1
|
Dong M, Kavannaugh M, Lee C, Feng H. Mircrofabricating double-sided polydimethylsiloxane (PDMS) artificial phylloplane for microbial food safety research. Food Res Int 2024; 184:114252. [PMID: 38609230 DOI: 10.1016/j.foodres.2024.114252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024]
Abstract
Leafy green surface microbiology studies often experience significant variations in results due to the heterogeneous nature of leaf surfaces. To provide a precise and controllable substitute, we microfabricated double-sided artificial leafy green phylloplanes using polydimethylsiloxane (PDMS) with a vinyl-terminated polyethylene glycol chain-based hydrophobicity modifier (PDMS-PEG) to modify PDMS hydrophobicity. We further tested the properties and applications of these artificial leaves, by examining the function of epicuticular wax, growth and survival of E. coli O157:H7 87-23 on the surface, and removal of attached E. coli cells via sanitation. The double-sided PDMS-PDMS-PEG leaves well-replicated their natural counterparts in macroscopic and microscopic structure, hydrophobicity, and E. coli O157:H7 87-23 attachment. After depositing natural epicuticular wax onto artificial leaves, the leaf surface wetting ability decreased, while E. coli O157:H7 87-23 surface retention increased. The artificial leaves supplied with lettuce lysate or bacterial growth media supported E. coli O157:H7 87-23 growth and survival similarly to those on natural leaves. In the sanitation test, the artificial lettuce leaves also displayed patterns similar to those of natural leaves regarding sanitizer efficiency. Overall, this study showcased the microfabrication and applications of double-sided PDMS-PDMS-PEG leaves as a replicable and controllable platform for future leafy green food safety studies.
Collapse
Affiliation(s)
- Mengyi Dong
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Melannie Kavannaugh
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Caroline Lee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Hao Feng
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Family and Consumer Sciences, North Carolina Agriculture and Technology State University, Greensboro, NC 27401, United States.
| |
Collapse
|
2
|
Boone SA, Ijaz MK, Bright KR, Silva-Beltran NP, Nims RW, McKinney J, Gerba CP. Antiviral Natural Products, Their Mechanisms of Action and Potential Applications as Sanitizers and Disinfectants. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:265-280. [PMID: 37906416 DOI: 10.1007/s12560-023-09568-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023]
Abstract
Plant extracts, natural products and plant oils contain natural virucidal actives that can be used to replace active ingredients in commercial sanitizers and disinfectants. This review focuses on the virucidal mechanisms of natural substances that may exhibit potential for indoor air and fomite disinfection. Review of scientific studies indicates: (1) most natural product studies use crude extracts and do not isolate or identify exact active antiviral substances; (2) many natural product studies contain unclear explanations of virucidal mechanisms of action; (3) natural product evaluations of virucidal activity should include methods that validate efficacy under standardized disinfectant testing procedures (e.g., carrier tests on applicable surfaces or activity against aerosolized viruses, etc.). The development of natural product disinfectants requires a better understanding of the mechanisms of action (MOA), chemical profiles, compound specificities, activity spectra, and the chemical formulations required for maximum activity. Combinations of natural antiviral substances and possibly the addition of synthetic compounds might be needed to increase inactivation of a broader spectrum of viruses, thereby providing the required efficacy for surface and air disinfection.
Collapse
Affiliation(s)
- Stephanie A Boone
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA.
