1
|
Rangel-Vargas E, Gomez-Aldapa CA, Falfan-Cortes RN, Guzman-Ortiz FA, Castro-Rosas J. A natural approach to combating antibiotic-resistant pathogens in livestock: Hibiscus sabdariffa-derived hibiscus acid as a promising solution. VET MED-CZECH 2024; 69:207-216. [PMID: 39021880 PMCID: PMC11251701 DOI: 10.17221/105/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/19/2024] [Indexed: 07/20/2024] Open
Abstract
We examined the antibacterial efficacy of streptomycin, hibiscus acid, and their combination against multidrug-resistant Shiga-toxin-producing Escherichia coli (STEC) and Salmonella Typhimurium in mice. We determined the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for streptomycin, hibiscus acid, and their combination against STEC and Salmonella. Fifteen sets of six mice in each set were utilised: six groups were orally exposed to 4 log10 colony forming units (CFUs) of S. Typhimurium and another six to STEC, and three acted as the controls. Six hours post-inoculation, specific groups of mice received either oral solutions containing hibiscus acid at 5 and 7 mg/ml; streptomycin at 50 and 450 μg/ml; hibiscus acid/streptomycin (5 mg/ml hibiscus acid and 50 μg/ml streptomycin); or isotonic saline. The study determined the MIC and MBC of 7 mg/ml of hibiscus acid; 300 and 450 μg/ml of streptomycin; and two concentrations of hibiscus/streptomycin (3 mg/ml / 20 μg/ml and 5 mg/ml / 50 μg/ml). Interestingly, the mice that were infected and subsequently treated with hibiscus acid at 7 mg/ml alone or in conjunction with streptomycin did not have either STEC or Salmonella in their faecal samples, and none of the mice died. In contrast, the untreated mice and those exclusively treated with streptomycin had the pathogens present in their stool, leading to the mortality of all the subjects.
Collapse
Affiliation(s)
- Esmeralda Rangel-Vargas
- Academic Area of Chemistry, Institute of Basic Sciences and Engineering, City of Knowledge, Autonomous University of the State of Hidalgo, Mineral de la Reforma, Mexico
| | - Carlos Alberto Gomez-Aldapa
- Academic Area of Chemistry, Institute of Basic Sciences and Engineering, City of Knowledge, Autonomous University of the State of Hidalgo, Mineral de la Reforma, Mexico
| | - Reyna Nallely Falfan-Cortes
- Academic Area of Chemistry, Institute of Basic Sciences and Engineering, City of Knowledge, Autonomous University of the State of Hidalgo, Mineral de la Reforma, Mexico
- Professor of the National Council of Science, Humanities and Technology, Crédito Constructor, Benito Juárez, Mexico City, CDMX
| | - Fabiola Araceli Guzman-Ortiz
- Academic Area of Chemistry, Institute of Basic Sciences and Engineering, City of Knowledge, Autonomous University of the State of Hidalgo, Mineral de la Reforma, Mexico
- Professor of the National Council of Science, Humanities and Technology, Crédito Constructor, Benito Juárez, Mexico City, CDMX
| | - Javier Castro-Rosas
- Academic Area of Chemistry, Institute of Basic Sciences and Engineering, City of Knowledge, Autonomous University of the State of Hidalgo, Mineral de la Reforma, Mexico
| |
Collapse
|
2
|
György É, Unguran KA, Laslo É. Biocide Tolerance and Impact of Sanitizer Concentrations on the Antibiotic Resistance of Bacteria Originating from Cheese. Foods 2023; 12:3937. [PMID: 37959056 PMCID: PMC10648639 DOI: 10.3390/foods12213937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
In this study, we determined and identified the bacterial diversity of different types of artisanal and industrially produced cheese. The antibiotic (erythromycin, chloramphenicol, kanamycin, ampicillin, clindamycin, streptomycin, tetracycline, and gentamicin) and biocide (peracetic acid, sodium hypochlorite, and benzalkonium chloride) resistance of clinically relevant bacteria was determined as follows: Staphylococcus aureus, Macrococcus caseolyticus, Bacillus sp., Kocuria varians, Escherichia coli, Enterococcus faecalis, Citrobacter freundii, Citrobacter pasteurii, Klebsiella oxytoca, Klebsiella michiganensis, Enterobacter sp., Enterobacter cloacae, Enterobacter sichuanensis, Raoultella ornithinolytica, Shigella flexneri, and Salmonella enterica. Also, the effect of the sub-inhibitory concentration of three biocides on antibiotic resistance was determined. The microbiota of evaluated dairy products comprise diverse and heterogeneous groups of bacteria with respect to antibiotic and disinfectant tolerance. The results indicated that resistance was common in the case of ampicillin, chloramphenicol, erythromycin, and streptomycin. Bacillus sp. SCSSZT2/3, Enterococcus faecalis SRGT/1, E. coli SAT/1, Raoultella ornithinolytica MTT/5, and S. aureus SIJ/2 showed resistance to most antibiotics. The tested bacteria showed sensitivity to peracetic acid and a different level of tolerance to benzalkonium chloride and sodium hypochlorite. The inhibition zone diameter of antibiotics against Enterococcus faecalis SZT/2, S. aureus JS11, E. coli CSKO2, and Kocuria varians GRT/10 was affected only by the sub-inhibitory concentration of peracetic acid.
