1
|
Brown TL, Ku H, Mnatzaganian G, Angove M, Petrovski S, Kabwe M, Tucci J. The varying effects of a range of preservatives on Myoviridae and Siphoviridae bacteriophages formulated in a semi-solid cream preparation. Lett Appl Microbiol 2020; 71:203-209. [PMID: 32294268 DOI: 10.1111/lam.13299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 01/28/2023]
Abstract
Bacteriophages may be formulated into semi-solid bases for therapeutic delivery. This work investigated the effects of a range of preservatives on the viability of Myoviridae and Siphoviridae bacteriophages when these were formulated into a standard semi-solid cream base. The six preservatives tested included: benzoic acid (0·1%), chlorocresol (0·1%), combination hydroxybenzoates (propyl 4-hydroxybenzoates with methyl 4-hydroxybenzoates) (0·1%), methyl 4-hydroxybenzoate (0·08%), 2-phenoxyethanol (1%) and propyl 4-hydroxybenzoate (0·02%). These were each formulated into cetomacrogol cream aqueous to generate six individual semi-solid bases into which Myoviridae and Siphoviridae bacteriophages were added and tested for stability. Optimal bacteriophage stability was seen when the preservative chlorocresol was used. Bacteriophage in the acidic benzoic acid were the least stable, resulting in complete loss of viability after 4-5 weeks. Of the bacteriophages tested, the Myoviridae KOX1 was significantly more stable than the Siphoviridae PAC1 after 91 days in formulations with each of the preservatives. Our results suggest the need for individual testing of specific bacteriophages in pharmaceutical formulations, as their efficacy when exposed to preservatives and excipients in these delivery forms may vary. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacteriophages are being increasingly investigated as alternatives to antibiotics. While bacteriophages can be formulated in diverse ways for therapeutic delivery, there has been scant work on how excipients and preservatives in these formulations affect stability of different bacteriophages. We demonstrate that the nature of preservatives in formulations will affect bacteriophage stability, and that in these formulations, viability of bacteriophage differs according to their morphology. Our work highlights the need for individual testing of specific bacteriophages in pharmaceutical formulations, as efficacy when exposed to preservatives and excipients in these delivery forms may vary.
Collapse
Affiliation(s)
- T L Brown
- Department of Pharmacy and Biomedical Science, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia.,Quadram Institute Bioscience, Norwich, UK
| | - H Ku
- Department of Pharmacy and Biomedical Science, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - G Mnatzaganian
- Rural Department of Community Health, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
| | - M Angove
- Department of Pharmacy and Biomedical Science, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - S Petrovski
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - M Kabwe
- Department of Pharmacy and Biomedical Science, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - J Tucci
- Department of Pharmacy and Biomedical Science, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| |
Collapse
|
2
|
Pinto AM, Cerqueira MA, Bañobre-Lópes M, Pastrana LM, Sillankorva S. Bacteriophages for Chronic Wound Treatment: from Traditional to Novel Delivery Systems. Viruses 2020; 12:E235. [PMID: 32093349 PMCID: PMC7077204 DOI: 10.3390/v12020235] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
The treatment and management of chronic wounds presents a massive financial burden for global health care systems, with significant and disturbing consequences for the patients affected. These wounds remain challenging to treat, reduce the patients' life quality, and are responsible for a high percentage of limb amputations and many premature deaths. The presence of bacterial biofilms hampers chronic wound therapy due to the high tolerance of biofilm cells to many first- and second-line antibiotics. Due to the appearance of antibiotic-resistant and multidrug-resistant pathogens in these types of wounds, the research for alternative and complementary therapeutic approaches has increased. Bacteriophage (phage) therapy, discovered in the early 1900s, has been revived in the last few decades due to its antibacterial efficacy against antibiotic-resistant clinical isolates. Its use in the treatment of non-healing wounds has shown promising outcomes. In this review, we focus on the societal problems of chronic wounds, describe both the history and ongoing clinical trials of chronic wound-related treatments, and also outline experiments carried out for efficacy evaluation with different phage-host systems using in vitro, ex vivo, and in vivo animal models. We also describe the modern and most recent delivery systems developed for the incorporation of phages for species-targeted antibacterial control while protecting them upon exposure to harsh conditions, increasing the shelf life and facilitating storage of phage-based products. In this review, we also highlight the advances in phage therapy regulation.