| | - M Khalid Ijaz
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, USA
| | - Kelly R Bright
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | | | | | - Julie McKinney
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, USA
| | - Charles P Gerba
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
3
|
McLEOD M, Belford G, Harlow J, Nasheri N. Examining the Effect of Organic Acids on Inactivation of Hepatitis E Virus. J Food Prot 2022; 85:1690-1695. [PMID: 36048964 DOI: 10.4315/jfp-22-164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/29/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Infection with hepatitis E virus genotype 3 (HEV-3) is an emerging cause of illness in developed countries. In North America and Europe, HEV-3 has been increasingly detected in swine, and exposure to pigs and pork products is considered the primary source of infection. We have previously demonstrated the prevalence of the HEV-3 genome in commercial pork products in Canada. In this study, we investigated the application of citric acid and acetic acid to inactivate HEV-3 on food and on food contact surfaces. For this purpose, plastic, stainless steel, and pork pâté surfaces were inoculated with HEV-3 and were treated with acetic acid or citric acid at 1, 3, or 5%. The infectivity of posttreatment viral particles was determined by cell culture. A greater than 2-log reduction in viral infectivity was observed on plastic and stainless steel treated with the organic acids, but the treatment was less effective on HEV infectivity on pork pâté (average reductions of 0.47 log citric acid and 0.63 log acetic acid). Therefore, we conclude that citric acid and acetic acid have potential application to control HEV-3 on food contact surfaces but are not suitable for food. HIGHLIGHTS
Collapse
Affiliation(s)
- Madison McLEOD
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Genevieve Belford
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Jennifer Harlow
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Neda Nasheri
- National Food Virology Reference Centre, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada K1A 0K9.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1A 0K9
| |
Collapse
|
4
|
Synergistic Inactivation of African Swine Fever Virus by a Highly Complexed Iodine Combined with Compound Organic Acids. Appl Environ Microbiol 2022; 88:e0045222. [PMID: 35588273 DOI: 10.1128/aem.00452-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
African swine fever (ASF) is a highly contagious disease of domestic pigs and wild boar with high morbidity and mortality caused by African swine fever virus (ASFV). Due to the lack of commercial vaccines and treatments for ASF, cleaning and disinfection remain one of the most effective biosecurity measures to control ASF. Our previous studies have shown that ASFV can be inactivated by 0.25 to 5% highly complexed iodine (HPCI) in 5 to 30 min. This study evaluated the synergistic inactivation effects of HPCI combined with compound organic acids (COAs) against ASFV. The results showed that the inactivation rates of HPCI, COAs, and HPCI+COAs on the reporter ASFV expressing the green fluorescent protein increased in dose- and time-dependent manners. The best inactivation effects were obtained when the compatibility ratio of HPCI and COAs was 5:1, and the ideal temperature was 25°C. Furthermore, there were no significant differences when comparing the efficacy of HPCI combined with COAs (HPCI+COAs) in inactivating wild-type ASFV and the reporter ASFV (P > 0.05). ASFV of 104.0 50% tissue culture infective dose (TCID50)/mL was completely inactivated by 0.13% HPCI (0.0065% effective iodine), 0.06% COAs, or 0.13% HPCI+COAs (approximately 0.0054% effective iodine), respectively, while 106.0 TCID50/mL ASFV was completely inactivated by 1.00% HPCI (0.05% effective iodine), 0.50% COAs, or 1.00% HPCI+COAs (0.042% effective iodine), respectively. It was found that the combination index (CI) of HPCI and COAs was less than 1 under different conditions. This study demonstrated that HPCI+COAs could synergistically inactivate ASFV and represent an effective compound disinfectant for the control of ASF. IMPORTANCE African swine fever (ASF) is a highly contagious disease of swine with high morbidity and mortality caused by African swine fever virus (ASFV). Due to the lack of commercial vaccines and treatment available for ASF, effective disinfectants and the proper use of them are essential to inactivate ASFV. The significance of this research is in searching for an ideal disinfectant that has the advantages of low toxicity and nonpollution and can inactivate ASFV efficiently. In this study, we demonstrated that HPCI+COAs had synergistic effects on inactivating ASFV. Thus, HPCI+COAs could be used as an effective disinfectant for the control of ASF.
Collapse
|
5
|
Almeida CF, Purcell DFJ, Godfrey DI, McAuley JL. The Efficacy of Common Household Cleaning Agents for SARS-CoV-2 Infection Control. Viruses 2022; 14:v14040715. [PMID: 35458445 PMCID: PMC9026400 DOI: 10.3390/v14040715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/13/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 is having devastating effects on a global scale. Since common household disinfectants are often used to minimise the risk of infection in the home and work environment, we investigated the ability of some of these products to inactivate the virus. We tested generic brands of vinegar, bleach, and dishwashing detergent, as well as laboratory-grade acetic acid, sodium hypochlorite, and ethanol. Assays were conducted at room temperature (18–20 °C, 40% relative humidity), and two time points were used to reflect a quick wipe (30 s) and a brief soak (5 min). Vinegar, and its active ingredient, acetic acid, were completely ineffective at virus inactivation even when exposed to the virus at 90% v/v (a final concentration equivalent to 3.6% v/v acetic acid). In contrast, ethanol was capable of inactivating the virus at dilutions as low as 40% v/v. Dishwashing detergent effectively rendered SARS-CoV-2 inactive when diluted 100-fold (1% v/v). Bleach was found to be fully effective against SARS-CoV-2 at 0.21 g/L sodium hypochlorite after a 30 s exposure (1/200 dilution of commercial product). Given reports of infectious virus recovered from the surface of frozen packaging, we tested the persistence of infectiousness after multiple freeze-thaw cycles and found no change in infectious SARS-CoV-2 titre after seven freeze-thaw cycles. These results should help inform readers of how to effectively disinfect surfaces and objects that have potentially been contaminated with SARS-CoV-2 using common household chemicals.