Collapse
Affiliation(s)
- Éva György
- Department of Food Science, Faculty of Economics, Socio-Human Sciences and Engineering, Sapientia Hungarian University of Transylvania, 530104 Miercurea Ciuc, Romania; (K.A.U.); (É.L.)
| | | | | |
Collapse
|
3
|
Chacón-Flores NA, Olivas-Orozco GI, Acosta-Muñiz CH, Gutiérrez-Méndez N, Sepúlveda-Ahumada DR. Effect of Water Activity, pH, and Lactic Acid Bacteria to Inhibit Escherichia coli during Chihuahua Cheese Manufacture. Foods 2023; 12:3751. [PMID: 37893643 PMCID: PMC10606664 DOI: 10.3390/foods12203751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to evaluate the effectiveness of pH control, water activity (Aw), and the addition of lactic acid bacteria (LAB) on the proliferation of Escherichia coli in the curd during the manufacturing of Chihuahua cheese. Milk proved to be an excellent culture medium for E. coli, allowing it to develop at concentrations up to 109 cfu/g. However, the presence of LAB, the pH control, Aw, and especially the use of the Cheddarization process during the Chihuahua cheese production proved to be important obstacles that inhibited the proliferation of E. coli under the conditions studied. Moreover, reducing the water activity of the curd as quickly as possible is presented as the most powerful tool to inhibit the development of E. coli during the Chihuahua cheese-making process.
Collapse
Affiliation(s)
- Nidia Aracely Chacón-Flores
- Centro de Investigación en Alimentación y Desarrollo, Cuauhtémoc, Chihuahua 31570, Mexico; (N.A.C.-F.); (G.I.O.-O.); (C.H.A.-M.)
| | - Guadalupe Isela Olivas-Orozco
- Centro de Investigación en Alimentación y Desarrollo, Cuauhtémoc, Chihuahua 31570, Mexico; (N.A.C.-F.); (G.I.O.-O.); (C.H.A.-M.)
| | - Carlos Horacio Acosta-Muñiz
- Centro de Investigación en Alimentación y Desarrollo, Cuauhtémoc, Chihuahua 31570, Mexico; (N.A.C.-F.); (G.I.O.-O.); (C.H.A.-M.)
| | | | - David Roberto Sepúlveda-Ahumada
- Centro de Investigación en Alimentación y Desarrollo, Cuauhtémoc, Chihuahua 31570, Mexico; (N.A.C.-F.); (G.I.O.-O.); (C.H.A.-M.)
| |
Collapse
|
4
|
BABINES-OROZCO L, BALBUENA-ALONSO MG, BARRIOS-VILLA E, LOZANO-ZARAIN P, MARTÍNEZ-LAGUNA Y, DEL CARMEN ROCHA-GRACIA R, CORTÉS-CORTÉS G. Antimicrobial resistance in food-associated Escherichia coli in Mexico and Latin America. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 43:4-12. [PMID: 38188662 PMCID: PMC10767319 DOI: 10.12938/bmfh.2023-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/11/2023] [Indexed: 01/09/2024]
Abstract
The World Health Organization (WHO) considers antimicrobial resistance to be one of the critical global public health priorities to address. Escherichia coli is a commensal bacterium of the gut microbiota in humans and animals; however, some strains cause infections and are resistant to antibiotics. One of the most common ways of acquiring pathogenic E. coli strains is through food. This review analyzes multidrug-resistant E. coli isolated from food, emphasizing Latin America and Mexico, and the mobile genetic elements (MGEs) responsible for spreading antibiotic resistance determinants among bacteria in different environments and hosts. We conducted a systematic search of the literature published from 2015 to 2022 in open access databases and electronic repositories. The prevalence of 11 E. coli pathotypes was described, with diarrheagenic E. coli pathotypes being the most frequently associated with foodborne illness in different Latin American countries, highlighting the presence of different antibiotic resistance genes mostly carried by IncF-type plasmids or class 1 integrons. Although the global incidence of foodborne illness is high, there have been few studies in Mexico and Latin America, which highlights the need to generate updated epidemiological data from the "One Health" approach, which allows monitoring of the multidrug-resistance phenomenon in E. coli from a common perspective in the interaction of human, veterinary, and environmental health.
