1
|
Belenkov YN, Ilgisonis IS, Khabarova NV, Kirichenko Yu Yu YY. Modern Instrumental Methods of Diagnostics and Risk Assessment of Developing Antitumor Therapy Cardiovasculotoxicity. KARDIOLOGIIA 2024; 64:3-12. [PMID: 39262348 DOI: 10.18087/cardio.2024.8.n2753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
The most important component of cardio-oncology is the assessment of the risk of development and diagnosis of cardiovascular toxicity of the antitumor therapy, the detection of which is largely based on visualization of the cardiovascular system. The article addresses up-to-date methods of non-invasive visualization of the heart and blood vessels, according to the 2022 European Society of Cardiology Clinical Guidelines on cardio-oncology. Also, the article discusses promising cardiovascular imaging techniques that are not yet included in the guidelines: assessment of coronary calcium using multislice computed tomography and positron emission computed tomography with 18F-labeled 2-deoxy-2-fluoro-d-glucose.
Collapse
Affiliation(s)
- Yu N Belenkov
- Sechenov First Moscow Medical University; Department of Hospital Therapy #1, Sklifosovsky Institute of Clinical Medicine, Moscow
| | - I S Ilgisonis
- Sechenov First Moscow Medical University; Department of Hospital Therapy #1, Sklifosovsky Institute of Clinical Medicine, Moscow
| | - N V Khabarova
- Sechenov First Moscow Medical University; Department of Hospital Therapy #1, Sklifosovsky Institute of Clinical Medicine, Moscow
| | - Yu Yu Kirichenko Yu Yu
- Sechenov First Moscow Medical University; Department of Hospital Therapy #1, Sklifosovsky Institute of Clinical Medicine, Moscow
| |
Collapse
|
2
|
Garg M, Gandhi K, Gera P, Jadhav SM, Mohanty B, Gurjar M, Sandupatla B, Gala R, Chaudhari P, Prasad M, Chinnaswamy G, Gota V. Implications of chronic moderate protein-deficiency malnutrition on doxorubicin pharmacokinetics and cardiotoxicity in early post-weaning stage. Life Sci 2024; 350:122765. [PMID: 38830506 DOI: 10.1016/j.lfs.2024.122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/14/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Malnutrition is a common problem in developing countries, and the impact of severe malnutrition on optimal treatment outcomes of chemotherapy in pediatric cancer patients is well documented. However, despite being a more prevalent and distinct entity, moderate malnutrition is until now unexplored for its effects on treatment outcomes. AIMS In this study we aimed to investigate the molecular basis of altered pharmacokinetics and cardiotoxicity of doxorubicin observed in early-life chronic moderate protein deficiency malnutrition. MATERIALS AND METHODS We developed an animal model of early-life moderate protein-deficiency malnutrition and validated it using clinical samples. This model was used to study pharmacokinetic and toxicity changes and was further utilized to study the molecular changes in liver and heart to get mechanistic insights. KEY FINDINGS Here we show that moderate protein-deficiency malnutrition in weanling rats causes changes in drug disposition in the liver by modification of hepatic ABCC3 and MRP2 transporters through the TNFα signalling axis. Furthermore, malnourished rats in repeat-dose doxorubicin toxicity study showed higher toxicity and mortality. A higher accumulation of doxorubicin in the heart was observed which was associated with alterations in cardiac metabolic pathways and increased cardiotoxicity. SIGNIFICANCE Our findings indicate that moderate malnutrition causes increased susceptibility towards toxic side effects of chemotherapy. These results may necessitate further investigations and new guidelines on the dosing of chemotherapy in moderately malnourished pediatric cancer patients.
