1
|
Pastor F, Rodriguez JC, Barrera JM, García-Menocal JAD, Brizuela A, Puigdollers A, Espinar E, Gil J. Effect of Fluoride Content of Mouthwashes on the Metallic Ion Release in Different Orthodontics Archwires. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2780. [PMID: 36833476 PMCID: PMC9956897 DOI: 10.3390/ijerph20042780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Metal ion release studies were carried out on three of the most commonly used orthodontic wires in the clinic: austenitic stainless steel, Ti-Mo, and superelastic NiTi, using three mouthwashes with different fluoride concentrations: 130, 200, and 380 ppm. Immersions were carried out in these mouthwashes at 37 °C for 1, 4, 7, and 14 days, and the ions released were determined by inductively coupled plasma-mass spectrometry (ICP-MS). All wires were observed by scanning electron microscopy (SEM). The results showed a moderate ion release in the stainless steel wires, with nickel and chromium values of 500 and 1000 ppb in the worst conditions for the wires: concentrations of 380 ppm fluoride and 14 days of immersion. However, in the Ti-Mo and NiTi alloys, an abrupt change in release was observed when the samples were immersed in 380 ppm fluoride concentrations. Titanium releases in Ti-Mo wires reached 200,000 ppb, creating numerous pits on the surface. Under the same conditions, the release of Ni and Ti ions from the superelastic wires also exceeded 220,000 ppb and 180,000 ppb, respectively. This release of ions causes variations in the chemical composition of the wires, causing the appearance of martensite plates in the austenitic matrix after 4 days of immersion. This fact causes it to lose its superelastic properties at a temperature of 37 °C. In the case of immersion in 380 ppm mouthwashes for more than 7 days, rich-nickel precipitates can be seen. These embrittle the wire and lose all tooth-correcting properties. It should be noted that the release of Ni ions can cause hypersensitivity in patients, particularly women. The results indicate that the use of mouthwashes with a high content of fluoride should not be recommended with orthodontic archwires.
Collapse
Affiliation(s)
- Francisco Pastor
- Department of Ortodoncia, Facultad de Odontología, Universidad de Sevilla, Avicena s/n, 41009 Sevilla, Spain
| | - Juan Carlos Rodriguez
- Department of Ortodoncia, Facultad de Odontología, Universidad de Sevilla, Avicena s/n, 41009 Sevilla, Spain
| | - José María Barrera
- Department of Ortodoncia, Facultad de Odontología, Universidad de Sevilla, Avicena s/n, 41009 Sevilla, Spain
| | - José Angel Delgado García-Menocal
- Bioengineering Institute of Technology, Facultad de Medicina y Ciencias de la Salud, Universidad Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08195 Barcelona, Spain
| | - Aritza Brizuela
- Facultad de Odontología, Universidad Europea Miguel de Cervantes, C/del Padre Julio Chevalier 2, 47012 Valladolid, Spain
| | - Andreu Puigdollers
- Department Ortodoncia, Facultad de Odontología, Universidad Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08195 Barcelona, Spain
| | - Eduardo Espinar
- Department of Ortodoncia, Facultad de Odontología, Universidad de Sevilla, Avicena s/n, 41009 Sevilla, Spain
| | - Javier Gil
- Bioengineering Institute of Technology, Facultad de Medicina y Ciencias de la Salud, Universidad Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08195 Barcelona, Spain
| |
Collapse
|
2
|
Kim Y, Ma L, Huang K, Nitin N. Bio-based antimicrobial compositions and sensing technologies to improve food safety. Curr Opin Biotechnol 2023; 79:102871. [PMID: 36621220 DOI: 10.1016/j.copbio.2022.102871] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/30/2022] [Accepted: 11/04/2022] [Indexed: 01/07/2023]
Abstract
Microbial contamination of food products is a significant challenge that impacts food safety and quality. This review focuses on bio-based technologies for enhancing the decontamination of raw foods during postharvest processing, preventing cross-contamination, and rapidly detecting microbial risks. The bio-based antimicrobial compositions include bio-based antimicrobial delivery systems and coatings. The antimicrobial delivery systems are developed using cell-based carriers, microbubbles, and lipid-based colloidal particles. The antimicrobial coatings are engineered by incorporating biopolymers with conventional antimicrobials or cell-based antimicrobial carriers. The bio-based sensing approaches focus on replacing antibodies with more stable and cost-effective bio-receptors, including antimicrobial peptides, bacteriophages, DNAzymes, and engineered liposomes. Together, these approaches can reduce microbial contamination risks and enhance the in-situ detection of microbes.