Collapse
Affiliation(s)
- Lorena BABINES-OROZCO
- Posgrado en Microbiología, Centro de Investigaciones en
Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de
Puebla. Instituto de Ciencias, Ciudad Universitaria, San Manuel C.P. 72570 Puebla,
México
| | - María Guadalupe BALBUENA-ALONSO
- Posgrado en Microbiología, Centro de Investigaciones en
Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de
Puebla. Instituto de Ciencias, Ciudad Universitaria, San Manuel C.P. 72570 Puebla,
México
| | - Edwin BARRIOS-VILLA
- Departamento de Ciencias Químico Biológicas y Agropecuarias,
Unidad Regional Norte, Campus Caborca, Universidad de Sonora, Col. Eleazar Ortiz C.P.
83621 H. Caborca, Sonora, México
| | - Patricia LOZANO-ZARAIN
- Posgrado en Microbiología, Centro de Investigaciones en
Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de
Puebla. Instituto de Ciencias, Ciudad Universitaria, San Manuel C.P. 72570 Puebla,
México
| | - Ygnacio MARTÍNEZ-LAGUNA
- Posgrado en Microbiología, Centro de Investigaciones en
Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de
Puebla. Instituto de Ciencias, Ciudad Universitaria, San Manuel C.P. 72570 Puebla,
México
| | - Rosa DEL CARMEN ROCHA-GRACIA
- Posgrado en Microbiología, Centro de Investigaciones en
Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de
Puebla. Instituto de Ciencias, Ciudad Universitaria, San Manuel C.P. 72570 Puebla,
México
| | - Gerardo CORTÉS-CORTÉS
- Posgrado en Microbiología, Centro de Investigaciones en
Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de
Puebla. Instituto de Ciencias, Ciudad Universitaria, San Manuel C.P. 72570 Puebla,
México
- Department of Microbiology and Environmental Toxicology,
University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
5
|
Biological control of pathogens in artisanal cheeses. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
6
|
LOEZA-LARA PD, MEDINA-ESTRADA RI, BRAVO-MONZÓN ÁE, JIMÉNEZ-MEJÍA R. Frequency and characteristics of ESBL-producing Escherichia coli isolated from Mexican fresh cheese. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
7
|
Rios-Muñiz D, Cerna-Cortes JF, Lopez-Saucedo C, Angeles-Morales E, Bobadilla-Del Valle M, Ponce-DE Leon A, Estrada-Garcia T. Isolation of Staphylococcus aureus, Uropathogenic Escherichia coli, and Nontuberculous Mycobacteria Strains from Pasteurized Cheeses and Unpasteurized Cream Sold at Traditional Open Markets in Mexico City. J Food Prot 2022; 85:1848-1854. [PMID: 36454541 DOI: 10.4315/jfp-22-168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/03/2022] [Indexed: 12/04/2022]
Abstract
ABSTRACT Fresh cheeses and cream are important garnishes of traditional Mexican food, often purchased at street or itinerant open markets or tianguis. However, there is scarce information regarding the microbiological quality of cheeses and cream sold in tianguis. For 2 years, three dairy stalls from three tianguis in Mexico City were visited once each season, trading practices were registered, and 96 dairy products were purchased. In total 72 fresh pasteurized cheeses that were hand-cut to order (24 Panela, 24 Canasto, and 24 Doble Crema) and 24 unpasteurized Crema de Rancho samples were collected. All dairy products remained without refrigeration for 8 h. Based on the National Guidelines limits, 87.5% of cheeses and 8% of Crema de Rancho samples were of low microbiological quality, and 1 sample of each type of cheese and 3 samples of Crema de Rancho exceeded the guidelines limits for Staphylococcus aureus. All dairy products were negative for Salmonella, Listeria monocytogenes, and all diarrheagenic Escherichia coli pathotypes, including Shiga toxin-producing E. coli. Among the 96 dairy samples, the prevalence of uropathogenic E. coli (UPEC) and of mycobacteria strains were determined because food items contaminated with these strains have been associated with urinary tract infections and mycobacteriosis, respectively. UPEC strains were isolated from 43% of cut-to-order cheeses and 29% of Crema de Rancho samples. Nontuberculous