Collapse
Affiliation(s)
- Megha Garg
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400094, India
| | - Khushboo Gandhi
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Poonam Gera
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400094, India; Biorepository, Advanced Centre for Treatment Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Shraddha Mahesh Jadhav
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Bhabani Mohanty
- Department of Comparative Oncology and Small Animal Imaging Facility, ACTREC, Tata Memorial Center, Kharghar, Navi-Mumbai, Maharashtra 410210, India
| | - Murari Gurjar
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India; Department of Clinical Pharmacology, Mahamana Pandit Madan Mohan Malviya Cancer Centre, Banaras Hindu University Campus, Varanasi, Uttar Pradesh 221005, India
| | | | - Rajul Gala
- Paediatric Oncology, Tata Memorial Hospital, Mumbai, India
| | - Pradip Chaudhari
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400094, India; Department of Comparative Oncology and Small Animal Imaging Facility, ACTREC, Tata Memorial Center, Kharghar, Navi-Mumbai, Maharashtra 410210, India
| | - Maya Prasad
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400094, India; Paediatric Oncology, Tata Memorial Hospital, Mumbai, India
| | - Girish Chinnaswamy
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400094, India; Paediatric Oncology, Tata Memorial Hospital, Mumbai, India
| | - Vikram Gota
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400094, India.
| |
Collapse
|
3
|
Berenguer DRF, de Moraes Chaves Becker M, de Oliveira Buril R, Bertão PA, Markman B, Brandão SCS. Progression of Myocardial 18F-FDG Uptake in a Patient with Cardiotoxicity. Arq Bras Cardiol 2024; 121:e20230276. [PMID: 38422307 PMCID: PMC11081128 DOI: 10.36660/abc.20230276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/23/2023] [Accepted: 11/14/2023] [Indexed: 03/02/2024] Open
Abstract
The objective of this case report was to present the progression of chemotherapy-induced cardiotoxicity in a patient with lymphoma, highlighting the importance of myocardial fluor-18-fluorodeoxyglucose (18F-FDG) uptake by positron emission tomography coupled with computed tomography (PET/CT). 43-year-old female patient with uterine lymphoma, who underwent hysterectomy followed by three chemotherapy regimens and radiotherapy. The patient had episodes of acute heart failure two years after chemotherapy. Echocardiogram revealed a reduction in left ventricular ejection fraction (LVEF). A retrospective analysis of 18F-FDG PET/CT showed an increase in myocardial uptake in all tests performed during oncologic treatment. Despite disease remission, the patient developed heart failure with reduced LVEF. During chemotherapy, there was a diffuse, significant increase in myocardial 18F-FDG uptake, which preceded the decrease in myocardial performance and seemed to reflect metabolic changes in cardiomyocytes, related to cardiotoxicity. Would an analysis of myocardial 18F-FDG uptake yield a different cardiac outcome in this patient? This question is relevant, considering that other patients may benefit from the use of PET as an early marker of cardiotoxicity. Imaging tests are essential in the follow-up of patients at risk of cardiotoxicity. Although echocardiography remains the main imaging test in the diagnosis of cardiotoxicity, 18F-FDG PET/CT may be a powerful tool for the early diagnosis of this condition.
Collapse
Affiliation(s)
- Diego Rafael Freitas Berenguer
- Universidade Federal de PernambucoPrograma de pós-graduação em Saúde TranslacionalRecifePEBrasilPrograma de pós-graduação em Saúde Translacional–- Universidade Federal de Pernambuco, Recife, PE – Brasil
- Universidade Federal de PernambucoHospital das Clínicas de PernambucoRecifePEBrasilHospital das Clínicas de Pernambuco – Universidade Federal de Pernambuco, Recife, PE – Brasil
| | - Monica de Moraes Chaves Becker
- Universidade Federal de PernambucoPrograma de pós-graduação em CirurgiaRecifePEBrasilPrograma de pós-graduação em Cirurgia – Universidade Federal de Pernambuco, Recife, PE – Brasil
- Universidade Federal de PernambucoHospital das Clínicas de PernambucoRecifePEBrasilHospital das Clínicas de Pernambuco – Universidade Federal de Pernambuco, Recife, PE – Brasil
| | - Roberto de Oliveira Buril
- Universidade Federal de PernambucoPrograma de pós-graduação em CirurgiaRecifePEBrasilPrograma de pós-graduação em Cirurgia – Universidade Federal de Pernambuco, Recife, PE – Brasil
- Universidade Federal de PernambucoHospital das Clínicas de PernambucoRecifePEBrasilHospital das Clínicas de Pernambuco – Universidade Federal de Pernambuco, Recife, PE – Brasil