Collapse
Affiliation(s)
- Catarina F. Almeida
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (C.F.A.); (D.F.J.P.); (D.I.G.)
| | - Damian F. J. Purcell
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (C.F.A.); (D.F.J.P.); (D.I.G.)
- Global Virus Network Center of Excellence at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (C.F.A.); (D.F.J.P.); (D.I.G.)
| | - Julie L. McAuley
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; (C.F.A.); (D.F.J.P.); (D.I.G.)
- Global Virus Network Center of Excellence at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Correspondence:
| |
Collapse
|
6
|
Kingsley DH, Annous BA. Evaluation of SDS and GRAS liquid disinfectants for mitigation of hepatitis A virus contamination of berries. J Appl Microbiol 2021; 131:2586-2591. [PMID: 33905582 DOI: 10.1111/jam.15123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/28/2022]
Abstract
AIM To evaluate generally recognized as safe (GRAS) liquid wash formulations against hepatitis A virus-contaminated strawberries and blackberries in order to identify a formulation suitable for reducing virus contamination. METHODS AND RESULTS Formulations included the surfactant sodium dodecyl sulfate (SDS; 0·5% w/v) by itself, and in combination, with lactic acid (LA; 0·5% v/v), levulinic acid (LVA; 0·5% v/v) and 3 ppm aqueous chlorine dioxide (ClO2 ). After contamination and drying overnight, the average total extracted contamination for both untreated strawberries and blackberries was 4·4 log PFU. Three successive distilled H2 O only treatments reduced total contamination by up to 1·8 log PFU for both strawberries and blackberries, while wash formulations showed significant (P ≤ 0·05) total reductions ranging from 2·1 to 2·9 log PFU. CONCLUSIONS Considering results for both berry types, the combination of ClO2 and SDS was the most effective. Overall results indicate that adding surfactant and several types of sanitizers to berry wash can enhance HAV reduction on berries. SIGNIFICANCE AND IMPACT OF THE STUDY This study indicates that industry could enhance the virologic safety of ready-to-eat berries by the combined use of surfactant and sanitizer.
Collapse
Affiliation(s)
- D H Kingsley
- U.S. Department of Agriculture, Agricultural Research Service, Residue Chemistry and Predictive Microbiology Research Unit, Delaware State University, Dover, DE, USA
| | - B A Annous
- U.S. Department of Agriculture, Agricultural Research Service, Residue Chemistry and Predictive Microbiology Research Unit, Eastern Regional Research Center, Wyndmoor, PA, USA
| |
Collapse
|
7
|
Inactivation effects and mechanisms of plasma-activated water combined with sodium laureth sulfate (SLES) against Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2021; 105:2855-2865. [PMID: 33738554 DOI: 10.1007/s00253-021-11227-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/28/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
The present study aimed to elucidate the antifungal effect and underlying mechanism of plasma-activated water (PAW) combined with sodium laureth sulfate (SLES) against Saccharomyces cerevisiae. S. cerevisiae, initially at 6.95 log10 colony-forming unit (CFU)/mL, decreased to an undetectable level following the synergistic treatment of PAW and SLES (0.50 mg/mL) for 20 min. After PAW treatment combined with SLES (2.5 mg/mL) for 30 min, the S. cerevisiae cells on polyethylene films also reduced to an undetectable level from the initial load of 5.84 log10 CFU/cm2. PAW + SLES treatment caused severe disruption of membrane integrity and increased lipid oxidation within the cell membrane and the intracellular reactive oxygen species levels in S. cerevisiae cells. Besides, the disruption of the mitochondrial membrane potential (∆ψm) was also observed in S. cerevisiae cells after treatment of PAW and SLES at 0.01 mg/mL for 5 min. These data suggest that the combined treatment of PAW and SLES causes oxidation injury to cell membranes and abnormal ∆ψm in S. cerevisiae, which may be eventually responsible for cell death. This study demonstrates the potential application of PAW combined with SLES as an alternative disinfection method. Key Points • PAW + SLES exhibited synergistic antifungal activity against S. cerevisiae. • PAW + SLES resulted in severe disruption of membrane integrity and permeability. • PAW + SLES induced accumulation of reactive oxygen species in S. cerevisiae cells.
