1
|
Chua RW, Song KP, Ting ASY. Characterization and identification of antimicrobial compounds from endophytic Fusarium incarnatum isolated from Cymbidium orchids. Int Microbiol 2024; 27:977-992. [PMID: 37975992 DOI: 10.1007/s10123-023-00442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/24/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
This study characterized and identified the antimicrobial compounds from an endophytic fungus (Fusarium incarnatum (C4)) isolated from the orchid, Cymbidium sp. Chromatographic techniques were employed to separate the bioactive compounds from the crude extracts of F. incarnatum (C4). Following bio-guided fractionation, two fractionated extracts (fractions 1 and 2) of F. incarnatum (C4) exhibited antibacterial and antifungal activities against Bacillus cereus (MIC: 0.156 mg/mL) and Ganoderma boninense (MIC: 0.3125 mg/mL), respectively. The active fractions were discovered to comprise of a variety of bioactive compounds with pharmacological importance (alkaloids, flavonoids, phenolic compounds, terpenoids, peptides and fatty acids). Liquid chromatography mass-spectrometry (LCMS) analysis detected the presence of antibacterial (kanzonol N, rifaximin, linoleic acid (d4), cannabisativine, docosanedioic acid, and stearamide) and antifungal components (3-methyl-quinolin-2-ol, prothiocarb, kanzonol N, peganine, 5Z-tridecene, and tetronasin) in fractions 1 and 2, respectively, which may have contributed to the antimicrobial effects. Findings from this study highlighted the important potential of fungal endophytes from medicinal hosts as producers of antimicrobials and antibiotics.
Collapse
Affiliation(s)
- Ru Wei Chua
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Keang Peng Song
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Adeline Su Yien Ting
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
2
|
Hossain TJ. Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. Eur J Microbiol Immunol (Bp) 2024; 14:97-115. [PMID: 38648108 PMCID: PMC11097785 DOI: 10.1556/1886.2024.00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
Infectious diseases pose a formidable global challenge, compounded by the emergence of antimicrobial resistance. Consequently, researchers are actively exploring novel antimicrobial compounds as potential solutions. This endeavor underscores the pivotal role of methods employed for screening and evaluating antimicrobial activity-a critical step in discovery and characterization of antimicrobial agents. While traditional techniques such as well-diffusion, disk-diffusion, and broth-dilution are commonly utilized in antimicrobial assays, they may encounter limitations concerning reproducibility and speed. Additionally, a diverse array of antimicrobial assays including cross-streaking, poisoned-food, co-culture, time-kill kinetics, resazurin assay, bioautography, etc., are routinely employed in antimicrobial evaluations. Advanced techniques such as flow-cytometry, impedance analysis, and bioluminescent technique may offer rapid and sensitive results, providing deeper insights into the impact of antimicrobials on cellular integrity. However, their higher cost and limited accessibility in certain laboratory settings may present challenges. This article provides a comprehensive overview of assays designed to characterize antimicrobial activity, elucidating their underlying principles, protocols, advantages, and limitations. The primary objective is to enhance understanding of the methodologies designed for evaluating antimicrobial agents in our relentless battle against infectious diseases. By selecting the appropriate antimicrobial testing method, researchers can discern suitable conditions and streamline the identification of effective antimicrobial agents.
Collapse
Affiliation(s)
- Tanim Jabid Hossain
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram, Bangladesh
- Biochemistry and Pathogenesis of Microbes – BPM Unit, Laboratory for Health, Omics and Pathway Exploration (HOPE Research), Chattogram, Bangladesh
| |
Collapse
|
3
|
Emiru AY, Regassa F, Endebu Duguma B, Kassaye A, Desyebelew B. Invitro antibacterial activity of bark, leaf and root extracts of combretum molle plant against streptococcus equi isolated from clinical cases of strangles in donkeys and horses. BMC Vet Res 2024; 20:102. [PMID: 38481214 PMCID: PMC10935832 DOI: 10.1186/s12917-024-03954-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/25/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Effective therapy for many infections is becoming difficult due to the evolutionary development of drug resistance, and hence, the development of alternative treatment options mainly from herbs is crucial. The objective of this study was to investigate the antibacterial effects of ethanol extracts of stem bark, leaves and roots of Combretum molle against Streptococcus equi isolated from clinical cases of strangles using in vitro tests. METHODS Plant extraction was performed using a maceration technique with 80% ethanol. The mean zone of inhibition was determined using the agar well diffusion method. Six serial dilutions with different concentrations (10%, 5%, 2.5%, 1.25%, 0.625% and 0.3125%) of each plant extract were prepared using dimethyl sulfoxide (DMSO). A modified agar microdilution method was used to determine the minimum inhibitory concentration (MICs) of the extracts. RESULTS The results revealed that all plant extracts showed significant antibacterial activity. The root extract showed the best antibacterial effect compared to the others at all concentrations, with MZI values of 27.5, 23.225, 20.5, 17.9, 15.65 and 12.25 for the respective concentrations mentioned above and an MIC of 250 µg/ml. It was followed by the stem bark extract, which had MZI values of 24.67, 22.35, 18.225, 16.175, 11.125 and 8.2 millimeters and an MIC of 375 µg/ml. The leaf extract also had significant activity, with MZI values of 20.175, 18.25, 15.7, 13.125, 9.4 and 6.75 in millimeters and an MIC of 500 µg/ml. There was a direct relationship between the concentrations of the plant extracts and the level of inhibition. CONCLUSION The test plant extracts were compared with the conventional antibiotic penicillin G, and the results indicated that the parts of the test plant have significant antibacterial activity, which may support traditional claims and could be candidates for alternative drug discoveries.
Collapse
Affiliation(s)
| | - Fekadu Regassa
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | | | | | | |
Collapse
|
4
|
Godlewska K, Pacyga P, Najda A, Michalak I. Investigation of Chemical Constituents and Antioxidant Activity of Biologically Active Plant-Derived Natural Products. Molecules 2023; 28:5572. [PMID: 37513443 PMCID: PMC10384900 DOI: 10.3390/molecules28145572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this publication is to present rapid screening methods (visual/colorimetric) that will enable quick identification of the presence of biologically active compounds in aqueous solutions. For this reason, 26 plant extracts obtained by ultrasound-assisted extraction were analysed for the content of these compounds. Higher plants, used as a raw material for extraction, are common in Europe and are easily available. The article proposes a comparison of various protocols for the identification of various compounds, e.g., phenolic compounds (phenols, tannins, anthocyanins, coumarins, flavones, flavonoids), vitamin C, quinones, quinines, resins, glycosides, sugars. Initial characterisation of the composition of plant extracts using fast and inexpensive methods allows you to avoid the use of time-consuming analyses with the use of advanced research equipment. In addition, the antioxidant activity of plant extracts using spectrophotometric methods (DPPH, ABTS, FRAP assay) and quantitative analysis of plant hormones such as abscisic acid, benzoic acid, gibberellic acid, indole acetic acid, jasmonic acid, salicylic acid, zeatin, zeatin riboside, and isipentenyl adenine was performed. The obtained results prove that the applied visual methods show different sensitivity in detecting the sought chemical compounds. Therefore, it is necessary to confirm the presence or absence of bioactive substances and their concentration using modern analytical methods.