Collapse
Affiliation(s)
- Yoonbin Kim
- Department of Food Science & Technology, University of California, Davis, CA 95616, USA
| | - Luyao Ma
- Department of Food Science & Technology, University of California, Davis, CA 95616, USA
| | - Kang Huang
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Nitin Nitin
- Department of Food Science & Technology, University of California, Davis, CA 95616, USA; Department of Biological & Agricultural Engineering, University of California, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Pastor F, Rodríguez JC, Barrera JM, Delgado García-Menocal JA, Brizuela A, Puigdollers A, Espinar E, Gil J. Effect of Fluoride Content of Mouthwashes on Superelastic Properties of NiTi Orthodontic Archwires. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196592. [PMID: 36233934 PMCID: PMC9573170 DOI: 10.3390/ma15196592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 06/01/2023]
Abstract
The influence of sodium fluoride (NaF) concentration in mouthwashes on the properties of superelastic NiTi orthodontic wires has been studied. In this work, 55.8%Ni and 44.2%Ti (in weight) wires were introduced in commercial mouthwashes with different NaF contents (0, 130, 200 and 380 ppm). The release of Ni2+ and Ti4+ ions was by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) at 1, 4, 7 and 14 days. Superelastic orthodontic wires present at oral temperature the austenitic phase which is transformed into a plastic phase (martensite) by cooling. The temperatures at which this occurs are influenced by the chemical composition. The release of ions from the wire will produce variations in the temperatures and stresses of the stress-induced martensitic transformation. Ms, Mf, As, Af were determined by Differential Scanning Calorimeter (DSC). The transformation stresses (austenite to stress induce martensite) were determined with a servo-hydraulic testing machine at 37 °C. The surfaces for the different times and mouthwash were observed by Scanning Electron Microscope (SEM). The release of Ni2+ in mouthwashes with 380 ppm NaF concentrations reaches 230,000 ppb in 14 days and for Ti4+ 175,000 ppb. When NaF concentrations are lower than 200 ppm the release of Ni and Ti ions is around 1500 ppb after 14 days. This variation in compositions leads to variations in Ms from 27 °C to 43.5 °C in the case of higher NaF concentration. The increasing immersion time and NaF concentrations produce a decrease of Ni in the wires, increasing Ms which exceed 37 °C with the loss of superelasticity. In the same way, the stresses (tooth position corrective) decrease from 270 MPa to 0 MPa due to the martensitic phase. The degradation can produce the growth of precipitates rich in Ti (Ti2Ni). These results are of great interest in the orthodontic clinic in order to avoid the loss of the therapeutic properties of superelastic NiTi due to long immersion in fluoride mouthwashes.
