1
|
Rufino Vieira ÉN, Caroline de Oliveira V, Gomes AT, Lourenço MT, do Amaral e Paiva MJ, Santos TC, Guerra DJR, Saldaña MD. Perspectives of high-pressure technology in probiotic food production: A comprehensive review. FOOD BIOSCI 2024; 62:105179. [DOI: 10.1016/j.fbio.2024.105179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Serra-Castelló C, Possas A, Jofré A, Garriga M, Bover-Cid S. High-pressure processing inactivation of Salmonella in raw pet food for dog is enhanced by acidulation with lactic acid. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
3
|
Non-Thermal Technologies Combined with Antimicrobial Peptides as Methods for Microbial Inactivation: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Non-thermal technologies allow for the nutritional and sensory properties of foods to be preserved, something that consumers demand. Combining their use with antimicrobial peptides (AMPs) provides potential methods for food preservation that could have advantages over the use of chemical preservatives and thermal technologies. The aim of this review was to discuss the advances in the application of non-thermal technologies in combination with AMPs as a method for microbial inactivation. Published papers reporting studies on the combined use of power ultrasound (US), pulsed electrical fields (PEF), and high hydrostatic pressure (HHP) with AMPs were reviewed. All three technologies show a possibility of being combined with AMPs, generally demonstrating higher efficiency than the application of US, PEF, HHP, and AMPs separately. The most studied AMP used in combination with the three technologies was nisin, probably due to the fact that it is already officially regulated. However, the combination of these non-thermal technologies with other AMPs also shows promising results for microbial inactivation, as does the combination of AMPs with other novel non-thermal technologies. The effectiveness of the combined treatment depends on several factors; in particular, the characteristics of the food matrix, the conditions of the non-thermal treatment, and the conditions of AMP application.
Collapse
|
4
|
Koutsoumanis K, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Castle L, Crotta M, Grob K, Milana MR, Petersen A, Roig Sagués AX, Vinagre Silva F, Barthélémy E, Christodoulidou A, Messens W, Allende A. The efficacy and safety of high-pressure processing of food. EFSA J 2022; 20:e07128. [PMID: 35281651 PMCID: PMC8902661 DOI: 10.2903/j.efsa.2022.7128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
High-pressure processing (HPP) is a non-thermal treatment in which, for microbial inactivation, foods are subjected to isostatic pressures (P) of 400-600 MPa with common holding times (t) from 1.5 to 6 min. The main factors that influence the efficacy (log10 reduction of vegetative microorganisms) of HPP when applied to foodstuffs are intrinsic (e.g. water activity and pH), extrinsic (P and t) and microorganism-related (type, taxonomic unit, strain and physiological state). It was concluded that HPP of food will not present any additional microbial or chemical food safety concerns when compared to other routinely applied treatments (e.g. pasteurisation). Pathogen reductions in milk/colostrum caused by the current HPP conditions applied by the industry are lower than those achieved by the legal requirements for thermal pasteurisation. However, HPP minimum requirements (P/t combinations) could be identified to achieve specific log10 reductions of relevant hazards based on performance criteria (PC) proposed by international standard agencies (5-8 log10 reductions). The most stringent HPP conditions used industrially (600 MPa, 6 min) would achieve the above-mentioned PC, except for Staphylococcus aureus. Alkaline phosphatase (ALP), the endogenous milk enzyme that is widely used to verify adequate thermal pasteurisation of cows' milk, is relatively pressure resistant and its use would be limited to that of an overprocessing indicator. Current data are not robust enough to support the proposal of an appropriate indicator to verify the efficacy of HPP under the current HPP conditions applied by the industry. Minimum HPP requirements to reduce Listeria monocytogenes levels by specific log10 reductions could be identified when HPP is applied to ready-to-eat (RTE) cooked meat products, but not for other types of RTE foods. These identified minimum requirements would result in the inactivation of other relevant pathogens (Salmonella and Escherichia coli) in these RTE foods to a similar or higher extent.
Collapse
|
5
|
Abel N, Rotabakk BT, Lerfall J. Mild processing of seafood-A review. Compr Rev Food Sci Food Saf 2021; 21:340-370. [PMID: 34913247 DOI: 10.1111/1541-4337.12876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022]
Abstract
Recent years have shown a tremendous increase in consumer demands for healthy, natural, high-quality convenience foods, especially within the fish and seafood sector. Traditional processing technologies such as drying or extensive heating can cause deterioration of nutrients and sensory quality uncompilable with these demands. This has led to development of many novel processing technologies, which include several mild technologies. The present review highlights the potential of mild thermal, and nonthermal physical, and chemical technologies, either used alone or in combination, to obtain safe seafood products with good shelf life and preference among consumers. Moreover, applications and limitations are discussed to provide a clear view of the potential for future development and applications. Some of the reviewed technologies, or combinations thereof, have shown great potential for non-seafood products, yet data are missing for fish and seafood in general. The present paper visualizes these knowledge gaps and the potential for new technology developments in the seafood sector. Among identified gaps, the combination of mild heating (e.g., sous vide or microwave) with more novel technologies such as pulsed electric field, pulsed light, soluble gas stabilization, cold plasma, or Ohmic heat must be highlighted. However, before industrial applications are available, more research is needed.