Collapse
Affiliation(s)
- Katarzyna Godlewska
- Department of Pharmacology and Toxicology, The Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Paweł Pacyga
- Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, The University of Life Science in Lublin, 20-950 Lublin, Poland
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, 50-372 Wrocław, Poland
| |
Collapse
|
5
|
Phytochemical Screening, Antioxidant and Antibacterial Properties of Extracts of Viscum continuum E. Mey. Ex Sprague, a South African Mistletoe. PLANTS 2022; 11:plants11162094. [PMID: 36015398 PMCID: PMC9412615 DOI: 10.3390/plants11162094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022]
Abstract
Viscum continuum E. Mey. Ex Sprague is a woody evergreen semi-parasitic shrub that grows on the branches of other trees. It is used by African traditional healers for post-stroke management. This study reports on the qualitative phytochemical screening and the antioxidant and antimicrobial activities of Viscum continuum’s acetone, methanol, hexane and dichloromethane extracts. Standard protocols for the phytochemical screening of extracts were employed. TLC bio-autography was used for qualitative antioxidants analysis. Assays: 2,2-diphenyl-1-picrylhydrazyl, H2O2 free-radical scavenging and ferric chloride reducing power were carried out for quantitative antioxidant analysis. The antimicrobial potential of extracts was screened using disc diffusion, bio-autography and broth micro-dilution. The results indicate the presence of alkaloids, phenolics and tannins in all extracts. Acetone and methanol revealed significant amount of saponins, phenolics, tannins and terpenoids. The extracts exhibited significant antioxidant potential on TLC with positive compound bands at an Rf range of 0.05–0.89. DPPH, H2O2 and the reduction of Fe3+ to Fe2+ assays indicated that methanol extract has a strong antioxidant potential, followed by acetone, DCM and lastly hexane. The extracts of Viscum continuum show the potential to be antibacterial agents. It can be concluded that Viscum continuum extracts contain phytochemicals which are capable of mitigating against chronic health conditions such as cancer, stroke and stress-related and infectious diseases.
Collapse
|
6
|
Barba-Ostria C, Carrera-Pacheco SE, Gonzalez-Pastor R, Heredia-Moya J, Mayorga-Ramos A, Rodríguez-Pólit C, Zúñiga-Miranda J, Arias-Almeida B, Guamán LP. Evaluation of Biological Activity of Natural Compounds: Current Trends and Methods. Molecules 2022; 27:4490. [PMID: 35889361 PMCID: PMC9324072 DOI: 10.3390/molecules27144490] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 02/08/2023] Open
Abstract
Natural compounds have diverse structures and are present in different forms of life. Metabolites such as tannins, anthocyanins, and alkaloids, among others, serve as a defense mechanism in live organisms and are undoubtedly compounds of interest for the food, cosmetic, and pharmaceutical industries. Plants, bacteria, and insects represent sources of biomolecules with diverse activities, which are in many cases poorly studied. To use these molecules for different applications, it is essential to know their structure, concentrations, and biological activity potential. In vitro techniques that evaluate the biological activity of the molecules of interest have been developed since the 1950s. Currently, different methodologies have emerged to overcome some of the limitations of these traditional techniques, mainly via reductions in time and costs. These emerging technologies continue to appear due to the urgent need to expand the analysis capacity of a growing number of reported biomolecules. This review presents an updated summary of the conventional and relevant methods to evaluate the natural compounds' biological activity in vitro.
Collapse
Affiliation(s)
- Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador;
| | - Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Rebeca Gonzalez-Pastor
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Arianna Mayorga-Ramos
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Cristina Rodríguez-Pólit
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Johana Zúñiga-Miranda
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Benjamin Arias-Almeida
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| | - Linda P. Guamán
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (R.G.-P.); (J.H.-M.); (A.M.-R.); (C.R.-P.); (J.Z.-M.); (B.A.-A.)
| |
Collapse
|
7
|
Lim Ah Tock M, Combrinck S, Kamatou G, Chen W, Van Vuuren S, Viljoen A. Antibacterial Screening, Biochemometric and Bioautographic Evaluation of the Non-Volatile Bioactive Components of Three Indigenous South African Salvia Species. Antibiotics (Basel) 2022; 11:antibiotics11070901. [PMID: 35884155 PMCID: PMC9312202 DOI: 10.3390/antibiotics11070901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 01/25/2023] Open
Abstract
Salvia africana-lutea L., S. lanceolata L., and S. chamelaeagnea L. are used in South Africa as traditional medicines to treat infections. This paper describes an in-depth investigation into their antibacterial activities to identify bioactive compounds. Methanol extracts from 81 samples were screened against seven bacterial pathogens, using the microdilution assay. Biochemometric models were constructed using data derived from minimum inhibitory concentration (MIC) and ultra-performance liquid chromatography-mass spectrometry data. Active molecules in selected extracts were tentatively identified using high-performance thin layer chromatography (HPTLC), combined with bioautography, and finally, by analysis of active zone eluates by mass spectrometry (MS) via a dedicated interface. Salvia chamelaeagnea displayed notable activity towards all seven pathogens, and the activity, reflected by MICs, was superior to that of the other two species, as confirmed through ANOVA. Biochemometric models highlighted potentially bioactive compounds, including rosmanol methyl ether, epiisorosmanol methyl ether and carnosic acid. Bioautography assays revealed inhibition zones against A. baumannii, an increasingly multidrug-resistant pathogen. Mass spectral data of the eluted zones correlated to those revealed through biochemometric analysis. The study demonstrates the application of a biochemometric approach, bioautography, and direct MS analysis as useful tools for the rapid identification of bioactive constituents in plant extracts.
Collapse
Affiliation(s)
- Margaux Lim Ah Tock
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa; (M.L.A.T.); (S.C.); (G.K.); (W.C.)
| | - Sandra Combrinck
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa; (M.L.A.T.); (S.C.); (G.K.); (W.C.)
| | - Guy Kamatou
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa; (M.L.A.T.); (S.C.); (G.K.); (W.C.)
| | - Weiyang Chen
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa; (M.L.A.T.); (S.C.); (G.K.); (W.C.)
| | - Sandy Van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg 2193, South Africa;
| | - Alvaro Viljoen
- Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa; (M.L.A.T.); (S.C.); (G.K.); (W.C.)