Collapse
Affiliation(s)
- Ana M. Pinto
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; (A.M.P.); (M.A.C.); (M.B.-L.); (L.M.P.)
- CEB—Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Miguel A. Cerqueira
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; (A.M.P.); (M.A.C.); (M.B.-L.); (L.M.P.)
| | - Manuel Bañobre-Lópes
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; (A.M.P.); (M.A.C.); (M.B.-L.); (L.M.P.)
| | - Lorenzo M. Pastrana
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; (A.M.P.); (M.A.C.); (M.B.-L.); (L.M.P.)
| | - Sanna Sillankorva
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; (A.M.P.); (M.A.C.); (M.B.-L.); (L.M.P.)
| |
Collapse
|
3
|
Jończyk-Matysiak E, Łodej N, Kula D, Owczarek B, Orwat F, Międzybrodzki R, Neuberg J, Bagińska N, Weber-Dąbrowska B, Górski A. Factors determining phage stability/activity: challenges in practical phage application. Expert Rev Anti Infect Ther 2019; 17:583-606. [PMID: 31322022 DOI: 10.1080/14787210.2019.1646126] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Phages consist of nucleic acids and proteins that may lose their activity under different physico-chemical conditions. The production process of phage formulations may decrease phage infectivity. Ingredients present in the preparation may influence phage particles, although preparation and storage conditions may also cause variations in phage titer. Significant factors are the manner of phage application, the patient's immune system status, the type of medication being taken, and diet. Areas covered: We discuss factors determining phage activity and stability, which is relevant for the preparation and application of phage formulations with the highest therapeutic efficacy. Our article should be helpful for more insightful implementation of clinical trials, which could pave the way for successful phage therapy. Expert opinion: The number of naturally occurring phages is practically unlimited and phages vary in their susceptibility to external factors. Modern methods offer engineering techniques which should lead to enhanced precision in phage delivery and anti-bacterial activity. Recent data suggesting that phages may also be used in treating nonbacterial infections as well as anti-inflammatory and immunomodulatory agents add further weight to such studies. It may be anticipated that different phage activities could have varying susceptibility to factors determining their actions.
Collapse
Affiliation(s)
- Ewa Jończyk-Matysiak
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Norbert Łodej
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Dominika Kula
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Barbara Owczarek
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Filip Orwat
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Ryszard Międzybrodzki
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland.,b Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw , Warsaw , Poland.,c Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Joanna Neuberg
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Natalia Bagińska
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Beata Weber-Dąbrowska
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland.,c Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| | - Andrzej Górski
- a Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland.,b Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw , Warsaw , Poland.,c Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences , Wroclaw , Poland
| |
Collapse
|
4
|
Batinovic S, Wassef F, Knowler SA, Rice DTF, Stanton CR, Rose J, Tucci J, Nittami T, Vinh A, Drummond GR, Sobey CG, Chan HT, Seviour RJ, Petrovski S, Franks AE. Bacteriophages in Natural and Artificial Environments. Pathogens 2019; 8:pathogens8030100. [PMID: 31336985 PMCID: PMC6789717 DOI: 10.3390/pathogens8030100] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages (phages) are biological entities that have attracted a great deal of attention in recent years. They have been reported as the most abundant biological entities on the planet and their ability to impact the composition of bacterial communities is of great interest. In this review, we aim to explore where phages exist in natural and artificial environments and how they impact communities. The natural environment in this review will focus on the human body, soils, and the marine environment. In these naturally occurring environments there is an abundance of phages suggesting a role in the maintenance of bacterial community homeostasis. The artificial environment focuses on wastewater treatment plants, industrial processes, followed by pharmaceutical formulations. As in natural environments, the existence of bacteria in manmade wastewater treatment plants and industrial processes inevitably attracts phages. The presence of phages in these environments can inhibit the bacteria required for efficient water treatment or food production. Alternatively, they can have a positive impact by eliminating recalcitrant organisms. Finally, we conclude by describing how phages can be manipulated or formulated into pharmaceutical products in the laboratory for use in natural or artificial environments.