Collapse
|
8
|
UV Inactivation of Rotavirus and Tulane Virus Targets Different Components of the Virions. Appl Environ Microbiol 2020; 86:AEM.02436-19. [PMID: 31811032 DOI: 10.1128/aem.02436-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022] Open
Abstract
Enteric viruses are shed in fecal material by humans and other animals and are common contaminants in wastewater and surface water. Wastewater treatment plants often disinfect this effluent with low-pressure and medium-pressure UV lamps, which emit 254-nm and 220- to 280-nm irradiation, respectively. It is not known whether this treatment is efficacious against enteric viruses or how such treatments may inactivate these enteric viruses. This study examined UV disinfection for two enteric viruses: rotavirus (RV) (strain OSU with double-stranded RNA and a three-layer capsid) and Tulane virus (TV) (a cultivable surrogate for human norovirus with single-stranded RNA and a single-layer capsid). Viruses were treated with UV irradiation at 220 or 254 nm under conditions relevant to wastewater stabilization ponds, whose water is often used for irrigation. TV was susceptible to 220- or 254-nm UV at similar levels. It appears that UV irradiation inactivated TV by mutagenizing both its genome and capsid binding proteins. RV was more susceptible to UV at 220 nm than to UV at 254 nm. UV irradiation of RV at either 220 or 254 nm resulted in a virus that retained its ability to bind to its host cell receptor. After 220-nm treatment, the VP7 segment of the RV genome could not be amplified by PCR, suggesting that this treatment mutagenized the viral genome. However, this correlation was not observed when UV at 254 nm was used. Thus, RV and TV, with different genome and capsid contents, are targeted by UV irradiation in different ways.IMPORTANCE UV irradiation is becoming common for disinfection in water treatment plants, but little is known about the effectiveness of this treatment for enteric RNA viruses. Here, we observed that 220-nm UV irradiation was efficacious against rotavirus (RV) and Tulane virus (TV). UV irradiation at 254 nm inactivated TV to a greater extent than RV. Additional assays showed that UV irradiation compromised different portions of the RV and TV life cycles. UV irradiation decreased the binding of TV to its host receptor and mutagenized the TV genome. UV irradiation at 220 nm appeared to allow RV-host receptor interaction but halted RV genome replication. These findings provide knowledge about the disinfection of waterborne viruses, information that is important for the safe reuse or release of treated wastewater.
Collapse
|
9
|
|
10
|
Ailavadi S, Davidson PM, Morgan MT, D'Souza DH. Thermal Inactivation Kinetics of Tulane Virus in Cell-Culture Medium and Spinach. J Food Sci 2019; 84:557-563. [DOI: 10.1111/1750-3841.14461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/25/2018] [Accepted: 01/12/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Sukriti Ailavadi
- Dept. of Food Science; Univ. of Tennessee; 2605 River Drive Knoxville TN 37996 U.S.A
| | - P. Michael Davidson
- Dept. of Food Science; Univ. of Tennessee; 2605 River Drive Knoxville TN 37996 U.S.A
| | - Mark T. Morgan
- Dept. of Food Science; Univ. of Tennessee; 2605 River Drive Knoxville TN 37996 U.S.A
| | - Doris H. D'Souza
- Dept. of Food Science; Univ. of Tennessee; 2605 River Drive Knoxville TN 37996 U.S.A
| |
Collapse
|
11
|
In-package atmospheric cold plasma treatment of bulk grape tomatoes for microbiological safety and preservation. Food Res Int 2018; 108:378-386. [DOI: 10.1016/j.foodres.2018.03.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 11/19/2022]
|