- SAMRC Herbal Drugs Research Unit, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa
- Correspondence:
| |
Collapse
|
8
|
Mery DE, Compadre AJ, Ordóñez PE, Selvik EJ, Morocho V, Contreras J, Malagón O, Jones DE, Breen PJ, Balick MJ, Gaudio FG, Guzman ML, Compadre CM. Analysis of Plant-Plant Interactions Reveals the Presence of Potent Antileukemic Compounds. Molecules 2022; 27:2928. [PMID: 35566279 PMCID: PMC9105371 DOI: 10.3390/molecules27092928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
A method to identify anticancer compounds in plants was proposed based on the hypothesis that these compounds are primarily present in plants to provide them with an ecological advantage over neighboring plants and other competitors. According to this view, identifying plants that contain compounds that inhibit or interfere with the development of other plant species may facilitate the discovery of novel anticancer agents. The method was developed and tested using Magnolia grandiflora, Gynoxys verrucosa, Picradeniopsis oppositifolia, and Hedyosmum racemosum, which are plant species known to possess compounds with cytotoxic activities. Plant extracts were screened for growth inhibitory activity, and then a thin-layer chromatography bioautography assay was conducted. This located the major antileukemic compounds 1, 2, 4, and 5 in the extracts. Once the active compounds were located, they were extracted and purified, and their structures were determined. The growth inhibitory activity of the purified compounds showed a significant correlation with their antileukemic activity. The proposed approach is rapid, inexpensive, and can easily be implemented in areas of the world with high biodiversity but with less access to advanced facilities and biological assays.
Collapse
Affiliation(s)
- David E. Mery
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (D.E.M.); (A.J.C.); (E.J.S.); (D.E.J.); (P.J.B.)
- SeqRX, LLC., Little Rock, AR 72205, USA
| | - Amanda J. Compadre
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (D.E.M.); (A.J.C.); (E.J.S.); (D.E.J.); (P.J.B.)
| | - Paola E. Ordóñez
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador;
| | - Edward J. Selvik
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (D.E.M.); (A.J.C.); (E.J.S.); (D.E.J.); (P.J.B.)
| | - Vladimir Morocho
- Departamento de Química, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 110107, Ecuador; (V.M.); (O.M.)
| | - Jorge Contreras
- Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medical College, New York, NY 10021, USA;
| | - Omar Malagón
- Departamento de Química, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 110107, Ecuador; (V.M.); (O.M.)
| | - Darin E. Jones
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (D.E.M.); (A.J.C.); (E.J.S.); (D.E.J.); (P.J.B.)
| | - Philip J. Breen
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (D.E.M.); (A.J.C.); (E.J.S.); (D.E.J.); (P.J.B.)
| | - Michael J. Balick
- Institute for Economic Botany, New York Botanical Garden, New York, NY 10458, USA;
| | - Flavio G. Gaudio
- Department of Emergency Medicine, New York Presbyterian-Weill Cornell Medicine, New York, NY 10065, USA;
| | - Monica L. Guzman
- Department of Medicine, Division of Hematology/Oncology, Weill Cornell Medical College, New York, NY 10021, USA;
| | - Cesar M. Compadre
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (D.E.M.); (A.J.C.); (E.J.S.); (D.E.J.); (P.J.B.)
| |
Collapse
|
9
|
Santosh S. Bhujbal, Chawale BG, Kale MA. Application based Studies of HPTLC-bioautography in Evaluation of Botanicals: a Review. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822040116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Ibrahim SRM, Fadil SA, Fadil HA, Eshmawi BA, Mohamed SGA, Mohamed GA. Fungal Naphthalenones; Promising Metabolites for Drug Discovery: Structures, Biosynthesis, Sources, and Pharmacological Potential. Toxins (Basel) 2022; 14:154. [PMID: 35202181 PMCID: PMC8879409 DOI: 10.3390/toxins14020154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/10/2022] Open
Abstract
Fungi are well-known for their abundant supply of metabolites with unrivaled structure and promising bioactivities. Naphthalenones are among these fungal metabolites, that are biosynthesized through the 1,8-dihydroxy-naphthalene polyketide pathway. They revealed a wide spectrum of bioactivities, including phytotoxic, neuro-protective, cytotoxic, antiviral, nematocidal, antimycobacterial, antimalarial, antimicrobial, and anti-inflammatory. The current review emphasizes the reported naphthalenone derivatives produced by various fungal species, including their sources, structures, biosynthesis, and bioactivities in the period from 1972 to 2021. Overall, more than 167 references with 159 metabolites are listed.
Collapse
Affiliation(s)
- Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Sana A. Fadil
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.F.); (G.A.M.)
| | - Haifa A. Fadil
- Department of Clinical and Hospital Pharmacy, Faculty of Pharmacy, Taibah University, Almadinah Almunawarah 30078, Saudi Arabia;
| | - Bayan A. Eshmawi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Shaimaa G. A. Mohamed
- Faculty of Dentistry, British University, El Sherouk City, Suez Desert Road, Cairo 11837, Egypt;
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.A.F.); (G.A.M.)
| |
Collapse
|
11
|
Development of next-generation formulation against Fusarium oxysporum and unraveling bioactive antifungal metabolites of biocontrol agents. Sci Rep 2021; 11:22895. [PMID: 34819575 PMCID: PMC8613265 DOI: 10.1038/s41598-021-02284-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Biocontrol agents serve as a sustainable means of controlling wilt caused by the widespread plant pathogen, Fusarium oxysporum f. sp. lycopersici. The present study aimed to develop water dispersible granules (WDG) using response surface methodology (RSM) for Bacillus subtilis MTCC 2274 and Trichoderma harzianum MTCC 3928, and to compare their antifungal efficacy with other formulations. Further, characterization of the bioactive metabolites responsible for biocontrol was performed. A new microbial formulation, WDG, was developed in the present study with talcum powder (substrate), alginic acid (dispersing agent) and acacia gum (wetting agent) (suspensibility 82.23%; wetting time 2.5 min; dispersion time 10.08 min) that fulfilled the guidelines of Collaborative International Pesticides Analytical Council (CIPAC). In planta study demonstrated that WDG of B. subtilis showed maximum reduction in disease incidence (48%) followed by talc formulation of B. subtilis (44%) and WDG of T. harzianum (42%) with profound effect on plant growth promotion. B. subtilis and T. harzianum demonstrated protease (929 and 846 U ml−1 min−1), chitinase (33.69 and 154 U ml−1 min−1), and β-1,3-glucanase (12.69 and 21.47 U ml−1 min−1) activities. Culture filtrates of B. subtilis and T. harzianum exhibited significant inhibition against mycelial growth of pathogen. The compounds present in the culture filtrates were identified with GC–MS as fatty acids, alkanes, phenols, benzene, pyran derivatives etc. The major non-volatile compounds in bioactive antifungal fraction were identified as derivatives of morpholine and piperdine for T. harzianum and B. subtilis, respectively. The findings propose a multivariate biocontrol mechanism against phytopathogen by production of hydrolytic enzymes, volatile and non-volatile compounds, together with development of an efficient next-generation formulation.
