1
|
Ricke SC, O’Bryan CA, Rothrock MJ. Listeria Occurrence in Conventional and Alternative Egg Production Systems. Microorganisms 2023; 11:2164. [PMID: 37764008 PMCID: PMC10535144 DOI: 10.3390/microorganisms11092164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Listeria continues to be a persistent foodborne pathogen that is responsible for human cases of listeriosis when contaminated food products are consumed. Human subjects considered to be most susceptible include the elderly, immunocompromised, and pregnant women. Listeria is characterized as a saprophytic organism with the capability of responding and adapting to constantly changing environments because it possesses multiple stress response mechanisms to overcome varying temperatures, salt concentrations, and pH, among others. Primary foods and food products associated with listeriosis include dairy products and ready-to-eat meats such as turkey products. Historically, chicken eggs have not been identified as a primary source of Listeria, but the potential for contamination during egg production and processing does exist. Listeria species have been isolated from egg-processing plant equipment and are presumed to occur in egg-processing plant environments. Whether Listeria is consistently disseminated onto eggs beyond the egg-processing plant is a risk factor that remains to be determined. However, research has been conducted over the years to develop egg wash solutions that generate combinations of pH and other properties that would be considered inhibitory to Listeria. Even less is known regarding the association of Listeria with alternative egg production systems, but Listeria has been isolated from pasture flock broilers, so it is conceivable, given the nature of the outdoor environments, that layer birds under these conditions would also be exposed to Listeria and their eggs become contaminated. This review focuses on the possibility of Listeria occurring in conventional and alternative egg-laying production and processing systems.
Collapse
Affiliation(s)
- Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Corliss A. O’Bryan
- Food Science Department, University of Arkansas, Fayetteville, AR 72704, USA;
| | - Michael J. Rothrock
- U.S. National Poultry Research Center, Egg Safety & Quality Research Unit, USDA-ARS, Athens, GA 30606, USA;
| |
Collapse
|
2
|
Braley C, Gaucher ML, Fravalo P, Shedleur-Bourguignon F, Longpré J, Thibodeau A. Slight Temperature Deviation during a 56-Day Storage Period Does Not Affect the Microbiota of Fresh Vacuum-Packed Pork Loins. Foods 2023; 12:foods12081695. [PMID: 37107490 PMCID: PMC10138144 DOI: 10.3390/foods12081695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
It is profitable to export fresh meat overseas, where it is often regarded as a premium commodity. Meeting this demand for fresh meat, however, necessitates long export times, during which uncontrolled temperature increases can affect the microbiological quality of the meat and thereby, reduce shelf life or compromise food safety. To study the impact of temperature deviations on microbial community composition and diversity, we used 16S rRNA gene sequencing for Listeria monocytogenes and Salmonella spp. detection to describe the surface microbiota of eight batches of vacuum-packed loins stored at -1.5 °C (control) for 56 days and subjected to a 2 °C or 10 °C temperature deviation for a few hours (mimicking problems regularly encountered in the industry) at day 15 or 29. The presence of pathogens was negligible. The applied temperature deviations were not associated with different microbiota. Sequencing analysis showed the presence of Yersinia, an unexpected pathogen, and relative abundance increased in the groups subjected to temperature deviations. Over time, Lactobacillales_unclassified genus became the main constituent of the microbiota of vacuum-packed pork loins. Although the microbiota of the eight batches appeared similar at the beginning of storage, differences were revealed after 56 days, suggesting unequal aging of the microbiota.
