1
|
Abstract
Citrus essential oils (EOs) are widely used as flavoring agents in food, pharmaceutical, cosmetical and chemical industries. For this reason, their demand is constantly increasing all over the world. Besides industrial applications, the abundance of EOs in the epicarp is particularly relevant for the quality of citrus fruit. In fact, these compounds represent a natural protection against postharvest deteriorations due to their remarkable antimicrobial, insecticidal and antioxidant activities. Several factors, including genotype, climatic conditions and cultural practices, can influence the assortment and accumulation of EOs in citrus peels. This review is focused on factors influencing variation of the EOs’ composition during ripening and on the implications on postharvest quality of the fruit.
Collapse
|
2
|
Pei P, Xiong K, Wang X, Sun B, Zhao Z, Zhang X, Yu J. Predictive growth kinetic parameters and modelled probabilities of deoxynivalenol production by Fusarium graminearum on wheat during simulated storing conditions. J Appl Microbiol 2022; 133:349-361. [PMID: 35365897 DOI: 10.1111/jam.15557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
AIMS Mathematical models were employed to predict the growth kinetic parameters of F. graminearum and the accumulation of deoxynivalenol (DON) during wheat storage as a function of different moisture contents (MCs) and temperatures. METHODS AND RESULTS The colony counting method was used to quantify F. graminearum growth under different environmental conditions, and kinetic and probability models were developed to describe the effect of different MCs and temperatures on fungal growth and DON production during wheat storage. Among the employed secondary models (Arrhenius-Davey, Gibson, and Cardinal), the general polynomial best predicted the fungal growth rate under varying temperature and MC during wheat storage. According to the logistic model, DON contamination was correctly predicted in 96.5% of cases. CONCLUSIONS The maximum growth rate of fungi was 0.4889±0.092 Log CFU g-1 d-1 at 25°C and 30% moisture according to the polynomial model. At below 17°C and ≤15% moisture, no fungal growth was observed. The probability model of toxin production showed no toxin production at less than 15% moisture (aw ≤ 0.76) and below 15°C. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first application of a probability model of DON production during wheat storage, providing a reference for preventing fungal growth and mycotoxin accumulation by F. graminearum during wheat storage and guaranteeing food product safety.
Collapse
Affiliation(s)
- Penggang Pei
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU),, Beijing, China.,Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing, China
| | - Ke Xiong
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU),, Beijing, China.,Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, China
| | - Xiaoyi Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU),, Beijing, China.,College of Artificial Intelligence, Beijing Technology and Business University (BTBU), Beijing, China
| | - Baoguo Sun
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU),, Beijing, China.,Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing, China
| | - Zhiyao Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU),, Beijing, China.,College of Artificial Intelligence, Beijing Technology and Business University (BTBU), Beijing, China
| | - Xin Zhang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU),, Beijing, China.,College of Artificial Intelligence, Beijing Technology and Business University (BTBU), Beijing, China
| | - Jiabin Yu
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, China.,College of Artificial Intelligence, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
3
|
Marín S, Freire L, Femenias A, Sant’Ana AS. Use of predictive modelling as tool for prevention of fungal spoilage at different points of the food chain. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Huang X, Ren J, Li P, Feng S, Dong P, Ren M. Potential of microbial endophytes to enhance the resistance to postharvest diseases of fruit and vegetables. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1744-1757. [PMID: 32974893 DOI: 10.1002/jsfa.10829] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Food loss of fruit and vegetables caused by postharvest diseases is a major issue worldwide. The method used to prevent and control postharvest diseases is usually to use chemical fungicides, but long-term and large-scale use will make the pathogens resistant and potentially have a negative impact on human health and the ecological environment. Therefore, finding a safe and effective biological control method instead of chemical control is a hot research topic in recent years. Endophytes, colonizing plants asymptomatically, can promote the growth of the hosts and enhance their resistance. The use of endophytes as biological control agents for postharvest diseases of fruit and vegetables has attracted increasing attention in the last 20 years. Compared with chemical control, endophytes have the advantages of being more environmentally friendly, sustainable, and safer. However, there are relatively few relevant studies, so herein we summarize the available literature. This review focuses mainly on the recent progress of using endophytes to enhance the resistance of postharvest fruit and vegetables to diseases, with the emphasis on the possible mechanisms and the potential applications. Furthermore, this article suggests future areas for study using antagonistic endophytes to prevent and control fruit and vegetable postharvest diseases: (i) screening more potential broad-spectrum anti-pathogen endophytes and their metabolic active substances by the method of macrogenomics; (ii) elucidating the underlining molecular mechanism among endophytes, harvested vegetables and fruit, pathogens, and microbial communities; (iii) needing more application research to overcome the difficulties of commercialization practice. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoqing Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jie Ren
