1
|
Conceição S, Queiroga MC, Laranjo M. Antimicrobial Resistance in Bacteria from Meat and Meat Products: A One Health Perspective. Microorganisms 2023; 11:2581. [PMID: 37894239 PMCID: PMC10609446 DOI: 10.3390/microorganisms11102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
According to the 2030 Agenda of the United Nations, one of the sustainable development goals is to ensure sustainable consumption and production patterns. The need to ensure food safety includes, other than microbiological hazards, concerns with antimicrobial-resistant (AMR) bacteria. The emergence of resistant bacteria in the food industry is essentially due to the abusive, and sometimes incorrect, administration of antimicrobials. Although not allowed in Europe, antimicrobials are often administered to promote animal growth. Each time antimicrobials are used, a selective pressure is applied to AMR bacteria. Moreover, AMR genes can be transmitted to humans through the consumption of meat-harbouring-resistant bacteria, which highlights the One Health dimension of antimicrobial resistance. Furthermore, the appropriate use of antimicrobials to ensure efficacy and the best possible outcome for the treatment of infections is regulated through the recommendations of antimicrobial stewardship. The present manuscript aims to give the current state of the art about the transmission of AMR bacteria, particularly methicillin-resistant S. aureus, ESBL-producing Enterobacteriaceae, and vancomycin-resistant Enterococcus spp., along with other ESKAPE bacteria, from animals to humans through the consumption of meat and meat products, with emphasis on pork meat and pork meat products, which are considered the most consumed worldwide.
Collapse
Affiliation(s)
- Sara Conceição
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (S.C.); (M.C.Q.)
| | - Maria Cristina Queiroga
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (S.C.); (M.C.Q.)
- Departamento de Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Marta Laranjo
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (S.C.); (M.C.Q.)
- Departamento de Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
2
|
Chalmers G, Anderson REV, Murray R, Topp E, Boerlin P. Characterization of Proteus mirabilis and associated plasmids isolated from anaerobic dairy cattle manure digesters. PLoS One 2023; 18:e0289703. [PMID: 37561682 PMCID: PMC10414651 DOI: 10.1371/journal.pone.0289703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Proteus mirabilis is an opportunistic pathogen associated with a variety of human infections, including urinary tract infections. The prevalence of P. mirabilis in foods of animal origin and in the manure by-products created in animal production is not well documented. Further, the prevalence and persistence of extended-spectrum cephalosporin (ESC) resistant P. mirabilis is largely unknown. In this study, we characterized ESC-resistant P. mirabilis recovered from various stages of dairy manure anaerobic digestion. Isolates were screened by PCR for blaCTX-M, blaCMY and blaSHV, and antimicrobial susceptibility testing was performed. Fifty-six P. mirabilis carrying CTX-M were sequenced with short and long read sequencing technologies, and the assembled chromosomes and plasmids were compared. ESC-resistant Proteus was found in four of the six manure digesters, an indication that not all digesters were colonized with resistant strains. Both CTX-M-1 and CTX-M-15 plasmids were found in P. mirabilis isolates. Transfer of plasmid DNA by conjugation was also explored, with ESC-resistance plasmids able to transfer to Escherichia coli at high frequency. We concluded that P. mirabilis can harbour and transfer ESC-resistance genes and plasmids, and may be an overlooked reservoir of antimicrobial resistance.
Collapse
Affiliation(s)
- Gabhan Chalmers
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Rebecca E. V. Anderson
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Roger Murray
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Edward Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Patrick Boerlin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
3
|
Ramos MS, Furlan JPR, Dos Santos LDR, Rosa RDS, Savazzi EA, Stehling EG. Patterns of antimicrobial resistance and metal tolerance in environmental Pseudomonas aeruginosa isolates and the genomic characterization of the rare O6/ST900 clone. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:713. [PMID: 37221353 DOI: 10.1007/s10661-023-11344-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/03/2023] [Indexed: 05/25/2023]
Abstract
Pseudomonas aeruginosa can harbor several virulence and antimicrobial resistance genes (ARGs). In this regard, virulent and multidrug-resistant (MDR) P. aeruginosa strains are closely related to severe infections. In addition, this species can also carry metal tolerance genes, selecting mainly antimicrobial-resistant strains. The action of several pollutants on the environment may favor the occurrence of antimicrobial-resistant and metal-tolerant strains. Therefore, the aim of this study was to characterize potentially pathogenic, antimicrobial-resistant, and/or metal-tolerant P. aeruginosa isolates from different environmental samples (waters, soils, sediments, or sands) and to perform a whole-genome sequence-based analysis of a rare clone from residual water. Environmental isolates carried virulence genes related to adherence, invasion, and toxin production, and 79% of the isolates harbored at least five virulence genes. In addition, the isolates were resistant to different antimicrobials, including important antipseudomonal agents, and 51% of them were classified as MDR, but only ARGs associated with aminoglycoside resistance were found. Furthermore, some isolates were tolerant mainly to copper, cadmium, and zinc, and presented metal tolerance genes related to these compounds. Whole-genome characterization of an isolate with unique phenotype with simultaneous resistance to antimicrobials and metals showed nonsynonymous mutations in different antimicrobial resistance determinants and revealed a classification of O6/ST900 clone as rare, potentially pathogenic, and predisposed to acquire multidrug resistance genes. Therefore, these results draw attention to the dissemination of potentially pathogenic, antimicrobial-resistant, and metal-tolerant P. aeruginosa isolates in environmental niches, alerting to a potential risk mainly to human health.
