1
|
Musa L, Rapi MC, Franciosini MP, Lupini C, Catelli E, Addis MF, Grilli G. Turkey Hemorrhagic Enteritis (THE): A Short Overview. Pathogens 2024; 13:663. [PMID: 39204263 PMCID: PMC11356975 DOI: 10.3390/pathogens13080663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Turkey Hemorrhagic Enteritis (THE) is an acute disease caused by a Siadenovirus that affects 4 week-aged and older turkeys, characterized by acute depression, bloody droppings, and a high mortality rate. The immunosuppressive attributes of THE can protract disease progression and create a predisposition in birds towards subsequent bacterial infectiodoralns involving Escherichia coli and Clostridium perfringens (necrotic enteritis). Turkey Hemorrhagic Enteritis Virus (THEV) predominantly affects turkeys and carries substantial economic implications for this industry. Macrophages and B lymphocytes are recognized as the predominant target cells for the virus, while the spleen is the principal site of viral replication. Infected cells have also been observed in various other tissues, including the intestines, bursa of Fabricius, cecal tonsils, thymus, liver, kidney, peripheral blood leukocytes, and lungs. The economic relevance of this disease is derived both from the high mortality rate, which can reach 60% depending on the virulence of the strain, and from subclinical disease responsible for poor performance in vaccinated animals. This review aims to provide a comprehensive overview of THE, spanning etiology, epidemiology clinical signs and gross lesions, prevention, and management.
Collapse
Affiliation(s)
- Laura Musa
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy; (L.M.); (M.C.R.); (M.F.A.)
- Laboratorio di Malattie Infettive degli Animali (MiLab), University of Milan, 26900 Lodi, Italy
| | - Maria Cristina Rapi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy; (L.M.); (M.C.R.); (M.F.A.)
- Laboratorio di Malattie Infettive degli Animali (MiLab), University of Milan, 26900 Lodi, Italy
| | | | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy; (C.L.); (E.C.)
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy; (C.L.); (E.C.)
| | - Maria Filippa Addis
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy; (L.M.); (M.C.R.); (M.F.A.)
- Laboratorio di Malattie Infettive degli Animali (MiLab), University of Milan, 26900 Lodi, Italy
| | - Guido Grilli
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy; (L.M.); (M.C.R.); (M.F.A.)
- Laboratorio di Malattie Infettive degli Animali (MiLab), University of Milan, 26900 Lodi, Italy
| |
Collapse
|
2
|
Salles GBC, Pilati GVT, Muniz EC, de Lima Neto AJ, Vogt JR, Dahmer M, Savi BP, Padilha DA, Fongaro G. Trends and Challenges in the Surveillance and Control of Avian Metapneumovirus. Viruses 2023; 15:1960. [PMID: 37766366 PMCID: PMC10535940 DOI: 10.3390/v15091960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Among the respiratory pathogens of birds, the Avian Metapneumovirus (aMPV) is one of the most relevant, as it is responsible for causing infections of the upper respiratory tract and may induce respiratory syndromes. aMPV is capable of affecting the reproductive system of birds, directly impacting shell quality and decreasing egg production. Consequently, this infection can cause disorders related to animal welfare and zootechnical losses. The first cases of respiratory syndromes caused by aMPV were described in the 1970s, and today six subtypes (A, B, C, D, and two more new subtypes) have been identified and are widespread in all chicken and turkey-producing countries in the world, causing enormous economic losses for the poultry industry. Conventionally, immunological techniques are used to demonstrate aMPV infection in poultry, however, the identification of aMPV through molecular techniques helped in establishing the traceability of the virus. This review compiles data on the main aMPV subtypes present in different countries; aMPV and bacteria co-infection; vaccination against aMPV and viral selective pressure, highlighting the strategies used to prevent and control respiratory disease; and addresses tools for viral diagnosis and virus genome studies aiming at improving and streamlining pathogen detection and corroborating the development of new vaccines that can effectively protect herds, preventing viral escapes.
Collapse
Affiliation(s)
- Gleidson Biasi Carvalho Salles
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (G.B.C.S.); (G.V.T.P.); (M.D.); (B.P.S.); (D.A.P.)
- Zoetis Industry of Veterinary Products LTDA, São Paulo 04709-111, Brazil; (E.C.M.); (J.R.V.)
| | - Giulia Von Tönnemann Pilati
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (G.B.C.S.); (G.V.T.P.); (M.D.); (B.P.S.); (D.A.P.)
| | - Eduardo Correa Muniz
- Zoetis Industry of Veterinary Products LTDA, São Paulo 04709-111, Brazil; (E.C.M.); (J.R.V.)
| | | | - Josias Rodrigo Vogt
- Zoetis Industry of Veterinary Products LTDA, São Paulo 04709-111, Brazil; (E.C.M.); (J.R.V.)
| | - Mariane Dahmer
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (G.B.C.S.); (G.V.T.P.); (M.D.); (B.P.S.); (D.A.P.)
| | - Beatriz Pereira Savi
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (G.B.C.S.); (G.V.T.P.); (M.D.); (B.P.S.); (D.A.P.)
| | - Dayane Azevedo Padilha
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (G.B.C.S.); (G.V.T.P.); (M.D.); (B.P.S.); (D.A.P.)