Collapse
Affiliation(s)
- Francisco Pastor
- Departamento Ortodoncia, Facultad de Odontología, Universidad de Sevilla, Avicena s/n, 41009 Sevilla, Spain
| | - Juan Carlos Rodríguez
- Departamento Ortodoncia, Facultad de Odontología, Universidad de Sevilla, Avicena s/n, 41009 Sevilla, Spain
| | - José María Barrera
- Departamento Ortodoncia, Facultad de Odontología, Universidad de Sevilla, Avicena s/n, 41009 Sevilla, Spain
| | - José Angel Delgado García-Menocal
- Bioengineering Institute of Technology, Facultad de Medicina y Ciencias de la Salud, Universidad Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08195 Barcelona, Spain
| | - Aritza Brizuela
- Facultad de Odontología, Universidad Europea Miguel de Cervantes, C/del Padre Julio Chevalier 2, 47012 Valladolid, Spain
| | - Andreu Puigdollers
- Departamento Ortodoncia, Facultad de Odontología, Universidad Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08195 Barcelona, Spain
| | - Eduardo Espinar
- Departamento Ortodoncia, Facultad de Odontología, Universidad de Sevilla, Avicena s/n, 41009 Sevilla, Spain
| | - Javier Gil
- Bioengineering Institute of Technology, Facultad de Medicina y Ciencias de la Salud, Universidad Internacional de Catalunya, Josep Trueta s/n, Sant Cugat del Vallés, 08195 Barcelona, Spain
| |
Collapse
|
4
|
Møretrø T, Ferreira VB, Moen B, Almli VL, Teixeira P, Kasbo IM, Langsrud S. Bacterial levels and diversity in kitchen sponges and dishwashing brushes used by consumers. J Appl Microbiol 2022; 133:1378-1391. [PMID: 35560961 PMCID: PMC9542536 DOI: 10.1111/jam.15621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 10/29/2022]
Abstract
AIMS The purpose of the work was to investigate bacterial levels and diversity as well as survival of Salmonella in used dish washing sponges and brushes and identify consumer practices that can potentially explain bacterial status of these items. METHODS AND RESULTS Used washing up utensils were collected from consumers. The bacterial numbers (TVC) were very variable with an extremely high median level (10.3 log cfu/item) in Portuguese sponges and lower levels in Norwegian items (7.3 and 7.0 cfu/item for sponges and brushes). No self-reported practices or household composition could explain differences found in TVC levels among the collected sponges. Lower mean TVC levels were found in unworn brushes and brushes regularly cleaned with soap, but the differences were modest (1.5 log or less). A common set of bacteria was found in brushes and sponges, dominated by Acinetobacter, Chryseobacterium, Enhydrobacter, Enterobacteriaceae and Pseudomonas. There was no difference in TVC or bacterial diversity between conventional and antimicrobial sponges containing silver after four weeks of use. For used brushes inoculated with Salmonella and allowed to dry overnight, a significant reduction in Salmonella numbers was observed. No reduction was observed for brushes stored humid (in a plastic bag) or for sponges regardless of storing conditions. CONCLUSIONS Overall, lower bacterial levels were observed in used brushes than in sponges, and Salmonella died more rapidly in brushes. A common set of non-pathogenic bacteria dominated in brushes and sponges. SIGNIFICANCE AND IMPACT OF STUDY The study demonstrates that the use of brushes may be more hygienic than the use of sponges.
Collapse
Affiliation(s)
- Trond Møretrø
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Vânia B Ferreira
- University Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, Portugal
| | - Birgitte Moen
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Valérie L Almli
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Paula Teixeira
- University Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, Portugal
| | - Ida M Kasbo
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Solveig Langsrud
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| |
Collapse
|
5
|
Huang K, Yang X, Ma Y, Sun G, Nitin N. Incorporation of Antimicrobial Bio-Based Carriers onto Poly(vinyl alcohol- co-ethylene) Surface for Enhanced Antimicrobial Activity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36275-36285. [PMID: 34308624 DOI: 10.1021/acsami.1c07311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A biobased rechargeable antimicrobial modification approach was developed using a covalent immobilization of food grade yeast cell wall particles on a model plastic film. We demonstrate the applications of this modification approach on poly(vinyl alcohol-co-ethylene) surface to inactivate inoculated bacteria with or without the presence of organic content, reducing the cross-contamination between food contact surface and model fresh produce, and inhibiting the growth of biofilms on the film surface. These biobased cell wall particle modified plastic films can enhance the binding of chlorine to the plastic surface in the form of N-halamine, extend the stability of chlorine against high organic content and ambient storage, and improve the rechargeability of the plastic films. Upon charging with chlorine, these modified plastic films inactivated 5 log of model Gram-negative bacteria (Escherichia coli O157:H7) and Gram-positive bacteria (Listeria innocua used as a surrogate of pathogenic Listeria monocytogenes) within 2 min of surface inoculation in water and within 20 min in an organic-rich aqueous environment. The modified plastic films prevented the transfer of bacteria and eliminated cross-contamination from the contaminated films to a spinach leaf surface, while 3 log CFU/leaf of bacteria were transferred from a contaminated native film to a noninoculated spinach surface. In addition, these modified plastic films reduced the adhesion of L. innocua cells by 2.7-3.6 log CFU/cm2 compared with control films during extended incubation for biofilm formation. Overall, this study demonstrates the feasibility of this biobased food grade modification approach to reduce microbial contamination and improve produce safety in the food processing industry.