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Peihua Li
- College of Agronomy, Xichang University, Xichang, China
| | - Shun Feng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Maozhi Ren
- School of Life Sciences, Chongqing University, Chongqing, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
5
|
Faddetta T, Abbate L, Alibrandi P, Arancio W, Siino D, Strati F, De Filippo C, Fatta Del Bosco S, Carimi F, Puglia AM, Cardinale M, Gallo G, Mercati F. The endophytic microbiota of Citrus limon is transmitted from seed to shoot highlighting differences of bacterial and fungal community structures. Sci Rep 2021; 11:7078. [PMID: 33782436 PMCID: PMC8007603 DOI: 10.1038/s41598-021-86399-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 03/10/2021] [Indexed: 11/28/2022] Open
Abstract
Citrus limon (L.) Burm. F. is an important evergreen fruit crop whose rhizosphere and phyllosphere microbiota have been characterized, while seed microbiota is still unknown. Bacterial and fungal endophytes were isolated from C. limon surface-sterilized seeds. The isolated fungi—belonging to Aspergillus, Quambalaria and Bjerkandera genera—and bacteria—belonging to Staphylococcus genus—were characterized for indoleacetic acid production and phosphate solubilization. Next Generation Sequencing based approaches were then used to characterize the endophytic bacterial and fungal microbiota structures of surface-sterilized C. limon seeds and of shoots obtained under aseptic conditions from in vitro growing seedlings regenerated from surface-sterilized seeds. This analysis highlighted that Cutibacterium and Acinetobacter were the most abundant bacterial genera in both seeds and shoots, while Cladosporium and Debaryomyces were the most abundant fungal genera in seeds and shoots, respectively. The localization of bacterial endophytes in seed and shoot tissues was revealed by Fluorescence In Situ Hybridization coupled with Confocal Laser Scanning Microscopy revealing vascular bundle colonization. Thus, these results highlighted for the first time the structures of endophytic microbiota of C. limon seeds and the transmission to shoots, corroborating the idea of a vertical transmission of plant microbiota and suggesting its crucial role in seed germination and plant development.
Collapse
Affiliation(s)
- Teresa Faddetta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Loredana Abbate
- Institute of Biosciences and Bioresources (IBBR), National Research Council, Palermo, Italy
| | - Pasquale Alibrandi
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Walter Arancio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.,Ri.MED Foundation, Palermo, Italy
| | - Davide Siino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Francesco Strati
- Laboratory of Mucosal Immunology, Department of Experimental Oncology, European Institute of Oncology, Milano, Italy
| | - Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology, National Research Council, Pisa, Italy
| | - Sergio Fatta Del Bosco
- Institute of Biosciences and Bioresources (IBBR), National Research Council, Palermo, Italy
| | - Francesco Carimi
- Institute of Biosciences and Bioresources (IBBR), National Research Council, Palermo, Italy
| | - Anna Maria Puglia
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Massimiliano Cardinale
- Institute of Applied Microbiology, Justus-Liebig-University Giessen, Giessen, Germany.,Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Giuseppe Gallo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| | - Francesco Mercati
- Institute of Biosciences and Bioresources (IBBR), National Research Council, Palermo, Italy
| |
Collapse
|
6
|
Norlia M, Jinap S, Nor-Khaizura MAR, Radu S, John JM, Rahman MAH, Peter ML, Sharif Z. Modelling the effect of temperature and water activity on the growth rate of Aspergillus flavus and aflatoxin production in peanut meal extract agar. Int J Food Microbiol 2020; 335:108836. [PMID: 33065380 DOI: 10.1016/j.ijfoodmicro.2020.108836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/07/2020] [Accepted: 08/16/2020] [Indexed: 11/19/2022]
Abstract
Aspergillus flavus is the predominant species that produce aflatoxins in stored peanuts under favourable conditions. This study aimed to describe the growth and aflatoxin production by two A. flavus strains isolated from imported raw peanuts and to model the effects of temperature and aw on their colony growth rate as a function of temperature and aw in Peanut Meal Extract Agar (PMEA). A full factorial design with seven aw levels (0.85-0.98 aw) and five temperature levels (20-40 °C) was used to investigate the growth and aflatoxin production. Colony diameter was measured daily for 28 days while AFB1 and total aflatoxin were determined on day 3, 7, 14, and 21. The maximum colony growth rate, μmax (mm/day) was estimated by using the primary model of Baranyi, and the μmax was then fitted to the secondary model; second-order polynomial and linear Arrhenius-Davey to describe the colony growth rate as a function of temperature and aw. The results indicated that both strains failed to grow at temperature of 20 °C with aw <0.94 and aw of 0.85 for all temperatures except 30 °C. The highest growth rate was observed at 30 °C, with 0.98 aw for both strains. The analysis of variance showed a significant effect of strain, temperature, and aw on the fungal growth and aflatoxin production (p < 0.05). Furthermore, both secondary models were in good agreement with the observed μmax. However, the polynomial model was found to be a better predictor of the experimental data. A similar pattern was observed in aflatoxin production but in a narrower range of temperature (25-35 °C) and aw (0.92-0.98 aw). The highest production of aflatoxins was observed on day 21 at 30 °C with the aw level of 0.98 for both strains. Overall, the current findings may help in improving the mycotoxin management and intervention strategies in peanuts, especially during storage.
