1
|
Roma M, Hegde S. Implications of graphene-based materials in dentistry: present and future. Front Chem 2024; 11:1308948. [PMID: 38495056 PMCID: PMC10941955 DOI: 10.3389/fchem.2023.1308948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/26/2023] [Indexed: 03/19/2024] Open
Abstract
Since the advent of nanoscience, nanobiomaterials have been applied in the dental industry. Graphene and its derivatives have attracted the most interest of all of them due to their exceptional look, biocompatibility, multiplication differential, and antibacterial capabilities. We outlined the most recent developments about their applications to dentistry in our review. There is discussion of the synthesis processes, architectures, and characteristics of materials based on graphene. The implications of graphene and its counterparts are then meticulously gathered and described. Finally, in an effort to inspire more excellent research, this paper explores the obstacles and potential of graphene-based nanomaterials for dental aspects.
Collapse
Affiliation(s)
- M. Roma
- Manipal College of Dental Sciences, Mangalore, Mangalore, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shreya Hegde
- Manipal College of Dental Sciences, Mangalore, Mangalore, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
2
|
Li X, Liang X, Wang Y, Wang D, Teng M, Xu H, Zhao B, Han L. Graphene-Based Nanomaterials for Dental Applications: Principles, Current Advances, and Future Outlook. Front Bioeng Biotechnol 2022; 10:804201. [PMID: 35360406 PMCID: PMC8961302 DOI: 10.3389/fbioe.2022.804201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
With the development of nanotechnology, nanomaterials have been used in dental fields over the past years. Among them, graphene and its derivatives have attracted great attentions, owing to their excellent physicochemical property, morphology, biocompatibility, multi-differentiation activity, and antimicrobial activity. In our review, we summarized the recent progress about their applications on the dentistry. The synthesis methods, structures, and properties of graphene-based materials are discussed. Then, the dental applications of graphene-based materials are emphatically collected and described. Finally, the challenges and outlooks of graphene-based nanomaterials on the dental applications are discussed in this paper, aiming at inspiring more excellent studies.
Collapse
Affiliation(s)
- Xiaojing Li
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Liang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yanhui Wang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dashan Wang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Minhua Teng
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hao Xu
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Baodong Zhao
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Baodong Zhao, ; Lei Han,
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Baodong Zhao, ; Lei Han,
| |
Collapse
|
3
|
Farooq I, Ali S, Al-Saleh S, AlHamdan EM, AlRefeai MH, Abduljabbar T, Vohra F. Synergistic Effect of Bioactive Inorganic Fillers in Enhancing Properties of Dentin Adhesives-A Review. Polymers (Basel) 2021; 13:polym13132169. [PMID: 34209016 PMCID: PMC8271823 DOI: 10.3390/polym13132169] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
Dentin adhesives (DAs) play a critical role in the clinical success of dental resin composite (DRC) restorations. A strong bond between the adhesive and dentin improves the longevity of the restoration, but it is strongly dependent on the various properties of DAs. The current review was aimed at summarizing the information present in the literature regarding the improvement of the properties of DAs noticed after the addition of bioactive inorganic fillers. From our search, we were able to find evidence of multiple bioactive inorganic fillers (bioactive glass, hydroxyapatite, amorphous calcium phosphate, graphene oxide, calcium chloride, zinc chloride, silica, and niobium pentoxide) in the literature that have been used to improve the different properties of DAs. These improvements can be seen in the form of improved hardness, higher modulus of elasticity, enhanced bond, flexural, and ultimate tensile strength, improved fracture toughness, reduced nanoleakage, remineralization of the adhesive-dentin interface, improved resin tag formation, greater radiopacity, antibacterial effect, and improved DC (observed for some fillers). Most of the studies dealing with the subject area are in vitro. Future in situ and in vivo studies are recommended to positively attest to the results of laboratory findings.
Collapse
Affiliation(s)
- Imran Farooq
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Correspondence:
| | - Saqib Ali
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Samar Al-Saleh
- Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (S.A.-S.); (E.M.A.); (T.A.); (F.V.)
| | - Eman M. AlHamdan
- Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (S.A.-S.); (E.M.A.); (T.A.); (F.V.)
| | - Mohammad H. AlRefeai
- Operative Division, Department of Restorative Dentistry, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia;
| | - Tariq Abduljabbar
- Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (S.A.-S.); (E.M.A.); (T.A.); (F.V.)
| | - Fahim Vohra
- Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (S.A.-S.); (E.M.A.); (T.A.); (F.V.)
