Genet Test Mol Biomarkers 2018; 22:152-158. [PMID: 29431473 DOI: 10.1089/gtmb.2017.0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The G1287A polymorphism (rs5569) in exon 9 of the norepinephrine transporter (NET) gene has been associated with schizophrenia in several populations. However, the results are conflicting. Moreover, few studies have investigated the relationship between the G1287A polymorphism and schizophrenia among the Chinese Han population. METHODS A case-control study was designed to explore whether the G1287A genetic variant is related to schizophrenia in the Chinese Han population. The results from this study were then included in the performance of a meta-analysis to further analyze the association of the G1287A polymorphism with schizophrenia. RESULTS No significant differences in the genotype and allele distributions of G1287A were found between Chinese Han patients with schizophrenia and control participants. Similarly, in gender-specific analyses, no significant differences were found for G1287A genotype and allele distributions in either the male or the female case-control comparisons. Finally, the results of this meta-analysis also showed that the NET gene G1287A polymorphism was not associated with schizophrenia in the total population under allelic, recessive, dominant, or homozygous genetic models. CONCLUSION Our case-control study and meta-analysis suggest that the NET gene G1287A polymorphism may not be involved in the etiology of schizophrenia in the Chinese Han population.
Collapse
Affiliation(s)
- Xiaofeng Zhao
- 1 Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan Province, P.R. China
| | - Yinghua Zhang
- 2 Henan Key Laboratory of Medical Tissue Regeneration, Department of Human Anatomy, Xinxiang Medical University , Xinxiang, Henan Province, P.R. China
| | - Hong Li
- 1 Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan Province, P.R. China
| | - Qian Liu
- 1 Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan Province, P.R. China
| | - Qingqing Zhang
- 3 Department of Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University , Xinxiang, Henan Province, P.R. China
| | - Hengfen Li
- 4 Clinical Pharmacology Base, the First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan Province, P.R. China
| |
Collapse
|
3
|
Bi Y, Huang X, Niu W, Chen S, Wu X, Cao Y, Zhang R, Yang F, Wang L, Li W, Xu Y, He L, Yu T, He G, Li X. No association between SLC6A2, SLC6A3, DRD2 polymorphisms and schizophrenia in the Han Chinese population. Psychiatry Res 2017; 253:398-400. [PMID: 28454051 DOI: 10.1016/j.psychres.2017.02.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/29/2016] [Indexed: 11/18/2022]
Abstract
This study was intended to ascertain whether SNPs in dopaminergic and serotoninergic pathway genes SLC6A2, SLC6A3 and DRD2 are associated with schizophrenia in Han Chinese people. We conducted a case-control study by genotyping 7 SNPs of the three genes in 1034 schizophrenia patients and 1034 controls. No significant difference in the allelic or genotypic frequency was detected between cases and controls despite one positive haplotype (rs1362621-rs2242446-rs5564). Stratified analysis of gender and gene-gene interaction analysis showed no positive results. In summary, our study denies the major role of these SNPs within the three genes for schizophrenia in Han Chinese.
Collapse
Affiliation(s)
- Yan Bi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Institute of Mental Health, 600 South Wan Ping Road, Shanghai 200030, China
| | - Xiaoye Huang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Institute of Mental Health, 600 South Wan Ping Road, Shanghai 200030, China
| | - Weibo Niu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Institute of Mental Health, 600 South Wan Ping Road, Shanghai 200030, China
| | - Shiqing Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Institute of Mental Health, 600 South Wan Ping Road, Shanghai 200030, China
| | - Xi Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Institute of Mental Health, 600 South Wan Ping Road, Shanghai 200030, China
| | - Yanfei Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Institute of Mental Health, 600 South Wan Ping Road, Shanghai 200030, China
| | - Rui Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Institute of Mental Health, 600 South Wan Ping Road, Shanghai 200030, China
| | - Fengping Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Institute of Mental Health, 600 South Wan Ping Road, Shanghai 200030, China
| | - Lu Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Institute of Mental Health, 600 South Wan Ping Road, Shanghai 200030, China
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Institute of Mental Health, 600 South Wan Ping Road, Shanghai 200030, China
| | - Yifeng Xu
- Shanghai Institute of Mental Health, 600 South Wan Ping Road, Shanghai 200030, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Institutes of Biomedical Sciences Fudan University, 138 Yixueyuan Road, Shanghai 200032, China; Institute for Nutritional Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Tao Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Institute of Mental Health, 600 South Wan Ping Road, Shanghai 200030, China.
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Institute of Mental Health, 600 South Wan Ping Road, Shanghai 200030, China.
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; Shanghai Institute of Mental Health, 600 South Wan Ping Road, Shanghai 200030, China.
| |
Collapse
|
4
|
Noradrenergic Modulation of Cognition in Health and Disease. Neural Plast 2017; 2017:6031478. [PMID: 28596922 PMCID: PMC5450174 DOI: 10.1155/2017/6031478] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/18/2017] [Indexed: 12/15/2022] Open
Abstract
Norepinephrine released by the locus coeruleus modulates cellular processes and synaptic transmission in the central nervous system through its actions at a number of pre- and postsynaptic receptors. This transmitter system facilitates sensory signal detection and promotes waking and arousal, processes which are necessary for navigating a complex and dynamic sensory environment. In addition to its effects on sensory processing and waking behavior, norepinephrine is now recognized as a contributor to various aspects of cognition, including attention, behavioral flexibility, working memory, and long-term mnemonic processes. Two areas of dense noradrenergic innervation, the prefrontal cortex and the hippocampus, are particularly important with regard to these functions. Due to its role in mediating normal cognitive function, it is reasonable to expect that noradrenergic transmission becomes dysfunctional in a number of neuropsychiatric and neurodegenerative diseases characterized by cognitive deficits. In this review, we summarize the unique role that norepinephrine plays in prefrontal cortical and hippocampal function and how its interaction with its various receptors contribute to cognitive behaviors. We further assess the changes that occur in the noradrenergic system in Alzheimer's disease, Parkinson's disease, attention-deficit/hyperactivity disorder, and schizophrenia and how these changes contribute to cognitive decline in these pathologies.
Collapse
|