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (G.B.C.S.); (G.V.T.P.); (M.D.); (B.P.S.); (D.A.P.)
| |
Collapse
|
3
|
Kaboudi K, Lachheb J. Avian metapneumovirus infection in turkeys: a review on turkey rhinotracheitis. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2021.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
4
|
Liu H, Zhao F, Zhang K, Zhao J, Wang Y. Investigating the growth performance, meat quality, immune function and proteomic profiles of plasmal exosomes in Lactobacillus plantarum-treated broilers with immunological stress. Food Funct 2021; 12:11790-11807. [PMID: 34761788 DOI: 10.1039/d1fo01936h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Exosomes are extracellular membranous nanovesicles that carry functional molecules to mediate cell-to-cell communication. To date, whether probiotics improve the immune function of broilers by plasmal exosome cargo is unclear. In this study, 300 broilers were allocated to three treatments: control diet (CON group), control diet + dexamethasone injection (DEX group), and control diet containing 1 × 108 cfu g-1 P8 + DEX injection (P8 + DEX group). The growth performance, meat quality and immune function of plasma and jejunal mucosa were detected. Exosomes were isolated from the plasma and characterized. Then, the exosome protein profile was determined by proteomic analysis. Correlation analyses between the exosomal proteins and growth performance, meat quality, immune function were performed. Lastly, the related protein levels were verified by multiple reaction monitoring (MRM). Results showed that P8 treatment increased the growth performance, meat quality and immune function of DEX-induced broilers with immunological stress. Moreover, the average diameters, cup-shaped morphology and expressed exosomal proteins confirmed that the isolated extracellular vesicles were exosomes. A total of 784 proteins were identified in the exosomes; among which, 126 differentially expressed proteins (DEPs) were found between the DEX and CON groups and 102 DEPs were found between the P8 + DEX and DEX groups. Gene ontology analysis indicated that DEPs between the DEX and CON groups are mainly involved in the metabolic process, cellular anatomical entity, cytoplasm, etc. DEPs between the P8 + DEX and DEX groups are mainly involved in the multicellular organismal process, response to stimulus, cytoplasm, etc. Pathway analysis revealed that most of the DEPs between the DEX and CON groups participated in the ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton, etc. Most of the DEPs between the P8 + DEX and DEX groups participated in the ErbB and PPAR signaling pathways. Moreover, many DEPs were correlated with the altered parameters of growth performance, meat quality and immunity in P8-treated broilers. MRM further revealed that the upregulated FABP6 and EPCAM in the DEX group were decreased by P8 + DEX treatment, and the downregulated C1QTNF3 in the DEX group was increased by P8 + DEX treatment. In conclusion, our findings demonstrated that P8 may promote the immune function, growth performance and meat quality of broilers with immunological stress by regulating the plasma exosomal proteins, especially the proteins of FABP6, EPCAM and C1QTNF3 and the pathway of PPAR (ILK/FABP6).
Collapse
Affiliation(s)
- Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Fan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
5
|
Ramsubeik S, Stoute S, Shivaprasad H, Mete A, Pitesky M. A retrospective study to identify concomitant pathogens in Mycoplasma gallisepticum positive commercial turkeys and the development of a predictive model of Mycoplasma gallisepticum serologic status in California (2008–2019). J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2021.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
6
|
Palomino-Tapia V, Mitevski D, Inglis T, van der Meer F, Abdul-Careem MF. Molecular Characterization of Hemorrhagic Enteritis Virus (HEV) Obtained from Clinical Samples in Western Canada 2017-2018. Viruses 2020; 12:v12090941. [PMID: 32858877 PMCID: PMC7551992 DOI: 10.3390/v12090941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/03/2020] [Accepted: 08/24/2020] [Indexed: 11/25/2022] Open
Abstract
Hemorrhagic enteritis virus (HEV) is an immunosuppressive adenovirus that causes an acute clinical disease characterized by hemorrhagic gastroenteritis in 4-week-old turkeys and older. Recurrent incidence of secondary infections (e.g., systemic bacterial infections, cellulitis, and elevated mortality), may be associated with the presence of field-type HEV in Canadian turkey farms. We speculate that field-type HEV and vaccine/vaccine-like strains can be differentiated through analysis of the viral genomes, hexon genes, and the specific virulence factors (e.g., ORF1, E3, and fib knob domain). Nine out of sixteen spleens obtained from cases suspected of immunosuppression by HEV were analyzed. The limited data obtained showed that: (1) field-type HEV circulates in many non-vaccinated western Canadian flocks; (2) field-type HEV circulates in vaccinated flocks with increased recurrent bacterial infections; and (3) the existence of novel point mutations in hexon, ORF1, E3, and specially fib knob domains. This is the first publication showing the circulation of wild-type HEV in HEV-vaccinated flocks in Western Canada, and the usefulness of a novel procedure that allows whole genome sequencing of HEV directly from spleens, without passaging in cell culture or passaging in vivo. Further studies focusing more samples are required to confirm our observations and investigate possible vaccination failure.
Collapse
Affiliation(s)
- Victor Palomino-Tapia
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (V.P.-T.); (F.v.d.M.)
| | - Darko Mitevski
- Poultry Health Services, 1-4 East Lake Ave NE, Airdrie, AB T4A 2G8, Canada;
| | - Tom Inglis
- The Institute of Applied Poultry Technologies, 201–151 East Lake Blvd, Airdrie, AB T4A 2G1, Canada;
| | - Frank van der Meer
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (V.P.-T.); (F.v.d.M.)
| | - Mohamed Faizal Abdul-Careem
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Health Research Innovation Center 2C53, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (V.P.-T.); (F.v.d.M.)
- Correspondence: ; Tel.: +1-403-220-4462; Fax: +1-403-210-9740
| |
Collapse
|