Collapse
Affiliation(s)
- Kang Huang
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Xu Yang
- Department of Food Science and Technology, University of California-Davis, Davis, California 95616, United States
| | - Yue Ma
- Fiber and Polymer Science, University of California-Davis, Davis, California 95616, United States
| | - Gang Sun
- Fiber and Polymer Science, University of California-Davis, Davis, California 95616, United States
| | - Nitin Nitin
- Department of Food Science and Technology, University of California-Davis, Davis, California 95616, United States
- Department of Biological and Agricultural Engineering, University of California-Davis, Davis, California 95616, United States
| |
Collapse
|
6
|
Faheim AA, Elsawy M, Salem SS, Abd El-Wahab H. Novel antimicrobial paint based on binary and ternary dioxouranium (VI) complexes for surface coating applications. PROGRESS IN ORGANIC COATINGS 2021; 151:106027. [DOI: 10.1016/j.porgcoat.2020.106027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
7
|
Møretrø T, Moen B, Almli VL, Teixeira P, Ferreira VB, Åsli AW, Nilsen C, Langsrud S. Dishwashing sponges and brushes: Consumer practices and bacterial growth and survival. Int J Food Microbiol 2020; 337:108928. [PMID: 33152572 DOI: 10.1016/j.ijfoodmicro.2020.108928] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/31/2022]
Abstract
Sponges are frequently used in kitchens and have been shown to harbor large numbers of bacteria, occasionally also pathogens. Less is known about kitchen brushes regarding usage and presence of bacteria. In the present study, the use of sponges and brushes was studied in a survey among 9966 European consumers in ten countries, and growth and survival of bacteria in sponges and brushes were examined in laboratory experiments. Sponges were the preferred hand-cleaning utensils for washing-up in the majority of countries, while brushes were most frequently used in Denmark and Norway. Consumers mostly change their sponges at regular times, but also sensory cues (looks dirty, smelly, slimy) and usage occurrences such as wiping up meat juices may trigger replacement. Besides cleaning the dishes, over a quarter of the dish brush users also use it to clean a chopping board after soilage from chicken meat juices. The water uptake and drying rate varied considerably, both between different sponges and between brushes and sponges, where brushes dried fastest. Campylobacter survived one day in all sponges and Salmonella more than seven days in two of three types of sponges. In the type of sponge that dried slowest, Salmonella grew on the first day and was always found in higher levels than in the other sponges. Non-pathogenic bacteria grew in the sponges and reached levels around 9 log CFU/sponge. In brushes all types of bacteria died over time. Campylobacter and Salmonella were reduced by more than 2.5 log to below the detection limit after one and three days, respectively. Bacteriota studies revealed a tendency for a dominance by Gram-negative bacteria and a shift to high relative prevalence of Pseudomonas over time in sponges. Both enumeration by agar plating and bacteriota analysis confirmed that the pathogens were in a minority compared to the other bacteria. Treatments of sponges and brushes with chlorine, boiling or in the dishwasher were effective to reduce Salmonella. We conclude that brushes are more hygienic than sponges and that their use should be encouraged. Contaminated sponges or brushes should be replaced or cleaned when they may have been in contact with pathogenic microorganisms, e.g. used on raw food spills. Cleaning of sponges and brushes with chlorine, boiling or dishwasher may be a safe alternative to replacing them with new ones.