Collapse
Affiliation(s)
- Mahror Norlia
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Selamat Jinap
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | | | - Son Radu
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Joshua Mark John
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Azuar Hamizan Rahman
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mshelia Ladi Peter
- Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Food Science and Technology, Faculty of Engineering, University of Maiduguri, Borno State, Nigeria
| | - Zawiyah Sharif
- Food Safety and Quality Division, Ministry of Health Malaysia, Presint 3, 62675 Wilayah Persekutuan Putrajaya, Malaysia
| |
Collapse
|
7
|
Sandoval-Contreras T, IÑiguez-Moreno M, Garrido-SÁnchez L, Ragazzo-SÁnchez JA, NarvÁez-Zapata JA, Ascencio F, CalderÓn-Santoyo M. Predictive Model for the Effect of Environmental Conditions on the Postharvest Development of Colletotrichum gloeosporioides Strains Isolated from Papaya (Carica papaya L.). J Food Prot 2020; 83:1495-1504. [PMID: 32236559 DOI: 10.4315/jfp-19-493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/31/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Colletotrichum species are the most important postharvest spoilage fungi of papaya fruit. The objective of this research was to evaluate the effect of temperature and relative humidity on growth rate and time for growth to become visible of five strains of Colletotrichum gloeosporioides isolated from papaya fruit in a complex medium. As a primary model, the radial growth rates were estimated using the Baranyi and Roberts model in papaya agar. The Solver MS Excel function was used to obtain the time to visible mycelium (tv). Secondary models obtained with the Rosso et al. cardinal model of inflection were applied to describe the effect of temperature on the growth rate (μ). The Arrhenius-Davey model was used to model tv. The obtained models seem to be satisfactory for describing both μ and tv. The relative humidity had an effect on μ and tv for all tested C. gloeosporioides isolates, but no model accurately described the behavior of the fungus. External validation of models was performed with papaya fruit. Growth models were developed with the same models used in vitro. The bias and the accuracy factors as indices for performance evaluation of predictive models in food microbiology as a function of temperature and RH were 1.22 and 1.33, respectively, for μ and 1.18 and 1.62, respectively, for tv, indicating accurate predictions. The supply chain of papaya is complex and requires constant conditions, and poor conditions can result in damage to the fruit. Knowledge of the behavior of C. gloeosporioides on papaya fruit and application of the developed models in the supply chain will help to establish transport control strategies to combat these fungi. This research has contributed to development of the first models of growth for C. gloeosporioides in Mexico. HIGHLIGHTS
Collapse
Affiliation(s)
- Teresa Sandoval-Contreras
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico #2595, C.P. 63175 Tepic, Nayarit, México
| | - Maricarmen IÑiguez-Moreno
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico #2595, C.P. 63175 Tepic, Nayarit, México
| | - Luis Garrido-SÁnchez
- Instituto Tecnológico y de Estudios Superiores de Occidente, Periférico Sur Manuel Gómez Morín #8585, C.P. 45604 Tlaquepaque, Jalisco, México
| | - Juan Arturo Ragazzo-SÁnchez
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico #2595, C.P. 63175 Tepic, Nayarit, México
| | - JosÉ Alberto NarvÁez-Zapata
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Col. Narciso Mendoza, Reynosa, Tamaulipas, México
| | - Felipe Ascencio
- Centro de Investigaciones Biológicas del Noroeste. Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, Baja California Sur, México
| | - Montserrat CalderÓn-Santoyo
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico #2595, C.P. 63175 Tepic, Nayarit, México.,(ORCID: https://orcid.org/0000-0002-8744-1815 [M.C.S.])
| |
Collapse
|
8
|
Tan H, Yin H. Optimization and characterization of oligosaccharides production from citrus peel waste resource using Aspergillus niger 1805. J Microbiol Methods 2019; 169:105809. [PMID: 31857142 DOI: 10.1016/j.mimet.2019.105809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/15/2019] [Accepted: 12/15/2019] [Indexed: 11/25/2022]
Abstract
Oligosaccharides have many growth-promoting properties for crops and are effective for fighting off various diseases in agriculture. Producing oligosaccharides from waste fruit peel by using food microorganisms will be a potential approach to provide the high-value products for sustainable development of green agriculture. Aspergillus niger 1805 was isolated from citrus peel and identified by internal transcribed spacer (ITS1-ITS4) sequencing. A. niger 1805 grew well only with waste citrus peel (WCP) as the sole medium. >50% WCP was degraded into oligosaccharides by fermentation with A. niger at 37 °C, pH 5.0 and 4 mM Ca2+ within 72 h, and oligosaccharide yield rate of >40%. Most oligosaccharides were in the form of Nano-size particles [10-500 nm]. Kolmogorov-Smirnov Goodness of Fit Test (KS test) showed that the distribution of the oligosaccharide micro-particles fitted a lognormal model (p > .05). Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) analysis showed that the oligosaccharides were mainly comprised of glucose polymer with degrees of polymerization (DP) of 4-17. A. niger 1805 is a potential tool to produce oligosaccharides from WCP.
Collapse
Affiliation(s)
- Haidong Tan
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|