Collapse
Affiliation(s)
- Charlotte Braley
- Chaire de Recherche en Salubrité des Viandes (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marie-Lou Gaucher
- Chaire de Recherche en Salubrité des Viandes (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche et d'Enseignement en Salubrité Alimentaire (GRESA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Philippe Fravalo
- Groupe de Recherche et d'Enseignement en Salubrité Alimentaire (GRESA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Le Conservatoire National des Arts et Métiers (CNAM), 75003 Paris, France
| | - Fanie Shedleur-Bourguignon
- Chaire de Recherche en Salubrité des Viandes (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Jessie Longpré
- F. Ménard, Division d'Olymel s.e.c., Ange-Gardien, QC J0E 1E0, Canada
| | - Alexandre Thibodeau
- Chaire de Recherche en Salubrité des Viandes (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche et d'Enseignement en Salubrité Alimentaire (GRESA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
3
|
Prevalence, Genetic Diversity and Factors Associated with Distribution of Listeria monocytogenes and Other Listeria spp. in Cattle Farms in Latvia. Pathogens 2021; 10:pathogens10070851. [PMID: 34358001 PMCID: PMC8308843 DOI: 10.3390/pathogens10070851] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 12/25/2022] Open
Abstract
Listeria spp. is a diverse genus of Gram-positive bacteria commonly present in the environment while L. monocytogenes and L. ivanovii are well known human and ruminant pathogens. The aim of the present study was to reveal the prevalence and genetic diversity of L. monocytogenes and other Listeria spp. and to identify the factors related to the abundance of pathogen at cattle farms. A total of 521 animal and environmental samples from 27 meat and dairy cattle farms were investigated and the genetic diversity of L. monocytogenes isolates was studied with WGS. The prevalence of Listeria was 58.9%, while of L. monocytogenes it was −11%. The highest prevalence of L. monocytogenes was found in the environment—soil samples near to manure storage (93%), mixed feed from the feeding trough and hay (29%), water samples from farms drinking trough (28%) and cattle feces (28%). Clonal complexes (CC) of CC37 (30%), CC11 (20%) and CC18 (17%) (all IIa serogroup) were predominant L. monocytogenes clones. CC18, CC37 and CC8 were isolated from case farms and CC37, CC11 and CC18 from farms without listeriosis history. Only one hypervirulent CC4 (1%) was isolated from the case farm. Sequence types (STs) were not associated with the isolation source, except for ST7, which was significantly associated with soil (p < 0.05). The contamination of soil, feeding tables and troughs with L. monocytogenes was associated with an increased prevalence of L. monocytogenes at farms. Our study indicates the importance of hygienic practice in the prevention of the dissemination of L. monocytogenes in the cattle farm environment.
Collapse
|
4
|
Rothrock MJ, Micciche AC, Bodie AR, Ricke SC. Listeria Occurrence and Potential Control Strategies in Alternative and Conventional Poultry Processing and Retail. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00033] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
5
|
Koskar J, Kramarenko T, Meremäe K, Kuningas M, Sõgel J, Mäesaar M, Anton D, Lillenberg M, Roasto M. Prevalence and Numbers of Listeria monocytogenes in Various Ready-to-Eat Foods over a 5-Year Period in Estonia. J Food Prot 2019; 82:597-604. [PMID: 30907662 DOI: 10.4315/0362-028x.jfp-18-383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
HIGHLIGHTS This study is a significant contribution to L. monocytogenes risk analysis. L. monocytogenes was found in 3.6% of 30,016 analyzed RTE food samples. A food safety criterion of 100 CFU/g was exceeded for 0.3% of the RTE food samples. Salted and cold-smoked fish products were found to be potentially high-risk foods.
Collapse
Affiliation(s)
- Julia Koskar
- 1 Chair of Food Hygiene and Veterinary Public Health, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/3, 51014, Tartu, Estonia.,2 Veterinary and Food Laboratory, Kreutzwaldi 30, 51006, Tartu, Estonia
| | - Toomas Kramarenko
- 1 Chair of Food Hygiene and Veterinary Public Health, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/3, 51014, Tartu, Estonia.,2 Veterinary and Food Laboratory, Kreutzwaldi 30, 51006, Tartu, Estonia
| | - Kadrin Meremäe
- 1 Chair of Food Hygiene and Veterinary Public Health, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/3, 51014, Tartu, Estonia
| | - Maiu Kuningas
- 2 Veterinary and Food Laboratory, Kreutzwaldi 30, 51006, Tartu, Estonia
| | - Jelena Sõgel
- 3 Veterinary and Food Board, Food Department, Väike-Paala 3, 11415, Tallinn, Estonia
| | - Mihkel Mäesaar
- 1 Chair of Food Hygiene and Veterinary Public Health, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/3, 51014, Tartu, Estonia.,2 Veterinary and Food Laboratory, Kreutzwaldi 30, 51006, Tartu, Estonia
| | - Dea Anton
- 1 Chair of Food Hygiene and Veterinary Public Health, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/3, 51014, Tartu, Estonia
| | - Merike Lillenberg
- 1 Chair of Food Hygiene and Veterinary Public Health, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/3, 51014, Tartu, Estonia
| | - Mati Roasto
- 1 Chair of Food Hygiene and Veterinary Public Health, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 56/3, 51014, Tartu, Estonia
| |
Collapse
|
6
|
Yang S, Pei X, Yang D, Zhang H, Chen Q, Chui H, Qiao X, Huang Y, Liu Q. Microbial contamination in bulk ready-to-eat meat products of China in 2016. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.03.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Rothrock MJ, Davis ML, Locatelli A, Bodie A, McIntosh TG, Donaldson JR, Ricke SC. Listeria Occurrence in Poultry Flocks: Detection and Potential Implications. Front Vet Sci 2017; 4:125. [PMID: 29018807 PMCID: PMC5615842 DOI: 10.3389/fvets.2017.00125] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/25/2017] [Indexed: 12/03/2022] Open
Abstract
Foodborne pathogens such as Salmonella, Campylobacter, Escherichia coli, and Listeria are a major concern within the food industry due to their pathogenic potential to cause infection. Of these, Listeria monocytogenes, possesses a high mortality rate (approximately 20%) and is considered one of the most dangerous foodborne pathogens. Although the usual reservoirs for Listeria transmission have been extensively studied, little is known about the relationship between Listeria and live poultry production. Sporadic and isolated cases of listeriosis have been attributed to poultry production and Listeria spp. have been isolated from all stages of poultry production and processing. Farm studies suggest that live birds may be an important vector and contributor to contamination of the processing environment and transmission of Listeria to consumers. Therefore, the purpose of this review is to highlight the occurrence, incidence, and potential systemic interactions of Listeria spp. with poultry.