mycobacteria (NTM) strains were identified in 12.5% of Doble Crema cheese samples and 21% of Crema de Rancho samples. From the eight NTM-positive samples, 10 strains were identified (3 strains of Mycolicibacterium fortuitum, 2 of Mycobacteroides abscessus, 2 of Mycobacteroides chelonae, 2 of Mycolicibacterium porcinum, and 1 of Mycolicibacterium rhodesiae). All produced biofilms, and 70% had sliding motility (both virulence traits). Trading practices of cut-to-order pasteurized cheeses and unpasteurized Crema de Rancho in tianguis increase the risk of microbiological contamination of these products, including with human pathogens, and their consumption may cause human illness. HIGHLIGHTS
Collapse
Affiliation(s)
- Diana Rios-Muñiz
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas, Mexico City CP 11340, Mexico.,Department of Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, Zacatenco, Mexico City CP 07360, Mexico
| | - Jorge F Cerna-Cortes
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas, Mexico City CP 11340, Mexico
| | - Catalina Lopez-Saucedo
- Department of Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, Zacatenco, Mexico City CP 07360, Mexico
| | - Erika Angeles-Morales
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas, Mexico City CP 11340, Mexico
| | - Miriam Bobadilla-Del Valle
- Departamento de Enfermedades Infecciosas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City CP 14080, Mexico
| | - Alfredo Ponce-DE Leon
- Departamento de Enfermedades Infecciosas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City CP 14080, Mexico
| | - Teresa Estrada-Garcia
- Department of Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, Zacatenco, Mexico City CP 07360, Mexico
| |
Collapse
|
8
|
Kojok HE, Khalil M, Hage R, Jammoul R, Jammoul A, Darra NE. Microbiological and chemical evaluation of dairy products commercialized in the Lebanese market. Vet World 2022; 15:2575-2586. [PMID: 36590110 PMCID: PMC9798062 DOI: 10.14202/vetworld.2022.2575-2586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Cheese is considered an essential component of the Lebanese table, however, several foodborne illnesses have been reported due to cheese consumption. This study aimed to assess the microbiological quality and the occurrence of antibiotic and pesticide residues in two traditional Lebanese cheeses, Akkawi and Baladiyeh. In addition, drug resistance of isolated pathogens from the cheese samples was evaluated. Materials and Methods Fifty Akkawi and Baladiyeh cheese samples were obtained in duplicate from 37 different commercial brands in supermarkets and shops from various regions of Lebanon. Samples of different weights were either individually vacuum packed or soaked in brine unpacked where it was placed in plastic bag after being purchased. Samples were homogenized to determine antibiotic and pesticide residues using liquid and gas chromatography coupled to mass spectrometry, and microbiological evaluation was performed according to the International Organization for Standardization reference analytical methods. The disk diffusion method was used to determine the susceptibility of these isolates to antibiotics. Results Microbiologically, 17% of Akkawi and 14% of Baladiyeh samples were found to be non-conforming. The bacterial isolates (n = 29) were tested for their susceptibility to 11 different antibiotics commonly prescribed in the Lebanese community or used for treating infections caused by Gram-negative bacteria and listeriosis. Each isolate was found to be resistant to at least three antibiotics. Liquid and gas chromatography coupled to mass spectroscopy analysis showed the absence of pesticide residues in all samples. However, sulfamethazine antibiotic residue was found in 14% of the samples. Conclusion The results suggest that the cheese samples tested could cause foodborne illnesses due to the detection of pathogenic bacteria and are a public health concern due to the presence of antibiotic residues and the transmission of multidrug-resistant organisms.