Collapse
Affiliation(s)
- Nanna Abel
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Jørgen Lerfall
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
6
|
Inactivation and recovery of bacterial strains, individually and mixed, in milk after high pressure processing. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
|
8
|
Pressure-resistant acclimation of lactic acid bacteria from a natural fermentation product using high pressure. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Yan S, Liu K, Mu L, Liu J, Tang W, Liu B. Research and application of hydrostatic high pressure in tumor vaccines (Review). Oncol Rep 2021; 45:75. [PMID: 33760193 PMCID: PMC8020208 DOI: 10.3892/or.2021.8026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/05/2021] [Indexed: 11/29/2022] Open
Abstract
It is well known that hydrostatic pressure (HP) is a physical parameter that is now regarded as an important variable for life. High hydrostatic pressure (HHP) technology has influenced biological systems for more than 100 years. Food and bioscience researchers have shown great interest in HHP technology over the past few decades. The development of knowledge related to this area can better facilitate the application of HHP in the life sciences. Furthermore, new applications for HHP may come from these current studies, particularly in tumor vaccines. Currently, cancer recurrence and metastasis continue to pose a serious threat to human health. The limited efficacy of conventional treatments has led to the need for breakthroughs in immunotherapy and other related areas. Research into tumor vaccines is providing new insights for cancer treatment. The purpose of this review is to present the main findings reported thus far in the relevant scientific literature, focusing on knowledge related to HHP technology and tumor vaccines, and to demonstrate the potential of applying HHP technology to tumor vaccine development.
Collapse
Affiliation(s)
- Shuai Yan
- Department of Operating Room, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Kai Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lin Mu
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jianfeng Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wan Tang
- Department of Operating Room, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
10
|
Sehrawat R, Kaur BP, Nema PK, Tewari S, Kumar L. Microbial inactivation by high pressure processing: principle, mechanism and factors responsible. Food Sci Biotechnol 2021; 30:19-35. [PMID: 33552614 DOI: 10.1007/s10068-020-00831-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
High-pressure processing (HPP) is a novel technology for the production of minimally processed food products with better retention of the natural aroma, fresh-like taste, additive-free, stable, convenient to use. In this regard safety of products by microbial inactivation is likely to become an important focus for food technologists from the research and industrial field. High pressure induces conformational changes in the cell membranes, cell morphology. It perturbs biochemical reactions, as well as the genetic mechanism of the microorganisms, thus ensures the reduction in the microbial count. Keeping in view the commercial demand of HPP products, the scientific literature available on the mechanism of inactivation by high pressure and intrinsic and extrinsic factors affecting the efficiency of HPP are systematically and critically analyzed in this review to develop a clear understanding of these issues. Modeling applied to study the microbial inactivation kinetics by HPP is also discussed for the benefit of interested readers.
Collapse
Affiliation(s)
- Rachna Sehrawat
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028 India.,Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008 India
| | - Barjinder Pal Kaur
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028 India
| | - Prabhat K Nema
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028 India
| | - Somya Tewari
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat, Haryana 131028 India
| | - Lokesh Kumar
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, Canterbury 7647 New Zealand
| |
Collapse
|
11
|
Microbial Modeling Needs for the Nonthermal Processing of Foods. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09263-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Garre A, Zwietering MH, den Besten HMW. Multilevel modelling as a tool to include variability and uncertainty in quantitative microbiology and risk assessment. Thermal inactivation of Listeria monocytogenes as proof of concept. Food Res Int 2020; 137:109374. [PMID: 33233076 DOI: 10.1016/j.foodres.2020.109374] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 12/13/2022]
Abstract
Variability is inherent in biology and also substantial for microbial populations. In the context of food safety risk assessment, it refers to differences in the response of different bacterial strains (between-strain variability) and different cells (within-strain variability) to the same condition (e.g. inactivation treatment). However, its quantification based on empirical observations and its incorporation in predictive models is a challenge for both experimental design and (statistical) analysis. In this article we propose the use of multilevel models to quantify (different levels of) variability and uncertainty and include them in the predictions. As proof of concept, we analyse the microbial inactivation of Listeria monocytogenes to thermal treatments including different levels of variability (between-strain and within-strain) and uncertainty. The relationship between the microbial count and time was expressed using a (non-linear) Weibullian model. Moreover, we defined stochastic hypotheses to describe the different types of variation at the level of the kinetic parameters, as well as in the observations (microbial counts). The model parameters (kinetic parameters and variances) are estimated using Bayesian statistics. The multilevel approach was compared against an analogous, single-level model. The multilevel methodology shrinks extreme parameter estimates towards the mean according to uncertainty, thus mitigating overfitting. In addition, this approach enables to easily incorporate different levels of variation (between-strain and/or within-strain variability and/or uncertainty) in the predictions. On the other hand, multilevel (Bayesian) models are more complex to define, implement, analyse and communicate than single-level models. Nevertheless, their ability to incorporate different sources of variability in predictions make them very suitable for Quantitative Microbial Risk Assessment.
Collapse
Affiliation(s)
- Alberto Garre
- Food Microbiology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Marcel H Zwietering
- Food Microbiology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Heidy M W den Besten
- Food Microbiology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|