Collapse
|
12
|
Wang M, Zhang Y, Wang R, Wang Z, Yang B, Kuang H. An Evolving Technology That Integrates Classical Methods with Continuous Technological Developments: Thin-Layer Chromatography Bioautography. Molecules 2021; 26:4647. [PMID: 34361800 PMCID: PMC8347725 DOI: 10.3390/molecules26154647] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
Thin-layer chromatography (TLC) bioautography is an evolving technology that integrates the separation and analysis technology of TLC with biological activity detection technology, which has shown a steep rise in popularity over the past few decades. It connects TLC with convenient, economic and intuitive features and bioautography with high levels of sensitivity and specificity. In this study, we discuss the research progress of TLC bioautography and then establish a definite timeline to introduce it. This review summarizes known TLC bioautography types and practical applications for determining antibacterial, antifungal, antitumor and antioxidant compounds and for inhibiting glucosidase, pancreatic lipase, tyrosinase and cholinesterase activity constitutes. Nowadays, especially during the COVID-19 pandemic, it is important to identify original, natural products with anti-COVID potential compounds from Chinese traditional medicine and natural medicinal plants. We also give an account of detection techniques, including in situ and ex situ techniques; even in situ ion sources represent a major reform. Considering the current technical innovations, we propose that the technology will make more progress in TLC plates with higher separation and detection technology with a more portable and extensive scope of application. We believe this technology will be diffusely applied in medicine, biology, agriculture, animal husbandry, garden forestry, environmental management and other fields in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150000, China; (M.W.); (Y.Z.); (R.W.); (Z.W.); (B.Y.)
| |
Collapse
|
13
|
Validating Anti-Infective Activity of Pleurotus Opuntiae via Standardization of Its Bioactive Mycoconstituents through Multimodal Biochemical Approach. COATINGS 2021. [DOI: 10.3390/coatings11040484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mushrooms produce a variety of bioactive compounds that are known to have anti-pathogenic properties with safer and effective therapeutic effects in human disease prognosis. The antibacterial activity of ethanol and methanol extracts of Pleurotus opuntiae were checked against pathogenic microorganisms viz. Pseudomonas aeruginosa ATCC 27853, Proteus mirabilis NCIM 2300, Proteus vulgaris NCIM 5266, Serratia marcescens NCIM 2078, Shigella flexeneri NCIM 5265, Moraxella sp. NCIM 2795, Staphylococcus aureus ATCC 25923 by agar well diffusion method at different concentrations of the extracts. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the extracts was determined by INT (Iodonitrotetrazolium chloride) colorimetric assay. Extracts were standardized by thin layer chromatography (TLC) in different solvent systems. The Retention factors (Rf) of different compounds were calculated by high performance TLC (HPTLC) fingerprinting at UV 254, 366, and 540 nm before and after derivatization. The ethanol and methanol extracts of P. opuntiae showed bactericidal activity against all the test pathogens at MIC values of 15.6 to 52.08 mg/mL and 20.81 to 52.08 mg/mL respectively. Whereas the MBC values for ethanol and methanol extract of P. opuntiae against all pathogens were recorded as 26.03 to 62.5 mg/mL and 125 mg/mL respectively. Preliminary mycochemical screening of both the extracts revealed high contents of bioactive compounds. Amongst all the solvent systems used in TLC, the best result was given by chloroform + hexane (8:2) which eluted out 5 different compounds (spots). HPTLC results revealed spots with different Rf values for all the 24 compounds present. Thus, it can be inferred from the present investigation that the mycoconstituents could be an alternative medication regimen and could play a role in new drug discoveries against different infections. Further, the antimicrobial components of these mushrooms can be transformed to bioengineered antimicrobial coatings for surfaces, drug and other hybrid systems for public health implications in combating persistent infections.
Collapse
|
14
|
Purkait S, Bhattacharya A, Bag A, Chattopadhyay RR. TLC bioautography-guided isolation of essential oil components of cinnamon and clove and assessment of their antimicrobial and antioxidant potential in combination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1131-1140. [PMID: 32833171 DOI: 10.1007/s11356-020-10559-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to evaluate possible synergistic interactions on antimicrobial and antioxidant efficacy of clove and cinnamon oil components in combination and characterization of compounds responsible for synergistic interactions using TLC bioautography followed by checkerboard titration, isobologram analysis, and spectrometric characterization. Among the combinations tested, cinnamaldehyde from cinnamon oil and eugenol from clove oil in combination showed a synergistic antimicrobial interaction against foodborne microbes Listeria monocytogenes (fractional inhibitory concentration index (FICI): 0.31), Salmonella typhimurium (FICI: 0.41), and Aspergillus niger (FICI: 0.48), and synergistic antioxidant efficacy (combination index: 0.78) in in vitro model. Cinnamaldehyde/eugenol blend did not show any cytotoxic effect (IC50 > 1000 μg/ml) in human normal keratinocyte cell line. The results provide evidence that the cinnamaldehyde/eugenol blend may help in designing a more potent novel natural antimicrobial and antioxidant agent in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Shilpa Purkait
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700 108, India.
| | - Abhishek Bhattacharya
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700 108, India
| | - Anwesa Bag
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700 108, India
| | - Rabi Ranjan Chattopadhyay
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, 700 108, India
| |
Collapse
|
15
|
Munir MT, Pailhories H, Eveillard M, Irle M, Aviat F, Dubreil L, Federighi M, Belloncle C. Testing the Antimicrobial Characteristics of Wood Materials: A Review of Methods. Antibiotics (Basel) 2020; 9:E225. [PMID: 32370037 PMCID: PMC7277147 DOI: 10.3390/antibiotics9050225] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 01/08/2023] Open
Abstract
Some wood species have antimicrobial properties, making them a better choice over inert surfaces in certain circumstances. However, the organic and porous nature of wood raises questions regarding the use of this material in hygienically important places. Therefore, it is reasonable to investigate the microbial survival and the antimicrobial potential of wood via a variety of methods. Based on the available literature, this review classifies previously used methods into two broad categories: one category tests wood material by direct bacterial contact, and the other tests the action of molecules previously extracted from wood on bacteria and fungi. This article discusses the suitability of these methods to wood materials and exposes knowledge gaps that can be used to guide future research. This information is intended to help the researchers and field experts to select suitable methods for testing the hygienic safety and antimicrobial properties of wood materials.
Collapse
Affiliation(s)
- Muhammad Tanveer Munir
- Laboratoire Innovation Matériau Bois Habitat Apprentissage (LIMBHA), Ecole Supérieure du Bois, 7 rue Christian Pauc, 44306 Nantes, France; (M.T.M.); (M.I.)
| | - Hélène Pailhories
- Laboratoire HIFIH, UPRES EA3859, SFR 4208, Université d’Angers, 49933 Angers, France;
- Laboratoire de bactériologie, CHU Angers, 49933 Angers, France;
| | - Matthieu Eveillard
- Laboratoire de bactériologie, CHU Angers, 49933 Angers, France;
- CRCINA, Inserm, Université de Nantes and Université d’Angers, 44200 Nantes, France
| | - Mark Irle
- Laboratoire Innovation Matériau Bois Habitat Apprentissage (LIMBHA), Ecole Supérieure du Bois, 7 rue Christian Pauc, 44306 Nantes, France; (M.T.M.); (M.I.)
| | - Florence Aviat
- Your ResearcH-Bio-Scientific, 307 la Gauterie, 44430 Le Landreau, France;
| | - Laurence Dubreil
- PAnTher, Oniris, INRA, Université Bretagne Loire, F-44307 Nantes, France;
| | - Michel Federighi
- UMR INRA 1014 SECALIM, Oniris, route de Gachet, CS 40706, 44307 Nantes cedex 03, France;
| | - Christophe Belloncle
- Laboratoire Innovation Matériau Bois Habitat Apprentissage (LIMBHA), Ecole Supérieure du Bois, 7 rue Christian Pauc, 44306 Nantes, France; (M.T.M.); (M.I.)