Collapse
Affiliation(s)
- Michael J. Rothrock
- USDA-ARS, U.S. National Poultry Research Center, Egg Safety and Quality Research Unit, Athens, GA, United States
| | - Morgan L. Davis
- Center for Food Safety, Food Science Department, University of Arkansas, Fayetteville, AR, United States
| | - Aude Locatelli
- USDA-ARS, U.S. National Poultry Research Center, Egg Safety and Quality Research Unit, Athens, GA, United States
| | - Aaron Bodie
- Center for Food Safety, Food Science Department, University of Arkansas, Fayetteville, AR, United States
| | - Tori G. McIntosh
- USDA-ARS, U.S. National Poultry Research Center, Egg Safety and Quality Research Unit, Athens, GA, United States
| | - Janet R. Donaldson
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Steven C. Ricke
- Center for Food Safety, Food Science Department, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
8
|
Kramarenko T, Roasto M, Keto-Timonen R, Mäesaar M, Meremäe K, Kuningas M, Hörman A, Korkeala H. Listeria monocytogenes in ready-to-eat vacuum and modified atmosphere packaged meat and fish products of Estonian origin at retail level. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.02.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Yang S, Pei X, Wang G, Yan L, Hu J, Li Y, Li N, Yang D. Prevalence of food-borne pathogens in ready-to-eat meat products in seven different Chinese regions. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
|
10
|
Engelhardt T, Albano H, Kiskó G, Mohácsi-Farkas C, Teixeira P. Antilisterial activity of bacteriocinogenic Pediococcus acidilactici HA6111-2 and Lactobacillus plantarum ESB 202 grown under pH and osmotic stress conditions. Food Microbiol 2015; 48:109-15. [DOI: 10.1016/j.fm.2014.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/03/2014] [Accepted: 11/25/2014] [Indexed: 11/29/2022]
|
11
|
Application of a nisin Z-producing Lactococcus lactis subsp. lactis KT2W2L isolated from brackish water for biopreservation in cooked, peeled and ionized tropical shrimps during storage at 8 °C under modified atmosphere packaging. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2428-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Kramarenko T, Roasto M, Meremäe K, Kuningas M, Põltsama P, Elias T. Listeria monocytogenes prevalence and serotype diversity in various foods. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.06.047] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Vail KM, McMullen LM, Jones TH. Growth and filamentation of cold-adapted, log-phase Listeria monocytogenes exposed to salt, acid, or alkali stress at 3°C. J Food Prot 2012; 75:2142-50. [PMID: 23212010 DOI: 10.4315/0362-028x.jfp-12-199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In Canada, there is a zero tolerance for Listeria in a 125-g sample of product in which growth of Listeria monocytogenes can occur, and a limit of ≤100 CFU/g in ready-to-eat (RTE) food products that support limited growth during the stated shelf life and/or RTE refrigerated foods with a shelf life of ≤5 days. L. monocytogenes can form filaments in response to pH and osmotic, atmospheric, and temperature stress, which can result in an underestimation of the risk of RTE foods as filaments form single colonies on plate count agars but can divide into individual cells once the stress is removed. The objective was to investigate the filamentation characteristics of three strains of L. monocytogenes exposed to saline, acidic, basic, and simultaneous acidic and saline environments at 3°C. After 4 days at 3°C, log-phase cells grown in tryptic soy broth (TSB) were longer than cells grown at 15°C, and 68% of cells were below the reference value of the 90th percentile of control cultures. When cultures growing at 3°C were exposed to additional stresses, increases in the proportion and length of filaments in the population were observed, while increases in log CFU per milliliter were reduced. After 4 days of incubation at 3°C, the log CFU per milliliter of L. monocytogenes increased by 1.1 U in TSB and 0.4 to 0.5 U in TSB with 4% NaCl, TSB with a pH of 6.0 with 4% NaCl, and TSB with a pH of 5.5. Moreover, the longest 10% of cells were 6.4 to 8.5 times longer than control cells, and only 20 to 30% of cells were below the reference value. Cultures grown in TSB at pH 6.0 with 4% NaCl experienced more sustained filamentation than cultures grown in TSB with 4% NaCl, but less than cultures grown in TSB at pH 6.0. The mechanism involved in filamentation could be different for cells exposed to NaCl than exposed to acid, and additional stress might not necessarily result in more extensive filament formation. These findings contribute to a better understanding of the widespread potential of filament formation and the potential implications for food safety.