Collapse
Affiliation(s)
- Micaela Santana Ramos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, S/N, Monte Alegre, Ribeirão Preto, 14040-903, Brazil
| | - João Pedro Rueda Furlan
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, S/N, Monte Alegre, Ribeirão Preto, 14040-903, Brazil
| | - Lucas David Rodrigues Dos Santos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, S/N, Monte Alegre, Ribeirão Preto, 14040-903, Brazil
| | - Rafael da Silva Rosa
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, S/N, Monte Alegre, Ribeirão Preto, 14040-903, Brazil
| | | | - Eliana Guedes Stehling
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café, S/N, Monte Alegre, Ribeirão Preto, 14040-903, Brazil.
| |
Collapse
|
4
|
Liu L, Dong Z, Ai S, Chen S, Dong M, Li Q, Zhou Z, Liu H, Zhong Z, Ma X, Hu Y, Ren Z, Fu H, Shu G, Qiu X, Peng G. Virulence-related factors and antimicrobial resistance in Proteus mirabilis isolated from domestic and stray dogs. Front Microbiol 2023; 14:1141418. [PMID: 37234544 PMCID: PMC10206225 DOI: 10.3389/fmicb.2023.1141418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction Proteus mirabilis is a multi-host pathogen that causes diseases of varying severity in a wide range of mammals, including humans. Proteus mirabilis is resistant to multiple antibiotics and has acquired the ability to produce expanded spectrum of β-lactamases, leading to serious public health problems. However, the available information on P. mirabilis isolated from feces of dogs, is still poorly understood, as is the correlation between its virulence-associated genes (VAGs) and antibiotic resistance genes (ARGs). Method In this study, we isolated 75 strains of P. mirabilis from 241 samples, and investigated the swarming motility, biofilm formation, antimicrobial resistance (AMR), distribution of VAGs and ARGs, as well as the presence of class 1, 2, and 3 integrons in these isolates. Results Our findings suggest a high prevalence of intensive swarming motility and strong biofilm formation ability among P. mirabilis isolates. Isolates were primarily resistant to cefazolin (70.67%) and imipenem (70.67%). These isolates were found to carry ureC, FliL, ireA, zapA, ptA, hpmA, hpmB, pmfA, rsbA, mrpA, and ucaA with varying prevalence levels of 100.00, 100.00, 100.00, 98.67, 98.67, 90.67, 90.67, 90.67, 90.67, 89.33, and 70.67%, respectively. Additionally, the isolates were found to carry aac(6')-Ib, qnrD, floR, blaCTX-M, blaCTX-M-2, blaOXA-1, blaTEM, tetA, tetB and tetM with varying prevalence levels of 38.67, 32.00, 25.33, 17.33, 16.00, 10.67, 5.33, 2.67, 1.33, and 1.33%, respectively. Among 40 MDR strains, 14 (35.00%) were found to carry class 1 integrons, 12 (30.00%) strains carried class 2 integrons, while no class 3 integrons was detected. There was a significant positive correlation between the class 1 integrons and three ARGs: blaTEM, blaCTX-M, and blaCTX-M-2. This study revealed that P. mirabilis strains isolated from domestic dogs exhibited a higher prevalence of MDR, and carried fewer VAGs but more ARGs compared to those isolated from stay dogs. Furthermore, a negative correlation was observed between VAGs and ARGs. Discussion Given the increasing antimicrobial resistance of P. mirabilis, veterinarians should adopt a prudent approach towards antibiotics administration in dogs to mitigate the emergence and dissemination of MDR strains that pose a potential threat to public health.