| |
Collapse
|
16
|
Famuyide IM, Aro AO, Fasina FO, Eloff JN, McGaw LJ. Antibacterial activity and mode of action of acetone crude leaf extracts of under-investigated Syzygium and Eugenia (Myrtaceae) species on multidrug resistant porcine diarrhoeagenic Escherichia coli. BMC Vet Res 2019; 15:162. [PMID: 31118023 PMCID: PMC6532232 DOI: 10.1186/s12917-019-1914-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/13/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diarrhoea, a global economically important disease burden affecting swine and, especially piglets, is commonly caused by infection with entero-toxigenic E. coli (ETEC). Adherence of ETEC to porcine intestinal epithelial cells following infection, is necessary for its pathogenesis. While antimicrobials are commonly given as therapy or as feed additives for prophylaxis against microbial infections, the concern over increased levels of antimicrobial resistance necessitate the search for safe and effective alternatives in livestock feed. Attention is shifting to natural products including plants as suitable alternatives to antimicrobials. The activity of acetone crude leaf extracts of nine under-explored South African endemic plants from the Myrtaceae family with good antimicrobial activity were tested against pathogenic E. coli of porcine origin using a microplate serial dilution method. Bioautography, also with p-iodonitrotetrazolium violet as growth indicator was used to view the number of bioactive compounds in each extract. In vitro toxicity of extracts was determined against Caco-2 cells using the 3-(4,5-dimethythiazolyl-2)-2,5-diphenyltetrazolium bromide reduction assay. The antimicrobial susceptibility of E. coli isolates was tested on a panel of antimicrobials using the Kirby-Bauer agar diffusion method while the anti-adherence mechanism was evaluated using a Caco-2 cell enterocyte anti-adhesion model. RESULTS The MIC of the extracts ranged from 0.07-0.14 mg/mL with S. legatii having the best mean MIC (0.05 mg/mL). Bioautography revealed at least two active bands in each plant extract. The 50% lethal concentration (LC50) values ranged between 0.03-0.66 mg/mL. Eugenia zeyheri least cytotoxic (LC50 = 0.66 mg/ml) while E. natalitia had the highest cytotoxicity (LC50 = 0.03 mg/mL). All the bacteria were completely resistant to doxycycline and colistin sulphate and many of the plant extracts significantly reduced adhesion of E. coli to Caco-2 cells. CONCLUSIONS The extracts of the plants had good antibacterial activity as well as a protective role on intestinal epithelial cells against enterotoxigenic E. coli bacterial adhesion. This supports the potential use of these species in limiting infection causes by E. coli. Some of these plants or extracts may be useful as phytogenic feed additives but it has to be investigated by animal feed trials.
Collapse
Affiliation(s)
- Ibukun M. Famuyide
- 0000 0001 2107 2298grid.49697.35Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110 South Africa
| | - Abimbola O. Aro
- 0000 0001 2107 2298grid.49697.35Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110 South Africa
| | - Folorunso O. Fasina
- 0000 0001 2107 2298grid.49697.35Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110 South Africa
- Emergency Center for Transboundary Animal Diseases-Food and Agriculture Organization of the United Nations, Dar es Salaam, Tanzania
| | - Jacobus N. Eloff
- 0000 0001 2107 2298grid.49697.35Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110 South Africa
| | - Lyndy J. McGaw
- 0000 0001 2107 2298grid.49697.35Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110 South Africa
| |
Collapse
|
17
|
Isnaeni I, Astuti A, Yuwono M. Validation of Thin-Layer Chromatography-Bioautographic Method for Determination of Streptomycin. ACTA ACUST UNITED AC 2018. [DOI: 10.20473/jfiki.v4i12017.34-38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background: A simple bio-assay for determination of streptomycin hyphenated with planar chromatography techniques was developed. Objective: This study aims to validate the method for identification and determination of streptomycin in injection preparations with TLC-bioautography. Methods: Thin Layer Chromatography (TLC) was performed on the silica Gel GF-254 using KH2PO4 solution as mobile solvent. The visualization was performed by spraying 2% resorcinol. Direct bi autography was developed using Escherichia coli ATCC 25922 as a bacterial test, grown on the nutrient agar medium at 37oC for 24 hours. The method was validated corresponding to linearity, limit of detection (LOD), intra day precision, and accuracy parameters. The accuracy was measured using streptomycin injection as a sample. Results: The Results showed that the KH2PO4 solution at 7.5% concentration was found to be the optimized solvent with Rf value of 0.5. The linear equation was y = 10.176x + 4.046 at 150 - 350 µg/mL concentration range with the linearity coefficient, Limit of Detection, accuracy, and variation coefficient were 0.9907; 40 ppm; 96.37 + 2.22% (with an RSD value of 2.31%); and 1.63 respectively. Conclusion: The prospective TLC-bioautographic method was applied for the identification and determination of streptomycin in a preparation using a single eluent KH2PO4. The eluent system optimization remains necessary for the identification and determination of the mixture of streptomycin with other antibiotics, such as aminoglycoside groups.
Collapse
|
18
|
Yuniati Y, Hasanah N, Ismail S, Anitasari S, Paramita S. ANTIBACTERIAL ACTIVITY OF DRACONTOMELON DAO EXTRACTS ON METHICILLIN-RESISTANT S. AUREUS (MRSA) AND E. COLI MULTIPLE DRUG RESISTANCE (MDR). Afr J Infect Dis 2018; 12:62-67. [PMID: 29619432 PMCID: PMC5876787 DOI: 10.2101/ajid.12v1s.8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/23/2017] [Accepted: 08/23/2017] [Indexed: 11/11/2022] Open
Abstract
Background Staphylococcus aureus, methicillin-resistant and Escherichia coli, multidrug-resistant included in the list of antibiotic-resistant priority pathogens from WHO. As multidrug-resistant bacteria problem is increasing, it is necessary to probe new sources for identifying antimicrobial compounds. Medicinal plants represent a rich source of antimicrobial agents. One of the potential plants for further examined as antibacterial is Dracontomelon dao (Blanco) Merr. & Rolfe. The present study designed to find the antibacterial activity of D. dao stem bark extracts on Methicillin-resistant S. aureus (MRSA) and E. coli Multiple Drug Resistance (MDR), followed by determined secondary metabolites with antibacterial activity and determined the value of MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration). Materials and Methods D. dao stem bark extracted using 60% ethanol. Disc diffusion test methods used to find the antibacterial activity, following by microdilution methods to find the value of MIC and MBC. Secondary metabolites with antibacterial activity determined by bioautography using TLC (thin layer chromatography) methods. Results D. dao stem bark extracts are sensitive to MSSA, MRSA and E.coli MDR bacteria. The inhibition zone is 16.0 mm in MSSA, 11.7 mm in MRSA and 10.7 mm in E. coli MDR. The entire MBC/MIC ratios for MSSA, MRSA and E.coli MDR is lower than 4. The ratio showed bactericidal effects of D. dao stem bark extracts. In TLC results, colorless bands found to be secondary metabolites with antibacterial activity. Conclusion D. dao stem bark extracts are potential to develop as antibacterial agent especially against MRSA and E. coli MDR strain.