Collapse
Affiliation(s)
- Trond Møretrø
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Ås, Norway.
| | - Birgitte Moen
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Ås, Norway
| | - Valérie L Almli
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Ås, Norway
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Vânia B Ferreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Anette Wold Åsli
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Ås, Norway
| | - Charlotte Nilsen
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Ås, Norway
| | - Solveig Langsrud
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Ås, Norway
| |
Collapse
|
8
|
Ding L, Wang H, Liu D, Zheng Z. Surface Attachment of Natural Antimicrobial Coatings onto Conventional Polypropylene Nonwoven Fabric and Its Antimicrobial Performance Assessment. J Food Prot 2018; 81:172-177. [PMID: 29315027 DOI: 10.4315/0362-028x.jfp-17-177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The growing number of microbial cross-contamination events necessitates the development of novel antimicrobial strategies in the food industry. In this study, a polypropylene nonwoven fabric (PPNWF) was grafted with a natural antimicrobial component, aloe emodin (AE), and its antimicrobial performance was evaluated. The grafted samples (PPNWF-g-AE) were examined using Fourier transform infrared spectroscopy and scanning electron microscopy. AE was effectively grafted onto the surface of the PPNWF through the adsorption covalent effect. Compared with nongrafted PPNWF, the antimicrobial activity of PPNWF-g-AE against Staphylococcus aureus, Escherichia coli, and Candida albicans was significantly enhanced. Scanning electron micrographs confirmed that the inhibitory mechanism of PPNWF-g-AE was the microbicidal function of the grafted AE. These findings indicate that PPNWF-g-AE has potential as an effective antimicrobial material in food applications.
Collapse
Affiliation(s)
- Lijun Ding
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Hao Wang
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Dan Liu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Zhengnan Zheng
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
9
|
Yemmireddy VK, Hung YC. Using Photocatalyst Metal Oxides as Antimicrobial Surface Coatings to Ensure Food Safety-Opportunities and Challenges. Compr Rev Food Sci Food Saf 2017; 16:617-631. [PMID: 33371565 DOI: 10.1111/1541-4337.12267] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 11/30/2022]
Abstract
Cross-contamination of foods with pathogenic microorganisms such as bacteria, viruses, and parasites may occur at any point in the farm to fork continuum. Food contact and nonfood contact surfaces are the most frequent source of microbial cross-contamination. In the wake of new and emerging food safety challenges, including antibiotic-resistant human pathogens, conventional sanitation and disinfection practices may not be sufficient to ensure safe food processing, proper preparation, and also not be environmentally friendly. Nanotechnology-enabled novel food safety interventions have a great potential to mitigate the risk of microbial cross-contamination in the food chain. Especially engineered nanoparticles (ENPs) are increasingly finding novel applications as antimicrobial agents. Among various ENPs, photocatalyst metal oxides have shown great promise as effective nontargeted disinfectants over a wide range of microorganisms. The present review provides an overview of antimicrobial properties of various photocatalyst metal oxides and their potential applications as surface coatings. Further, this review discusses the most common approaches to developing antimicrobial coatings, methods to characterize, test, and evaluate antimicrobial efficacy as well as the physical stability of the coatings. Finally, regulations and challenges concerning the use of these novel photocatalytic antimicrobial coatings are also discussed.