Collapse
Affiliation(s)
- Hiyam El Kojok
- Department of Biological Sciences, Beirut Arab University, Faculty of Sciences, Tarik El Jedidah - Beirut, P.O. Box: 115020 Riad EL Solh 1107 2809, Lebanon
| | - Mahmoud Khalil
- Department of Biological Sciences, Beirut Arab University, Faculty of Sciences, Tarik El Jedidah - Beirut, P.O. Box: 115020 Riad EL Solh 1107 2809, Lebanon
| | - Rima Hage
- Department of Food, Lebanese Agricultural Research Institute, Fanar, Lebanon P.O. Box 2611, Beirut 1107 2809, Lebanon
| | - Rola Jammoul
- Department of Food, Lebanese Agricultural Research Institute, Fanar, Lebanon P.O. Box 2611, Beirut 1107 2809, Lebanon
| | - Adla Jammoul
- Department of Food, Lebanese Agricultural Research Institute, Fanar, Lebanon P.O. Box 2611, Beirut 1107 2809, Lebanon,Phytopharmacy Laboratory, Ministry of Agriculture of Lebanon, Kfarchima, Lebanon
| | - Nada El Darra
- Beirut Arab University, Faculty of Health Sciences, Tarik El Jedidah - Beirut, P.O. Box: 115020 Riad EL Solh 1107 2809, Lebanon,Corresponding author: Nada El Darra, e-mail: Co-authors: HE: , MK: , RH: , RJ: , AJ:
| |
Collapse
|
9
|
Qian J, Wu Z, Zhu Y, Liu C. One Health: a holistic approach for food safety in livestock. SCIENCE IN ONE HEALTH 2022; 1:100015. [PMID: 39076604 PMCID: PMC11262287 DOI: 10.1016/j.soh.2023.100015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/07/2023] [Indexed: 07/31/2024]
Abstract
The food safety of livestock is a critical issue between animals and humans due to their complex interactions. Pathogens have the potential to spread at every stage of the animal food handling process, including breeding, processing, packaging, storage, transportation, marketing and consumption. In addition, application of the antibiotic usage in domestic animals is a controversial issue because, while they can combat food-borne zoonotic pathogens and promote animal growth and productivity, they can also lead to the transmission of antibiotic-resistant microorganisms and antibiotic-resistant genes across species and habitats. Coevolution of microbiomes may occur in humans and animals as well which may alter the structure of the human microbiome through animal food consumption. One Health is a holistic approach to systematically understand the complex relationships among humans, animals and environments which may provide effective countermeasures to solve food safety problems aforementioned. This paper depicts the main pathogen spectrum of livestock and animal products, summarizes the flow of antibiotic-resistant bacteria and genes between humans and livestock along the food-chain production, and the correlation of their microbiome is reviewed as well to advocate for deeper interdisciplinary communication and collaboration among researchers in medicine, epidemiology, veterinary medicine and ecology to promote One Health approaches to address the global food safety challenges.
Collapse
Affiliation(s)
- Jing Qian
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zheyuan Wu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yongzhang Zhu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chang Liu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
10
|
Loads of Coliforms and Fecal Coliforms and Characterization of Thermotolerant Escherichia coli in Fresh Raw Milk Cheese. Foods 2022; 11:foods11030332. [PMID: 35159482 PMCID: PMC8834472 DOI: 10.3390/foods11030332] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to assess the hygienic status of raw milk cheese and determine the trends of virulence and antimicrobial resistance in thermotolerant Escherichia coli. Two hundred samples of karish, a popular Egyptian fresh raw milk cheese, were analyzed for coliforms and fecal coliforms using a standard most probable number (MPN) technique. Overall, 85% of samples were unsuitable for consumption, as they exceeded Egyptian standards for coliforms (10 MPN/g), and 65% of samples exhibited coliforms at 44.5 °C. Of 150 recovered thermotolerant strains, 140 (93.3%) were identified as E. coli. Importantly, one Shiga toxin-producing E. coli (STEC) strain carrying a striking virulence pattern, stx1−, stx2+, eae−, was detected. Eleven strains (7.8%, 11/140) showed resistance to third-generation cephalosporins. Antibiotic resistance genes included blaSHV, blaCTX-M, qnrS, tet(A), and tet(B), which were present in 4.3%, 2.8%, 0.71%, 2.1%, and 0.71% of isolates, respectively. In conclusion, this study indicated that hygienic-sanitary failures occurred throughout the production process of most retail karish cheese. Furthermore, our findings emphasize the need for adopting third-generation cephalosporin-resistant E. coli as an indicator for monitoring antimicrobial resistance in raw milk cheese to identify the potential public health burden associated with its consumption.
Collapse
|
11
|
Occurrence, pathotypes, and antimicrobial resistance profiles of diarrheagenic Escherichia coli strains in animal source food products from public markets in Mashhad, Iran. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Ohtsuka K, Hoshino K, Kadowaki N, Ohsaka M, Konishi N, Obata H, Kai A, Terajima J, Hara-Kudo Y. Selective media and real-time PCR assays for the effective detection of enterotoxigenic Escherichia coli in vegetables. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|