Collapse
Affiliation(s)
- Yuniati Yuniati
- Department of Microbiology, Faculty of Medicine, Mulawarman University, Samarinda, Indonesia
| | - Nurul Hasanah
- Department of Anatomy and Histology, Faculty of Medicine, Mulawarman University, Samarinda, Indonesia
| | - Sjarif Ismail
- Department of Pharmacology, Faculty of Medicine, Mulawarman University, Samarinda, Indonesia
| | - Silvia Anitasari
- Department of Microbiology, Faculty of Medicine, Mulawarman University, Samarinda, Indonesia
| | - Swandari Paramita
- Department of Public Health, Faculty of Medicine, Mulawarman University, Samarinda, Indonesia
| |
Collapse
|
19
|
Van Vuuren S, Holl D. Antimicrobial natural product research: A review from a South African perspective for the years 2009-2016. JOURNAL OF ETHNOPHARMACOLOGY 2017; 208:236-252. [PMID: 28694104 DOI: 10.1016/j.jep.2017.07.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 06/28/2017] [Accepted: 07/07/2017] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE This review provides information on the antimicrobial research which has taken place on South African natural products for the last eight years (2009-2016). This important field is the backbone of all studies involving the use of medicinal plants against infectious diseases and hence can form the mainstay for future studies. MATERIALS AND METHODS All publications within the years 2009-2016 were considered. Exclusion criteria were studies not involving South African medicinal natural products and those publications where full articles could not be accessed. An overview of the most common experimental methods used and new advances in terms of antimicrobial investigations are provided. Disease categories selected for further investigation were skin and wounds, respiratory, gastrointestinal, sexually transmitted and ophthalmic infections amongst others. Alternate natural products and combinations studies were also included. RESULTS The minimum inhibitory concentration (MIC) was the most commonly used experimental method to determine antimicrobial activity. Staphylococcus aureus was the most commonly tested skin pathogen and Klebsiella pneumoniae was the most common pathogen implicated in respiratory disorders. Only 20% of gastrointestinal studies included commonly implicated pathogens such as Shigella flexneri and Campylobacter species. CONCLUSION Multidisciplinary studies have emerged as a strong support for antimicrobial investigations and show the importance of including toxicity when studying antimicrobial efficacy. Alternate approaches (for example biofilms and quorum sensing) at examining antimicrobial effects are encouraged. Studies on resistant strains require more insight and future recommendations should look at consistent dosing and investigations on compound interactions amongst others.
Collapse
Affiliation(s)
- S Van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa.
| | - D Holl
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown 2193, South Africa
| |
Collapse
|
20
|
Antibacterial activity of crude extracts of some South African medicinal plants against multidrug resistant etiological agents of diarrhoea. Altern Ther Health Med 2017. [PMID: 28629407 PMCID: PMC5474864 DOI: 10.1186/s12906-017-1802-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND This study evaluated the antibacterial activity of some plants used in folklore medicine to treat diarrhoea in the Eastern Cape Province, South Africa. METHODS The acetone extracts of Acacia mearnsii De Wild., Aloe arborescens Mill., A. striata Haw., Cyathula uncinulata (Schrad.) Schinz, Eucomis autumnalis (Mill.) Chitt., E. comosa (Houtt.) Wehrh., Hermbstaedtia odorata (Burch. ex Moq.) T.Cooke, Hydnora africana Thunb, Hypoxis latifolia Wight, Pelargonium sidoides DC, Psidium guajava L and Schizocarphus nervosus (Burch.) van der Merwe were screened against Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, multi-resistant Salmonella enterica serovar Isangi, S. typhi, S. enterica serovar Typhimurium, Shigella flexneri type 1b and Sh. sonnei phase II. A qualitative phytochemical screening of the plants extracts was by thin layer chromatography. Plants extracts were screened for antibacterial activity using serial dilution microplate technique and bioautography. RESULTS The TLC fingerprint indicated the presence of terpenoids and flavonoids in the herbs. Most of the tested organisms were sensitive to the crude acetone extracts with minimum inhibitory concentration (MIC) values ranging from 0.018-2.5 mg/mℓ. Extracts of A. striata, C. uncinulata, E. autumnalis and P. guajava were more active against enteropathogens. S. aureus and Sh. flexneri were the most sensitive isolates to the crude extracts but of significance is the antibacterial activity of A. arborescens and P. guajava against a confirmed extended spectrum betalactamase positive S. enterica serovar Typhimurium. CONCLUSION The presence of bioactive compounds and the antibacterial activity of some of the selected herbs against multidrug resistant enteric agents corroborate assertions by traditional healers on their efficacies.
Collapse
|
21
|
Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 2016; 6:71-79. [PMID: 29403965 PMCID: PMC5762448 DOI: 10.1016/j.jpha.2015.11.005] [Citation(s) in RCA: 2533] [Impact Index Per Article: 316.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 11/21/2015] [Accepted: 11/23/2015] [Indexed: 11/21/2022] Open
Abstract
In recent years, there has been a growing interest in researching and developing new antimicrobial agents from various sources to combat microbial resistance. Therefore, a greater attention has been paid to antimicrobial activity screening and evaluating methods. Several bioassays such as disk-diffusion, well diffusion and broth or agar dilution are well known and commonly used, but others such as flow cytofluorometric and bioluminescent methods are not widely used because they require specified equipment and further evaluation for reproducibility and standardization, even if they can provide rapid results of the antimicrobial agent's effects and a better understanding of their impact on the viability and cell damage inflicted to the tested microorganism. In this review article, an exhaustive list of in vitro antimicrobial susceptibility testing methods and detailed information on their advantages and limitations are reported.