| |
Collapse
|
4
|
Alhenaki AM, Attar EA, Alshahrani A, Farooq I, Vohra F, Abduljabbar T. Dentin Bond Integrity of Filled and Unfilled Resin Adhesive Enhanced with Silica Nanoparticles-An SEM, EDX, Micro-Raman, FTIR and Micro-Tensile Bond Strength Study. Polymers (Basel) 2021; 13:polym13071093. [PMID: 33808159 PMCID: PMC8037508 DOI: 10.3390/polym13071093] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to synthesize and assess unfilled and filled (silica nanoparticles) dentin adhesive polymer. Methods encompassing scanning electron microscopy (SEM)-namely, energy dispersive X-ray spectroscopy (EDX), micro-tensile bond strength (µTBS) test, Fourier transform infrared (FTIR), and micro-Raman spectroscopy-were utilized to investigate Si particles' shape and incorporation, dentin bond toughness, degree of conversion (DC), and adhesive-dentin interaction. The Si particles were incorporated in the experimental adhesive (EA) at 0, 5, 10, and 15 wt. % to yield Si-EA-0% (negative control group), Si-EA-5%, Si-EA-10%, and Si-EA-15% groups, respectively. Teeth were set to form bonded samples using adhesives in four groups for µTBS testing, with and without aging. Si particles were spherical shaped and resin tags having standard penetrations were detected on SEM micrographs. The EDX analysis confirmed the occurrence of Si in the adhesive groups (maximum in the Si-EA-15% group). Micro-Raman spectroscopy revealed the presence of characteristic peaks at 638, 802, and 1300 cm-1 for the Si particles. The µTBS test revealed the highest mean values for Si-EA-15% followed by Si-EA-10%. The greatest DC was appreciated for the control group trailed by the Si-EA-5% group. The addition of Si particles of 15 and 10 wt. % in dentin adhesive showed improved bond strength. The addition of 15 wt. % resulted in a bond strength that was superior to all other groups. The Si-EA-15% group demonstrated acceptable DC, suitable dentin interaction, and resin tag formation.
Collapse
Affiliation(s)
- Aasem M. Alhenaki
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (A.M.A.); (A.A.); (F.V.)
| | - Esra A. Attar
- Oral and Maxillofacial Prosthodontics Department, Faculty of Dentistry, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
| | - Abdullah Alshahrani
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (A.M.A.); (A.A.); (F.V.)
| | - Imran Farooq
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
| | - Fahim Vohra
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (A.M.A.); (A.A.); (F.V.)
| | - Tariq Abduljabbar
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia; (A.M.A.); (A.A.); (F.V.)
- Correspondence:
| |
Collapse
|
5
|
Münchow EA, da Silva AF, Piva E, Cuevas-Suárez CE, de Albuquerque MTP, Pinal R, Gregory RL, Breschi L, Bottino MC. Development of an antibacterial and anti-metalloproteinase dental adhesive for long-lasting resin composite restorations. J Mater Chem B 2020; 8:10797-10811. [PMID: 33169763 PMCID: PMC7744429 DOI: 10.1039/d0tb02058c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite all the advances in adhesive dentistry, dental bonds are still fragile due to degradation events that start during application of adhesive agents and the inherent hydrolysis of resin-dentin bonds. Here, we combined two outstanding processing methods (electrospinning and cryomilling) to obtain bioactive (antimicrobial and anti-metalloproteinase) fiber-based fillers containing a potent matrix metalloproteinase (MMP) inhibitor (doxycycline, DOX). Poly(ε)caprolactone solutions containing different DOX amounts (0, 5, 25, and 50 wt%) were processed via electrospinning, resulting in non-toxic submicron fibers with antimicrobial activity against Streptococcus mutans and Lactobacillus. The fibers were embedded in a resin blend, light-cured, and cryomilled for the preparation of fiber-containing fillers, which were investigated with antibacterial and in situ gelatin zymography analyzes. The fillers containing 0, 25, and 50 wt% DOX-releasing fibers were added to aliquots of a two-step, etch-and-rinse dental adhesive system. Mechanical strength, hardness, degree of conversion (DC), water sorption and solubility, bond strength to dentin, and nanoleakage analyses were performed to characterize the physico-mechanical, biological, and bonding properties of the modified adhesives. Statistical analyses (ANOVA; Kruskal-Wallis) were used when appropriate to analyze the data (α = 0.05). DOX-releasing fibers were successfully obtained, showing proper morphological architecture, cytocompatibility, drug release ability, slow degradation profile, and antibacterial activity. Reduced metalloproteinases (MMP-2 and MMP-9) activity was observed only for the DOX-containing fillers, which have also demonstrated antibacterial properties against tested bacteria. Adhesive resins modified with DOX-containing fillers demonstrated greater DC and similar mechanical properties as compared to the fiber-free adhesive (unfilled control). Concerning bonding performance to dentin, the experimental adhesives showed similar immediate bond strengths to the control. After 12 months of water storage, the fiber-modified adhesives (except the group consisting of 50 wt% DOX-loaded fillers) demonstrated stable bonds to dentin. Nanoleakage was similar among all groups investigated. DOX-releasing fibers showed promising application in developing novel dentin adhesives with potential therapeutic properties and MMP inhibition ability; antibacterial activity against relevant oral pathogens, without jeopardizing the physico-mechanical characteristics; and bonding performance of the adhesive.