Collapse
Affiliation(s)
- Veerachandra K Yemmireddy
- Dept. of Food Science and Technology, Univ. of Georgia, 1109 Experiment Street, Griffin, Ga., 30223-1797, U.S.A
| | - Yen-Con Hung
- Dept. of Food Science and Technology, Univ. of Georgia, 1109 Experiment Street, Griffin, Ga., 30223-1797, U.S.A
| |
Collapse
|
10
|
Torres-Giner S, Torres A, Ferrándiz M, Fombuena V, Balart R. Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. J Food Saf 2017. [DOI: 10.1111/jfs.12348] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sergio Torres-Giner
- Technological Institute of Materials (ITM); Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1; Alcoy 03801 Spain
| | - Ana Torres
- Textile Industry Research Association (AITEX), Plaza Emilio Sala 1; Alcoy 03801 Spain
| | - Marcela Ferrándiz
- Textile Industry Research Association (AITEX), Plaza Emilio Sala 1; Alcoy 03801 Spain
| | - Vicent Fombuena
- Technological Institute of Materials (ITM); Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1; Alcoy 03801 Spain
| | - Rafael Balart
- Technological Institute of Materials (ITM); Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1; Alcoy 03801 Spain
| |
Collapse
|
11
|
James C, Onarinde BA, James SJ. The Use and Performance of Household Refrigerators: A Review. Compr Rev Food Sci Food Saf 2016; 16:160-179. [DOI: 10.1111/1541-4337.12242] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Christian James
- Food Refrigeration & Process Engineering Research Centre (FRPERC); The Grimsby Inst of Further & Higher Education (GIFHE); Nuns Corner Grimsby North East Lincolnshire DN34 5BQ U.K
| | - Bukola A. Onarinde
- College of Sciences, Natl Centre for Food Manufacturing; Univ of Lincoln; Park Rd., Holbeach Spalding PE12 7PT U.K
| | - Stephen J. James
- Food Refrigeration & Process Engineering Research Centre (FRPERC); The Grimsby Inst of Further & Higher Education (GIFHE); Nuns Corner Grimsby North East Lincolnshire DN34 5BQ U.K
| |
Collapse
|
12
|
Wang H, Wei D, Zheng A, Xiao H. Soil burial biodegradation of antimicrobial biodegradable PBAT films. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2015.03.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Bastarrachea LJ, Denis-Rohr A, Goddard JM. Antimicrobial Food Equipment Coatings: Applications and Challenges. Annu Rev Food Sci Technol 2015; 6:97-118. [DOI: 10.1146/annurev-food-022814-015453] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Luis J. Bastarrachea
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003;
| | - Anna Denis-Rohr
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003;
| | - Julie M. Goddard
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003;
| |
Collapse
|
14
|
Wang H, Wei D, Ziaee Z, Xiao H, Zheng A, Zhao Y. Preparation and Properties of Nonleaching Antimicrobial Linear Low-Density Polyethylene Films. Ind Eng Chem Res 2015. [DOI: 10.1021/ie504393t] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Hao Wang
- Department
of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Dafu Wei
- Department
of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
- School
of Materials Science and Engineering, Key Laboratory for Ultrafine
Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zainab Ziaee
- Department
of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Huining Xiao
- Department
of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
- School
of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, P. R. China
| | - Anna Zheng
- School
of Materials Science and Engineering, Key Laboratory for Ultrafine
Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yi Zhao
- School
of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, P. R. China
| |
Collapse
|
15
|
Bastarrachea LJ, McLandsborough LA, Peleg M, Goddard JM. Antimicrobial N-halamine modified polyethylene: characterization, biocidal efficacy, regeneration, and stability. J Food Sci 2014; 79:E887-97. [PMID: 24754818 DOI: 10.1111/1750-3841.12455] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/11/2014] [Indexed: 11/27/2022]
Abstract
UNLABELLED Development of antimicrobial materials that regenerate antimicrobial activity represents a novel technology in preventing microbial cross-contamination. We report a method for the application of regenerably antimicrobial N-halamines onto the surface of polyethylene (PE) materials through layer-by-layer (LbL) assembly of polyethyleneimine and poly(acrylic acid). A total of 5, 10, 15, and 20 bilayers were applied. Modified PE had from 49.3 to 293.5 nmol cm(-2) antimicrobial N-halamines from 5 to 20 bilayers after 10 min of chlorination. Each variant of N-halamine modified PE was able to reduce by >5 logarithmic cycles Listeria monocytogenes. The stability of N-halamine modified PE was characterized after extended exposure to chlorine, acidic solutions, and an alkaline cleaner. After an initial conditioning period, materials generated more than double the quantity of N-halamines present on as prepared materials, retaining regenerability for up to 100 chlorination cycles. After the equivalent of 300 washing cycles by buffers (pH values 3, 5, and 7) or a commercial alkaline detergent, there was no change in the number of antimicrobial N-halamines on the modified materials. These results indicate that the reported LbL deposition technique results in antimicrobial N-halamine materials capable of long-term reuse and exposure to harsh chemicals as expected in a food-processing environment. Such robust, regenerably antimicrobial materials could be an effective technology in the food industry to prevent cross-contamination of pathogenic and spoilage microorganisms. PRACTICAL APPLICATION The food contact surface of polyethylene was modified by layer-by-layer deposition of 2 polymers, resulting in a rechargeably antimicrobial surface. Repeated exposure to chlorine regenerated its antimicrobial activity, resulting in greater than 99.999% reduction in Listeria monocytogenes. Materials were stable against repeated washing and exposure to acidic environments. These food contact materials could support current cleaning and sanitization protocols in improving food safety in the processing environment.