Collapse
Affiliation(s)
- Mounyr Balouiri
- Laboratory of Microbial Biotechnology, Faculty of Sciences and Techniques, University Sidi Mohamed Ben Abdellah, B.P. 2202 Imouzzer Road, Fez, Morocco
| | | | | |
Collapse
|
22
|
Léguillier T, Lecsö-Bornet M, Lémus C, Rousseau-Ralliard D, Lebouvier N, Hnawia E, Nour M, Aalbersberg W, Ghazi K, Raharivelomanana P, Rat P. The Wound Healing and Antibacterial Activity of Five Ethnomedical Calophyllum inophyllum Oils: An Alternative Therapeutic Strategy to Treat Infected Wounds. PLoS One 2015; 10:e0138602. [PMID: 26406588 PMCID: PMC4583440 DOI: 10.1371/journal.pone.0138602] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 09/01/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Calophyllum inophyllum L. (Calophyllaceae) is an evergreen tree ethno-medically used along the seashores and islands of the Indian and Pacific Oceans, especially in Polynesia. Oil extracted from the seeds is traditionally used topically to treat a wide range of skin injuries from burn, scar and infected wounds to skin diseases such as dermatosis, urticaria and eczema. However, very few scientific studies reported and quantified the therapeutic properties of Calophyllum inophyllum oil (CIO). In this work, five CIO from Indonesia (CIO1), Tahiti (CIO2, 3), Fiji islands (CIO4) and New Caledonia (CIO5) were studied and their cytotoxic, wound healing, and antibacterial properties were presented in order to provide a scientific support to their traditional use and verify their safety. METHODS The safety of the five CIO was ascertained using the Alamar blue assay on human keratinocyte cells. CIO wound healing properties were determined using the scratch test assay on human keratinocyte cells. CIO-stimulated antibacterial innate immune response was evaluated using ELISA by measuring β defensin-2 release in human derivative macrophage cells. CIO antibacterial activity was tested using oilogramme against twenty aerobic Gram- bacteria species, twenty aerobic Gram+ bacteria species, including a multi-drug resistant Staphylococcus aureus strain and two anaerobic Gram+ bacteria species e.g. Propionibacterium acnes and Propionibacterium granulosum. To detect polarity profile of the components responsible of the antibacterial activity, we performed bioautography against a Staphylococcus aureus strain. RESULTS Based on Alamar Blue assay, we showed that CIO can be safely used on keratinocyte cells between 2.7% and 11.2% depending on CIO origin. Concerning the healing activity, all the CIO tested accelerated in vitro wound closure, the healing factor being 1.3 to 2.1 higher compared to control when keratinocytes were incubated after scratch with CIO at 0.1%. Furthermore, our results showed that CIO exhibit two distinct antibacterial effects: one against Gram+ bacteria by direct inhibition of mitotic growth and another potent effect against Gram- bacteria due to increased release of β-defensin 2 peptide by macrophages. Interestingly, the needed concentrations of CIO to inhibit bacteria growth and to promote wound healing are lower than concentrations exhibiting cytotoxic effects on keratinocyte cells. Finally, we performed bioautography assay against Staphylococcus aureus to determine polarity profile of the components responsible for CIO antibacterial activity. Our results showed for the five tested CIO that components responsible of the bacterial growth inhibition are the more polar one on the TLC chromatographic profile and are contained in the resinous fraction of the oil. CONCLUSIONS This study was conducted to evaluate cytotoxicity, wound healing and antibacterial properties of five CIO traditionally used to treat infected wounds. Using cell and bacteria cultures, we confirmed the pharmacological effects of CIO as wound healing and antimicrobial agent. Moreover, we showed that concentration of CIO needed to exhibit therapeutic effects are lower than concentrations exhibiting cytotoxic effects in vitro. For the first time, this study provides support for traditional uses of CIO. These wound healing and antibiotic properties make CIO a valuable candidate to treat infected wounds especially in tropical areas.
Collapse
Affiliation(s)
- Teddy Léguillier
- Laboratoire Chimie-Toxicologie Analytique et Cellulaire-UMR CNRS COMETE 8638, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
| | - Marylin Lecsö-Bornet
- Laboratoire Ecosystème Intestinal, Probiotiques, Antibiotiques-EA 4065, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
| | - Christelle Lémus
- Laboratoire de Pharmacognosie-UMR CNRS COMETE 8638, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
| | | | - Nicolas Lebouvier
- Laboratoire Insulaire du Vivant et de l'Environnement-EA 4243, Université de la Nouvelle-Calédonie, Nouméa, Nouvelle Calédonie, France
| | - Edouard Hnawia
- Laboratoire Insulaire du Vivant et de l'Environnement-EA 4243, Université de la Nouvelle-Calédonie, Nouméa, Nouvelle Calédonie, France
| | - Mohammed Nour
- Laboratoire Insulaire du Vivant et de l'Environnement-EA 4243, Université de la Nouvelle-Calédonie, Nouméa, Nouvelle Calédonie, France
| | - William Aalbersberg
- Institute of Applied Sciences, University of the South Pacific, Laucala Campus, Suva, Fiji
| | - Kamelia Ghazi
- Centre de recherche de BioMécanique et BioIngénierie-CNRS UMR 7338, Université de Technologie de Compiègne, Compiègne, France
| | - Phila Raharivelomanana
- Equipe Etude Intégrée des Métabolites Secondaires-UMR 241 EIO, Université de la Polynésie Française, Tahiti, FAA'A, Polynésie Française
| | - Patrice Rat
- Laboratoire Chimie-Toxicologie Analytique et Cellulaire-UMR CNRS COMETE 8638, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
| |
Collapse
|
23
|
Chigayo K, Mojapelo PEL, Bessong P, Gumbo JR. The preliminary assessment of anti-microbial activity of HPLC separated components of Kirkia wilmsii. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2014; 11:275-81. [PMID: 25371593 DOI: 10.4314/ajtcam.v11i3.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Most communities in developing countries rely on traditional medicines for the treatment of diseases. In South Africa, the Limpopo province, within the Lebowakgomo district, uses tuberous roots of Kirkia wilmsii, after infusion in water for the treatment of a wide range of diseases by Sotho communities. MATERIALS AND METHODS The main objective of the study was to assess the anti-microbial activity of separated aqueous components of the Kirkia wilmsii tuberous roots. The clear aqueous extracts that were obtained after a 0.45 µm membrane filtration (Millipore Millex-HV Hydrophillic PVDF filter), were then injected into a preparative high performance liquid chromatography instrument in which pure components, as shown by peaks, were collected and evaluated for anti-microbial activity against a range of microorganisms. RESULTS The eight separated components were obtained, out of which four components showed anti-microbial activity (AMA). The freeze dried components were re-dissolved in deionised water and then evaluated for AMA against Vibrio cholerae, Shigella dysenteriae, Aeromonas hydrophilia, Salmonella typhi Proteus mirabilis, Escherichia coli, Staphylococcus aureus, Candida albicans and Enterobacter aerogenes. Component one exhibited antimicrobial activity against Shigella dysenteriae, Aeromonas hydrophilia, Salmonella typhi, Proteus mirabilis, Escherichia coli and Staphylococcus aureus with a minimum inhibitory concentration (MIC), of 3.445 mg/ml. Component five was only active against Proteus mirabilis with a MIC of 0.08 mg/ml. Component 7, was active against Shigella dysenteriae, Staphylococcus aureus and Escherichia coli with a MIC of 0.365 mg/ml against both Shigella dysenteriae and Staphylococcus aureus and 0.091 mg/ml against Escherichia coli. Component 8, was active against Shigella, Aeromonas hydrophilia, Salmonella, Proteus mirabilis, Escherichia coli with a MIC of 155 mg/ml. CONCLUSION Only four out of eight aqueous extracts showed AMA against both gram negative and positive bacteria and showed no AMA against Candida albicans, Enterobacter aerogenes and Vibrio cholerae. Therefore the Kirkia wilmsii plant root may be used as a broad spectrum antibiotic.