Collapse
Affiliation(s)
- Eliseu A. Münchow
- Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS 90035-003, Brazil
| | - Adriana F. da Silva
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, RS 96015-560, Brazil
| | - Evandro Piva
- Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, RS 96015-560, Brazil
| | - Carlos E. Cuevas-Suárez
- Dental Materials Laboratory, Academic Area of Dentistry, Autonomous University of Hidalgo State, Circuito Ex Hacienda La Concepción S/N, San Agustín Tlaxiaca, Hgo, 42160 Mexico
| | - Maria T. P. de Albuquerque
- Department of Clinical Dentistry, Endodontics, Federal University of Bahia, Salvador, BA 40110-040, Brazil
| | - Rodolfo Pinal
- Department of Industrial and Physical Pharmacy, Purdue University, College of Pharmacy, West Lafayette, IN 47907, USA
| | - Richard L. Gregory
- Department of Biomedical and Applied Sciences, Division of Dental Biomaterials, Indiana University School of Dentistry (IUSD), Indianapolis, IN 46202, USA
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna, Alma Mater Studiorum, Bologna, Italy
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Jun SK, Yang SA, Kim YJ, El-Fiqi A, Mandakhbayar N, Kim DS, Roh J, Sauro S, Kim HW, Lee JH, Lee HH. Multi-functional nano-adhesive releasing therapeutic ions for MMP-deactivation and remineralization. Sci Rep 2018; 8:5663. [PMID: 29618810 PMCID: PMC5884793 DOI: 10.1038/s41598-018-23939-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/23/2018] [Indexed: 11/24/2022] Open
Abstract
Restoration of hard tissue in conjunction with adhesive is a globally challenging issue in medicine and dentistry. Common clinical therapies involving application of adhesive and substitute material for functional or anatomical recovery are still suboptimal. Biomaterials with bioactivity and inhibitory effects of enzyme-mediated adhesive degradation can render a solution to this. Here, we designed a novel copper-doped bioactive glass nanoparticles (CuBGn) to offer multifunction: metalloproteinases (MMP) deactivation and remineralization and incorporated the CuBGn in resin-dentin adhesive systems, which showed most common failure of MMP mediated adhesive degradation among hard tissue adhesives, to evaluate proposed therapeutic effects. A sol-gel derived bioactive glass nanoparticles doping 10 wt% of Cu (Cu-BGn) for releasing Cu ions, which were well-known MMP deactivator, were successfully created and included in light-curing dental adhesive (DA), a filler-free co-monomer resin blend, at different concentrations (up to 2 wt%). These therapeutic adhesives (CuBGn-DA) showed enhanced (a)cellular bioactivity, cytocompatibility, microtensile bond strength and MMP deactivation-ability. In conclusion, the incorporation of Cu ions releasing nano-bioactive glass demonstrated multifunctional properties at the resin-dentin interface; MMP deactivation and remineralization, representing a suitable strategy to extend the longevity of adhesive-hard tissue (i.e. resin-dentin) interfaces.
Collapse
Affiliation(s)
- Soo-Kyung Jun
- Department of Dental Hygiene, Kyungdong University, Wonju 26495, South Korea.,Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, South Korea.,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea
| | - Sun-A Yang
- Lithuanian University of health sciences, Kaunas, 44307, Lithuania
| | - You-Jin Kim
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, South Korea
| | - Ahmed El-Fiqi
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea.,Glass Research Department, National Research centre, Cairo, 12622, Egypt
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea
| | - Duck-Su Kim
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, 02447, Seoul, South Korea
| | - Jiyeon Roh
- Department of Dental Hygiene, Yonsei University Wonju College of Medicine, Wonju, 26426, South Korea
| | - Salvatore Sauro
- Dental Biomaterials, Departamento de Odontología, Facultad de Ciencias de la Salud, University CEU-Cardenal Herrera, Valencia, Spain.,Tissue Engineering & Biophotonics, King's College London Dental Institute (KCLDI), London, UK
| | - Hae-Won Kim
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, South Korea.,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea.,Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, South Korea
| | - Jung-Hwan Lee
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, South Korea. .,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea.
| | - Hae-Hyoung Lee
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, South Korea. .,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, South Korea.
| |
Collapse
|