Collapse
Affiliation(s)
- Steven Batinovic
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Flavia Wassef
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Sarah A Knowler
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Daniel T F Rice
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Cassandra R Stanton
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Jayson Rose
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Joseph Tucci
- Department of Pharmacy & Biomedical Sciences, La Trobe University, Bendigo, VIC 3550, Australia
| | - Tadashi Nittami
- Division of Materials Science and Chemical Engineering, Yokohama National University, Yokohama 240-8501, Japan
| | - Antony Vinh
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Hiu Tat Chan
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Robert J Seviour
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Steve Petrovski
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia.
| | - Ashley E Franks
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
5
|
Nyambe S, Burgess C, Whyte P, Bolton D. The Survival of a Temperate vtx Bacteriophage and an Anti-Verocytotoxigenic Escherichia coli O157 Lytic Phage in Water and Soil Samples. Zoonoses Public Health 2016; 63:632-640. [PMID: 27334728 DOI: 10.1111/zph.12278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 11/28/2022]
Abstract
Verocytotoxigenic (vtx) Escherichia coli (VTEC) are zoonotic foodborne pathogens with the vtx operon encoded by lambdoid bacteriophage (phage). Despite much research on the host bacteria, similar data on the persistence of verocytotoxin converting phage and the ecological niches where transduction occurs are lacking and novel VTEC of important public health significance, have and continue to emerge. This study investigated the survival of a temperate vtx bacteriophage (24B ::kanamycinR ) in water (raw farm, pasteurized farm, laboratory tap and autoclaved purified water) and soil (sandy loam and loam soil). It also examined the persistence of an anti-VTEC lytic phage (e11/2) in the same matrices as this may be one option for controlling the emergence of novel VTEC, especially in farm ecological niches where other control options, such as chemical, heat or high pressure treatments, are not feasible. Samples inoculated with 24B ::kanamycinR and e11/2 bacteriophage (8 log10 pfu/ml or pfu/g) separately were incubated at 4°C and 14°C, representative Irish Winter and Summer temperatures, respectively, and tested every 2 days for 40 days. The transduction of 24B ::kanamycinR was also continuously assessed. Both phages survived with reductions observed, regardless of matrix or storage temperature. Moreover, 24B ::kanamycinR was able to transduce its host E. coli strain. It was therefore concluded that aquatic and soil environments on farms may serve as a vtx phage reservoir and transduction point but anti-VTEC phage is a possible biocontrol option.
Collapse
Affiliation(s)
- S Nyambe
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland.,School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - C Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| | - P Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - D Bolton
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland
| |
Collapse
|
6
|
Antimicrobial efficacy of grape seed extract against Escherichia coli O157:H7 growth, motility and Shiga toxin production. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.11.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Persistence of infectious Shiga toxin-encoding bacteriophages after disinfection treatments. Appl Environ Microbiol 2014; 80:2142-9. [PMID: 24463973 DOI: 10.1128/aem.04006-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In Shiga toxin-producing Escherichia coli (STEC), induction of Shiga toxin-encoding bacteriophages (Stx phages) causes the release of free phages that can later be found in the environment. The ability of Stx phages to survive different inactivation conditions determines their prevalence in the environment, the risk of stx transduction, and the generation of new STEC strains. We evaluated the infectivity and genomes of two Stx phages (Φ534 and Φ557) under different conditions. Infectious Stx phages were stable at 4, 22, and 37°C and at pH 7 and 9 after 1 month of storage but were completely inactivated at pH 3. Infective Stx phages decreased moderately when treated with UV (2.2-log10 reduction for an estimated UV dose of 178.2 mJ/cm(2)) or after treatment at 60 and 68°C for 60 min (2.2- and 2.5-log10 reductions, respectively) and were highly inactivated (3 log10) by 10 ppm of chlorine in 1 min. Assays in a mesocosm showed lower inactivation of all microorganisms in winter than in summer. The number of Stx phage genomes did not decrease significantly in most cases, and STEC inactivation was higher than phage inactivation under all conditions. Moreover, Stx phages retained the ability to lysogenize E. coli after some of the treatments.