Collapse
Affiliation(s)
- K Chigayo
- Department of Chemistry; University of Venda, P/Bag x5050, Thohoyandou, 0950, South Africa
| | - P E L Mojapelo
- Department of Chemistry; University of Venda, P/Bag x5050, Thohoyandou, 0950, South Africa
| | - P Bessong
- Department of Microbiology; University of Venda, P/Bag x5050, Thohoyandou, 0950, South Africa
| | - J R Gumbo
- Department of Hydrology and Water Resources; University of Venda, P/Bag x5050, Thohoyandou, 0950, South Africa
| |
Collapse
|
24
|
Machaba KE, Cobongela SZZ, Mosa RA, Oladipupo LA, Djarova TG, Opoku AR. In vivo anti-hyperlipidemic activity of the triterpene from the stem bark of Protorhus longifolia (Benrh) Engl. Lipids Health Dis 2014; 13:131. [PMID: 25127687 PMCID: PMC4246574 DOI: 10.1186/1476-511x-13-131] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/06/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hyperlipidemia, a metabolic disorder of lipids, is a well known risk factor of cardiovascular events and metabolic syndrome. In this study, the in vivo lipid-lowering activity of the triterpene (Methyl-3β-hydroxylanosta-9,24-dien-21-oate), isolated from the stem bark of Protorhus longifolia, in high fat diet (HFD)-induced hyperlipidemic rats was investigated. METHODS Structure of the isolated compound was established and confirmed based on spectral (NMR, HRMS, IR) data analysis. Rats were divided into two groups; normal group (fed the normal commercial rats' chow) and the HFD group. After 21 days of experimental period on their respective diets, the HFD rats were sub-divided into 4 groups of six rats per group. Two of the HFD groups were orally treated with the triterpene (100 and 200 mg/kg body weight) for 15 days. At the end of the experimental periods, the rats were sacrificed and blood samples were collected for biochemical assays. RESULTS The results show that there were significant increases in total serum cholesterol (TC, 15.72 mmol/L) and low-density lipoprotein cholesterol (LDL-c, 7.41 mmol/L) with a reduction in high-density lipoprotein cholesterol (HDL-c, 14.75 mmol/L) in HFD-induced hyperlipidemic rats after 21 days. Oral administration of the triterpene (100 mg/kg.bw and 200 mg/kg.bw) for a period of 15 days resulted in significant lowering of the levels of TC (7.51 mmol/L) and LDL-c (4.46 mmol/L) with an increase in HDL-c (47.3 mmol/L) in HFD-induced hyperlipidemic rats. Significant decrease in atherogenic index and coronary risk index by the triterpene was observed in HFD-induced hyperlipidemic rats. CONCLUSIONS The triterpene could effectively reduce or control the amount of serum cholesterol and LDL. It is apparent that the compound could contribute to new formulation with significant hypolipidemic effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Andy R Opoku
- Department of Biochemistry and Microbiology, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, Republic of South Africa.
| |
Collapse
|
25
|
Naveed R, Hussain I, Tawab A, Tariq M, Rahman M, Hameed S, Mahmood MS, Siddique AB, Iqbal M. Antimicrobial activity of the bioactive components of essential oils from Pakistani spices against Salmonella and other multi-drug resistant bacteria. Altern Ther Health Med 2013; 13:265. [PMID: 24119438 PMCID: PMC3853939 DOI: 10.1186/1472-6882-13-265] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 10/11/2013] [Indexed: 12/20/2022]
Abstract
Background The main objective of this study was the phytochemical characterization of four indigenous essential oils obtained from spices and their antibacterial activities against the multidrug resistant clinical and soil isolates prevalent in Pakistan, and ATCC reference strains. Methods Chemical composition of essential oils from four Pakistani spices cumin (Cuminum cyminum), cinnamon (Cinnamomum verum), cardamom (Amomum subulatum) and clove (Syzygium aromaticum) were analyzed on GC/MS. Their antibacterial activities were investigated by minimum inhibitory concentration (MIC) and Thin-Layer Chromatography-Bioautographic (TLC-Bioautographic) assays against pathogenic strains Salmonella typhi (D1 Vi-positive), Salmonella typhi (G7 Vi-negative), Salmonella paratyphi A, Escherichia coli (SS1), Staphylococcus aureus, Pseudomonas fluorescens and Bacillus licheniformis (ATCC 14580). The data were statistically analyzed by using Analysis of Variance (ANOVA) and Least Significant Difference (LSD) method to find out significant relationship of essential oils biological activities at p <0.05. Results Among all the tested essential oils, oil from the bark of C. verum showed best antibacterial activities against all selected bacterial strains in the MIC assay, especially with 2.9 mg/ml concentration against S. typhi G7 Vi-negative and P. fluorescens strains. TLC-bioautography confirmed the presence of biologically active anti-microbial components in all tested essential oils. P. fluorescens was found susceptible to C. verum essential oil while E. coli SS1 and S. aureus were resistant to C. verum and A. subulatum essential oils, respectively, as determined in bioautography assay. The GC/MS analysis revealed that essential oils of C. cyminum, C. verum, A. subulatum, and S. aromaticum contain 17.2% cuminaldehyde, 4.3% t-cinnamaldehyde, 5.2% eucalyptol and 0.73% eugenol, respectively. Conclusions Most of the essential oils included in this study possessed good antibacterial activities against selected multi drug resistant clinical and soil bacterial strains. Cinnamaldehyde was identified as the most active antimicrobial component present in the cinnamon essential oil which acted as a strong inhibitory agent in MIC assay against the tested bacteria. The results indicate that essential oils from Pakistani spices can be pursued against multidrug resistant bacteria.
Collapse
|
26
|
Suleiman MM, Duncan N, Eloff JN, Naidoo V. A controlled study to determine the efficacy of Loxostylis alata (Anacardiaceae) in the treatment of aspergillus in a chicken (Gallus domesticus) model in comparison to ketoconazole. BMC Vet Res 2012; 8:210. [PMID: 23114185 PMCID: PMC3534493 DOI: 10.1186/1746-6148-8-210] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/29/2012] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The poultry industry due to intensive methods of farming is burdened with losses from numerous infectious agents, of which one is the fungus Aspergillus fumigatus. In a preliminary study, the extracts of Loxostylis alata A. Spreng, ex Rchb. showed good activity in vitro against A. fumigatus with a minimum inhibitory concentration of 0.07 mg/ml. For this study crude, a crude acetone extract of L. alata leaves was evaluated for its acute toxicity in a healthy chicken model and for efficacy in an infectious model of aspergillosis (A. fumigatus). RESULTS At a dose of 300 mg/kg, the extract induced some toxicity characterised by decreased feed intake and weight loss. Consequently, 100 and 200 mg/kg were used to ascertain efficacy in the infectious model. The plant extract significantly reduced clinical disease in comparison to the control in a dose dependant manner. The extract was as effective as the positive control ketoconazole dosed at 60 mg/kg. CONCLUSIONS The results indicate that a crude extract of L. alata leaves has potential as an antifungal agent to protect poultry against avian aspergillosis.
Collapse
Affiliation(s)
- Mohammed M Suleiman
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
- Department of Physiology and Pharmacology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Neil Duncan
- Section of Pathology, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Jacobus N Eloff
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Vinny Naidoo
- Section of Pharmacology and Toxicology, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|