Collapse
Affiliation(s)
- K M Vail
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | | | | |
Collapse
|
14
|
Doménech E, Amorós JA, Escriche I. Food safety objectives for Listeria monocytogenes in Spanish food sampled in cafeterias and restaurants. J Food Prot 2011; 74:1569-73. [PMID: 21902930 DOI: 10.4315/0362-028x.jfp-11-033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To gain more insight into the context of food safety management by public administrations, food safety objectives must be studied. The Valencian administration quantified the prevalence of Listeria monocytogenes in cafeterias and restaurants in this region of Spain between 2002 and 2010. The results obtained from this survey are presented here for 2,262 samples of fish, salad, egg, cold meat, and mayonnaise dishes. Microbiological criteria defined for L. monocytogenes were used to differentiate acceptable and unacceptable samples; more than 99.9% of the samples were acceptable. These findings indicate that established food safety objectives are achievable, consumer health at the time of consumption can be safeguarded, and food safety management systems such as hazard analysis critical control point plans or good manufacturing practices implemented in food establishments are effective. Monitoring of foods and food safety is an important task that must continue to reduce the current L. monocytogenes prevalence of 0.1% in restaurant or cafeteria dishes, which could adversely affect consumer health.
Collapse
Affiliation(s)
- E Doménech
- Departamento de Tecnología de Alimentos, Instituto de Ingeniería de Alimentos para el Desarrollo, Universidad Politécnica de Valencia, 46022 Valencia, Spain.
| | | | | |
Collapse
|
15
|
Bērziņš A, Hellström S, Siliņš I, Korkeala H. Contamination patterns of Listeria monocytogenes in cold-smoked pork processing. J Food Prot 2010; 73:2103-9. [PMID: 21219726 DOI: 10.4315/0362-028x-73.11.2103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Contamination patterns of Listeria monocytogenes were studied in a cold-smoked pork processing plant to identify the sources and possible reasons for the contamination. Environmental sampling combined with pulsed-field gel electrophoresis (PFGE) subtyping and serotyping were applied to investigate the genetic diversity of L. monocytogenes in the plant environment and ready-to-eat (RTE) cold-smoked pork products. A total of 183 samples were collected for contamination analyses, including samples of the product at different stages during manufacture (n = 136) and environmental samples (n = 47) in 2009. L. monocytogenes isolates, previously recovered from 73 RTE cold-smoked pork samples and collected from the same meat processing plant in 2004, were included in this study. The brining machine and personnel working with brining procedures were the most contaminated places with L. monocytogenes. The overall prevalence of L. monocytogenes in raw pork (18%) increased to 60% after the brining injections. The brining machine harbored six different PFGE types belonging to serotypes 1/2a, 1/2c, 4b, and 4d, which were found on the feeding teeth, smooth surfaces, and spaces of the machine, thus potentially facilitating dissemination of L. monocytogenes contamination. Two PFGE types (2 and 8) belonging to serotypes 1/2a and 1/2c were recovered from RTE cold-smoked pork collected in 2004, and from surfaces of the brining machine sampled in 2009, and may indicate the presence of persistent L. monocytogenes strains in the plant. Due to poor hygiene design, removal of the brining machine from the production of cold-smoked meat products should be considered to reduce L. monocytogenes contamination in the finished products.
Collapse
Affiliation(s)
- Aivars Bērziņš
- Department of Food Hygiene and Environmental Health, University of Helsinki, PHelsinki, Finland.
| | | | | | | |
Collapse
|