Collapse
|
8
|
Langsrud S, Heir E, Rode TM. Survival of Shiga toxin-producing Escherichia coli and Stx bacteriophages in moisture enhanced beef. Meat Sci 2013; 97:339-46. [PMID: 24134920 DOI: 10.1016/j.meatsci.2013.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 09/13/2013] [Accepted: 09/24/2013] [Indexed: 10/26/2022]
Abstract
Moisture enhancement of meat through injection is a technology to improve the sensory properties and the weight of meat. However, the technology may increase the risk of food borne infections. Shiga toxin-producing Escherichia coli (STEC) or bacteriophages carrying cytotoxin genes (Shiga toxin genes, stx), which is normally only present on the surface of intact beef, may be transferred to the inner parts of the muscle during the injection process. Pathogens and bacteriophages surviving the storage period may not be eliminated in the cooking process since many consumers prefer undercooked beef. Measures to increase the microbial food safety of moisture enhanced beef may include sterilization or washing of the outer surface of the meat before injection, avoiding recycling of marinade and addition of antimicrobial agents to the marinade. This paper reviews the literature regarding microbial safety of moisture enhanced beef with special emphasis on STEC and Stx bacteriophages. Also, results from a European Union research project, ProSafeBeef (Food-CT-16 2006-36241) are presented.
Collapse
Affiliation(s)
- Solveig Langsrud
- Nofima, Norwegian Institute of Food, Fishery and Aquaculture, P.O. Box 210, N-1431 Ås, Norway
| | - Even Heir
- Nofima, Norwegian Institute of Food, Fishery and Aquaculture, P.O. Box 210, N-1431 Ås, Norway
| | - Tone Mari Rode
- Nofima, Norwegian Institute of Food, Fishery and Aquaculture, P.O. Box 210, N-1431 Ås, Norway
| |
Collapse
|
9
|
Friedman M, Rasooly R. Review of the inhibition of biological activities of food-related selected toxins by natural compounds. Toxins (Basel) 2013; 5:743-75. [PMID: 23612750 PMCID: PMC3705290 DOI: 10.3390/toxins5040743] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/05/2013] [Accepted: 04/16/2013] [Indexed: 11/17/2022] Open
Abstract
There is a need to develop food-compatible conditions to alter the structures of fungal, bacterial, and plant toxins, thus transforming toxins to nontoxic molecules. The term 'chemical genetics' has been used to describe this approach. This overview attempts to survey and consolidate the widely scattered literature on the inhibition by natural compounds and plant extracts of the biological (toxicological) activity of the following food-related toxins: aflatoxin B1, fumonisins, and ochratoxin A produced by fungi; cholera toxin produced by Vibrio cholerae bacteria; Shiga toxins produced by E. coli bacteria; staphylococcal enterotoxins produced by Staphylococcus aureus bacteria; ricin produced by seeds of the castor plant Ricinus communis; and the glycoalkaloid α-chaconine synthesized in potato tubers and leaves. The reduction of biological activity has been achieved by one or more of the following approaches: inhibition of the release of the toxin into the environment, especially food; an alteration of the structural integrity of the toxin molecules; changes in the optimum microenvironment, especially pH, for toxin activity; and protection against adverse effects of the toxins in cells, animals, and humans (chemoprevention). The results show that food-compatible and safe compounds with anti-toxin properties can be used to reduce the toxic potential of these toxins. Practical applications and research needs are suggested that may further facilitate reducing the toxic burden of the diet. Researchers are challenged to (a) apply the available methods without adversely affecting the nutritional quality, safety, and sensory attributes of animal feed and human food and (b) educate food producers and processors and the public about available approaches to mitigating the undesirable effects of natural toxins that may present in the diet.
Collapse
Affiliation(s)
- Mendel Friedman
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, USDA, Albany, CA 94710, USA
| | - Reuven Rasooly
- Foodborne Contaminants Research Unit, Agricultural Research Service, USDA, Albany, CA 94710, USA; E-Mail:
| |
Collapse
|