1
|
Darbandi A, Elahi Z, Dadgar-Zankbar L, Ghasemi F, Kakavandi N, Jafari S, Darbandi T, Ghanavati R. Application of microbial enzymes in medicine and industry: current status and future perspectives. Future Microbiol 2024; 19:1419-1437. [PMID: 39269849 PMCID: PMC11552484 DOI: 10.1080/17460913.2024.2398337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Microbes are a major source of enzymes due to their ability to be mass-cultivated and genetically modified. Compared with plant and animal enzymes, microbial enzymes are more stable and active. Enzymes are generally classified into six classes based on their reaction, substrate specificity and mechanism of action. In addition to their application in medicine for treating diseases, these compounds are used as anti-inflammatory, thrombolytic and digestive agents. However, challenges such as immunogenicity, tissue specificity and short in vivo half-life make clinical trials complex. Enzymes are metabolic catalysts in industry and their production and extraction must be optimized to preserve profitability due to rising demand. The present review highlights the increasing importance of bacterial enzymes in industry and medicine and explores methods for their production, extraction and purification.
Collapse
Affiliation(s)
- Atieh Darbandi
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar-Zankbar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghasemi
- Department of Pathobiology, Division of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Kakavandi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajjad Jafari
- Department of Medical Microbiology & Virology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Talieh Darbandi
- Department of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Roya Ghanavati
- School of Medicine, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| |
Collapse
|
2
|
Wu J, Lan G, He N, He L, Li C, Wang X, Zeng X. Purification of fibrinolytic enzyme from Bacillus amyloliquefaciens GUTU06 and properties of the enzyme. Food Chem X 2023; 20:100896. [PMID: 38144793 PMCID: PMC10740062 DOI: 10.1016/j.fochx.2023.100896] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/08/2023] [Accepted: 09/21/2023] [Indexed: 12/26/2023] Open
Abstract
A producing-fibrinolytic enzyme strain was isolated with high yield. The strain was identified as Bacillus amyloliquefaciens. B. amyloliquefaciens GUTU06 fibrinolytic enzyme was purified by acetone precipitation and reverse micelle. Acetone precipitation condition and reverse micelle condition were examined. Results showed that the total reverse micelle extraction efficiency was 64.49 % ± 1.6 %. The purification fold of the entire process reached 13.38. The optimum pH of purified enzyme is 5, and the optimum temperature is 45 °C. Fe3+ and K+ can enhance the fibrinolytic activity of the enzyme. Compared to commercial fibrinolytic enzymes such as urokinase and lumbrukinase, GUTU06 fibrinolytic enzymes have a lower pH optimal range and higher temperature stability. The molecular weight of the enzyme was approximately 28 kDa. Reverse micelle extraction with cetyl trimethylammonium bromide as a surfactant combined with acetone precipitation is suitable for separating and purifying fibrinolytic enzymes and a promising technique for obtaining active proteins.
Collapse
Affiliation(s)
- Jialin Wu
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Guangqun Lan
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Na He
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, PR China
| | - Xiao Wang
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guizhou University, Guiyang 550025, PR China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
- Key Lab of Fermentation Engineering and Biopharmacy, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
3
|
Purification and Characterization of a Fibrinolytic Enzyme from Marine Bacillus velezensis Z01 and Assessment of Its Therapeutic Efficacy In Vivo. Microorganisms 2022; 10:microorganisms10050843. [PMID: 35630289 PMCID: PMC9145925 DOI: 10.3390/microorganisms10050843] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Fibrinolytic enzymes are the most effective agents for the treatment of thrombotic diseases. In the present study, we purified and characterized an extracellular fibrinolytic serine metalloprotease (named Velefibrinase) that is produced by marine Bacillus velezensis Z01 and assessed its thrombolysis in vivo. SDS-PAGE and MALDI-TOF-MS analyses showed that the molecular mass of Velefibrinase was 32.3 KDa and belonged to the peptidase S8 family. The optimal fibrinolytic activity conditions of Velefibrinase were 40 °C and pH 7.0. Moreover, Velefibrinase exhibited high substrate specificity to fibrin, and a higher ratio of fibrinolytic/caseinolytic (1.48) values, which indicated that Velefibrinase had excellent fibrinolytic properties. Based on the degradation pattern of fibrin and fibrinogen, Velefibrinase could be classified as α/β-fibrinogenase. In vitro, Velefibrinase demonstrated efficient thrombolytic ability, anti-platelet aggregation, and amelioration of blood coagulation (APTT, PT, TT, and FIB), which were superior to those of commercial anticoagulant urokinase. Velefibrinase showed no hemolysis for erythrocyte in vitro and no hemorrhagic activity in vivo. Finally, Velefibrinase effectively prevented mouse tail thrombosis in a dose-dependent (0.22–0.88 mg/kg) manner. These findings suggested that Velefibrinase has the potential to becoming a new thrombolytic agent.
Collapse
|