Collapse
Affiliation(s)
- Lijuan Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiyou Dong
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shengquan Ai
- New Ruipeng Pet Healthcare Group, Chengdu, China
| | - Shanyu Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mengyao Dong
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qianlan Li
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ziyao Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haifeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hualin Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xianmeng Qiu
- New Ruipeng Pet Healthcare Group, Chengdu, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Mak PHW, Rehman MA, Kiarie EG, Topp E, Diarra MS. Production systems and important antimicrobial resistant-pathogenic bacteria in poultry: a review. J Anim Sci Biotechnol 2022; 13:148. [PMID: 36514172 DOI: 10.1186/s40104-022-00786-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/18/2022] [Indexed: 12/15/2022] Open
Abstract
Economic losses and market constraints caused by bacterial diseases such as colibacillosis due to avian pathogenic Escherichia coli and necrotic enteritis due to Clostridium perfringens remain major problems for poultry producers, despite substantial efforts in prevention and control. Antibiotics have been used not only for the treatment and prevention of such diseases, but also for growth promotion. Consequently, these practices have been linked to the selection and spread of antimicrobial resistant bacteria which constitute a significant global threat to humans, animals, and the environment. To break down the antimicrobial resistance (AMR), poultry producers are restricting the antimicrobial use (AMU) while adopting the antibiotic-free (ABF) and organic production practices to satisfy consumers' demands. However, it is not well understood how ABF and organic poultry production practices influence AMR profiles in the poultry gut microbiome. Various Gram-negative (Salmonella enterica serovars, Campylobacter jejuni/coli, E. coli) and Gram-positive (Enterococcus spp., Staphylococcus spp. and C. perfringens) bacteria harboring multiple AMR determinants have been reported in poultry including organically- and ABF-raised chickens. In this review, we discussed major poultry production systems (conventional, ABF and organic) and their impacts on AMR in some potential pathogenic Gram-negative and Gram-positive bacteria which could allow identifying issues and opportunities to develop efficient and safe production practices in controlling pathogens.
Collapse
Affiliation(s)
- Philip H W Mak
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada.,Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Muhammad Attiq Rehman
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Edward Topp
- London Research and Development Center, AAFC, London, ON, Canada
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada.
| |
Collapse
|
6
|
James C, Dixon R, Talbot L, James SJ, Williams N, Onarinde BA. Assessing the Impact of Heat Treatment of Food on Antimicrobial Resistance Genes and Their Potential Uptake by Other Bacteria-A Critical Review. Antibiotics (Basel) 2021; 10:1440. [PMID: 34943652 PMCID: PMC8698031 DOI: 10.3390/antibiotics10121440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
The dissemination of antibiotic resistance genes (ARGs) is a global health concern. This study identifies and critically reviews the published evidence on whether cooking (heating) food to eliminate bacterial contamination induces sufficient damage to the functionality of ARGs. Overall, the review found that there is evidence in the literature that Antimicrobial Resistant (AMR) bacteria are no more heat resistant than non-AMR bacteria. Consequently, recommended heat treatments sufficient to kill non-AMR bacteria in food (70 °C for at least 2 min, or equivalent) should be equally effective in killing AMR bacteria. The literature shows there are several mechanisms through which functional genes from AMR bacteria could theoretically persist in heat-treated food and be transferred to other bacteria. The literature search found sparce published evidence on whether ARGs may actually persist in food after effective heat treatments, and whether functional genes can be transferred to other bacteria. However, three publications have demonstrated that functional ARGs in plasmids may be capable of persisting in foods after effective heat treatments. Given the global impact of AMR, there is clearly a need for further practical research on this topic to provide sufficient evidence to fully assess whether there is a risk to human health from the persistence of functional ARGs in heat-treated and cooked foods.
Collapse
Affiliation(s)
- Christian James
- Food Refrigeration & Process Engineering Research Centre (FRPERC), Grimsby Institute, Nuns Corner, Grimsby DN34 5BQ, UK; (L.T.); (S.J.J.)
- National Centre for Food Manufacturing (NCFM), University of Lincoln, Park Road, Holbeach PE12 7PT, UK;
| | - Ronald Dixon
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Lincoln LN6 7DL, UK;
| | - Luke Talbot
- Food Refrigeration & Process Engineering Research Centre (FRPERC), Grimsby Institute, Nuns Corner, Grimsby DN34 5BQ, UK; (L.T.); (S.J.J.)
| | - Stephen J. James
- Food Refrigeration & Process Engineering Research Centre (FRPERC), Grimsby Institute, Nuns Corner, Grimsby DN34 5BQ, UK; (L.T.); (S.J.J.)