Collapse
Affiliation(s)
- Luis J Bastarrachea
- Dept. of Food Science, Univ. of Massachusetts, 102 Holdsworth way, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
16
|
Vestby LK, Johannesen KCS, Witsø IL, Habimana O, Scheie AA, Urdahl AM, Benneche T, Langsrud S, Nesse LL. Synthetic brominated furanone F202 prevents biofilm formation by potentially human pathogenic Escherichia coli O103:H2 and Salmonella ser. Agona on abiotic surfaces. J Appl Microbiol 2014; 116:258-68. [PMID: 24118802 PMCID: PMC4255294 DOI: 10.1111/jam.12355] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 02/07/2023]
Abstract
AIMS Investigate the use of a synthetic brominated furanone (F202) against the establishment of biofilm by Salmonella ser. Agona and E. coli O103:H2 under temperature conditions relevant for the food and feed industry as well as under temperature conditions optimum for growth. METHODS AND RESULTS Effect of F202 on biofilm formation by Salmonella ser. Agona and E. coli O103:H2 was evaluated using a microtiter plate assay and confocal microscopy. Effect of F202 on bacterial motility was investigated using swimming and swarming assays. Influence on flagellar synthesis by F202 was examined by flagellar staining. Results showed that F202 inhibited biofilm formation without being bactericidal. F202 was found to affect both swimming and swarming motility without, however, affecting the expression of flagella. CONCLUSIONS F202 showed its potential as a biofilm inhibitor of Salmonella ser. Agona and E. coli O103:H2 under temperature conditions relevant for the feed and food industry as well as temperatures optimum for growth. One potential mode of action of F202 was found to be by targeting flagellar function. SIGNIFICANCE AND IMPACT OF THE STUDY The present study gives valuable new knowledge to the potential use of furanones as a tool in biofilm management in the food and feed industry.
Collapse
Affiliation(s)
- L K Vestby
- Norwegian Veterinary Institute, Department of Laboratory Services, Section for Bacteriology- aquatic and terrestrial, Oslo, Norway
| | - K C S Johannesen
- Norwegian Veterinary Institute, Department of Laboratory Services, Section for Bacteriology- aquatic and terrestrial, Oslo, Norway
| | - I L Witsø
- Faculty of Dentistry, Department of Oral Biology, University of Oslo, Oslo, Norway
| | | | - A A Scheie
- Faculty of Dentistry, Department of Oral Biology, University of Oslo, Oslo, Norway
| | - A M Urdahl
- Norwegian Veterinary Institute, Department of Health Surveillance, Section for Veterinary Public Health, Oslo, Norway
| | - T Benneche
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, University of Oslo, Oslo, Norway
| | | | - L L Nesse
- Norwegian Veterinary Institute, Department of Laboratory Services, Section for Bacteriology- aquatic and terrestrial, Oslo, Norway
| |
Collapse
|
17
|
Inactivation of Listeria monocytogenes on a polyethylene surface modified by layer-by-layer deposition of the antimicrobial N-halamine. J FOOD ENG 2013. [DOI: 10.1016/j.jfoodeng.2013.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Møretrø T, Høiby-Pettersen GS, Halvorsen CK, Langsrud S. Antibacterial activity of cutting boards containing silver. Food Control 2012. [DOI: 10.1016/j.foodcont.2012.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Bastarrachea LJ, Goddard JM. Development of antimicrobial stainless steel via surface modification with N-halamines: Characterization of surface chemistry and N-halamine chlorination. J Appl Polym Sci 2012. [DOI: 10.1002/app.37806] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|