- National Centre for Food Manufacturing (NCFM), University of Lincoln, Park Road, Holbeach PE12 7PT, UK;
| | - Nicola Williams
- Institute of Infection, Veterinary and Ecological Sciences, Leahurst Campus, University of Liverpool, Neston CH64 7TE, UK;
| | - Bukola A. Onarinde
- National Centre for Food Manufacturing (NCFM), University of Lincoln, Park Road, Holbeach PE12 7PT, UK;
| |
Collapse
|
7
|
Li M, Tang Y, Guo L, Lei T, Deng Y, Wang L, Zhang Q, Li C. Antibiotic Resistance Characterization of Bacteria Isolated from Traditional Chinese Paocai. Curr Microbiol 2021; 78:3853-3862. [PMID: 34390373 DOI: 10.1007/s00284-021-02629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 08/02/2021] [Indexed: 11/27/2022]
Abstract
In this work, the antibiotic resistance of 218 isolates to 9 different antibiotics was analyzed with minimum inhibitory concentration method. All Lactobacillus pentosus strains were found to be resistant to streptomycin sulfate and ciprofloxacin hydrochloride. Lactococcus lactis strains were resistant to streptomycin sulfate. Specifically, 90% Klebsiella oxytoca and all Citrobacter freundii strains were resistant to ampicillin sodium. 30% K. oxytoca strains were resistant to ciprofloxacin hydrochloride. All Bacillus albus strains were resistant to erythromycin and 80% strains were resistant to ampicillin sodium. Results from PCR analysis revealed that 90 isolates carried the aadE gene. The tetM gene was detected in four L. pentosus isolates. And the streptomycin resistant gene aadA was detected in one L. pentosus isolate. Metagenome analysis revealed that 74.7% genes associated with antibiotic resistance were antibiotic resistance genes. The tetM and aadA genes, detected in PCR analysis, were also retrieved from the paocai metagenome. In brief, this study generated the antibiotic resistance profile of some paocai-originated bacteria strains. L. pentosus found in the final edible paocai were inherently resistant to antibiotics, such as streptomycin and ciprofloxacin. Results in this work reminds us to carefully choose the LAB strains for traditional Chinese paocai production to avoid potential spreading of antibiotic resistant genes.
Collapse
Affiliation(s)
- Mei Li
- Meishan Product Quality Supervision and Inspection Institute, Meishan, 620000, China
- National Pickle Quality Inspection Center, Meishan, 620000, China
| | - Yao Tang
- Sichuan Dongpo Chinese Paocai Industrial Technology Research Institute, Meishan, 620000, China
| | - Liyan Guo
- Meishan Product Quality Supervision and Inspection Institute, Meishan, 620000, China
- National Pickle Quality Inspection Center, Meishan, 620000, China
| | - Tao Lei
- Meishan Product Quality Supervision and Inspection Institute, Meishan, 620000, China
- National Pickle Quality Inspection Center, Meishan, 620000, China
| | - Yunfei Deng
- School of Life Science and Food Engineering, Yibin University, Yibin, 644007, China
| | - Liang Wang
- Sichuan Yingshan Vocational Senior High School, Nanchong, 637000, China
| | - Qisheng Zhang
- Sichuan Dongpo Chinese Paocai Industrial Technology Research Institute, Meishan, 620000, China
| | - Chengkang Li
- Meishan Product Quality Supervision and Inspection Institute, Meishan, 620000, China.
- National Pickle Quality Inspection Center, Meishan, 620000, China.
| |
Collapse
|
8
|
Li S, Peng Y, Rui Y. Multiplex real-time PCR assays to detect Stenotrophomonas maltophilia carrying sul1, sul2, and sul3 genes. J Microbiol Methods 2018; 156:52-59. [PMID: 30529240 DOI: 10.1016/j.mimet.2018.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 11/15/2022]
Abstract
Nosocomial infections caused by Stenotrophomonas maltophilia resistant to SXT are increasingly reported worldwide. In this study, a novel melting-curve based multiplex real-time PCR assay for the simultaneous detection of the ssrA and sul1, sul2 and sul3 genes was first established. The assays were performed on a Roche LightCycler® 480 II system. The results for target and non-target amplification showed that the multiplex real-time PCR assays were specific, the limit of detection for each target was 10 copies per 20 μL reaction volume, the assays were linear over six log dilutions of the target genes (r2 > 0.99), and the Ct values of the coefficients of variation for intra- and interassay reproducibility were <5%. The sensitivity for the target DNA in simulated blood samples was 102 CFU/mL. The multiplex real-time PCR assays showed 100% concordance with conventional PCR when tested against 20 SXT-susceptible and 20 SXT-resistant S. maltophilia from clinical samples. Therefore, the multiplex real-time PCR is a rapid, affordable and sensitive assay for direct detection of the ssrA and sul1, sul2 and sul3 genes.
Collapse
Affiliation(s)
- Si Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Peng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongyu Rui
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Lucas P, Jouy E, Le Devendec L, de Boisséson C, Perrin-Guyomard A, Jové T, Blanchard Y, Touzain F, Kempf I. Characterization of plasmids harboring blaCTX-M genes in Escherichia coli from French pigs. Vet Microbiol 2018; 224:100-106. [DOI: 10.1016/j.vetmic.2018.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/29/2022]
|