| | - Paula Araruna Bertão
- Universidade Federal de PernambucoPrograma de pós-graduação em Saúde TranslacionalRecifePEBrasilPrograma de pós-graduação em Saúde Translacional–- Universidade Federal de Pernambuco, Recife, PE – Brasil
- Universidade Federal de PernambucoHospital das Clínicas de PernambucoRecifePEBrasilHospital das Clínicas de Pernambuco – Universidade Federal de Pernambuco, Recife, PE – Brasil
| | - Brivaldo Markman
- Universidade Federal de PernambucoPrograma de pós-graduação em Saúde TranslacionalRecifePEBrasilPrograma de pós-graduação em Saúde Translacional–- Universidade Federal de Pernambuco, Recife, PE – Brasil
- Universidade Federal de PernambucoHospital das Clínicas de PernambucoRecifePEBrasilHospital das Clínicas de Pernambuco – Universidade Federal de Pernambuco, Recife, PE – Brasil
| | - Simone Cristina Soares Brandão
- Universidade Federal de PernambucoPrograma de pós-graduação em CirurgiaRecifePEBrasilPrograma de pós-graduação em Cirurgia – Universidade Federal de Pernambuco, Recife, PE – Brasil
- Universidade Federal de PernambucoHospital das Clínicas de PernambucoRecifePEBrasilHospital das Clínicas de Pernambuco – Universidade Federal de Pernambuco, Recife, PE – Brasil
| |
Collapse
|
4
|
Palomino-Fernández D, Seiffert AP, Gómez-Grande A, Jiménez López-Guarch C, Moreno G, Bueno H, Gómez EJ, Sánchez-González P. Robustness of [ 18F]FDG PET/CT radiomic analysis in the setting of drug-induced cardiotoxicity. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107981. [PMID: 38154326 DOI: 10.1016/j.cmpb.2023.107981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/01/2023] [Accepted: 12/12/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND AND OBJECTIVES Standardization of radiomic data acquisition protocols is still at a very early stage, revealing a strong need to work towards the definition of uniform image processing methodologies The aim of this study is to identify sources of variability in radiomic data derived from image discretization and resampling methodologies prior to image feature extraction. Furthermore, to identify robust potential image-based biomarkers for the early detection of cardiotoxicity. METHODS Image post-acquisition processing, interpolation, and volume of interest (VOI) segmentation were performed. Four experiments were conducted to assess the reliability in terms of the intraclass correlation coefficient (ICC) of the radiomic features and the effects of the variation of voxel size and gray level discretization. Statistical analysis was performed separating the patients according to cardiotoxicity diagnosis. Differences of texture features were studied with Mann-Whitney U test. P-values <0.05 after multiple testing correction were considered statistically significant. Additionally, a non-supervised k-Means clustering algorithm was evaluated. RESULTS The effect of the variation in the voxel size demonstrated a non-dependency relationship with the values of the radiomic features, regardless of the chosen discretization method. The median ICC values were 0.306 and 0.872 for absolute agreement and consistency, respectively, when varying the discretization bin number. The median ICC values were 0.678 and 0.878 for absolute agreement and consistency, respectively, when varying the discretization bin size. A total of 16 first order, 6 Gray Level Co-occurrence Matrix (GLCM), 4 Gray Level Dependence Matrix (GLDM) and 4 Gray Level Run Length Matrix (GLRLM) features demonstrated statistically significant differences between the diagnosis groups for interim scans (P<0.05) for the fixed bin size (FBS) discretization methodology. However, no statistically significant differences between diagnostic groups were found for the fixed bin number (FBN) discretization methodology. Two clusters based on the radiomic features were identified. CONCLUSIONS Gray level discretization has a major impact on the repeatability of the radiomic features. The selection of the optimal processing methodology has led to the identification of texture-based patterns for the differentiation of early cardiac damage profiles.
Collapse
Affiliation(s)
- David Palomino-Fernández
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, Avenida Complutense 30, Madrid 28040, Spain.
| | - Alexander P Seiffert
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, Avenida Complutense 30, Madrid 28040, Spain
| | - Adolfo Gómez-Grande
- Department of Nuclear Medicine, Hospital Universitario 12 de Octubre, Spain; Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | - Carmen Jiménez López-Guarch
- Facultad de Medicina, Universidad Complutense de Madrid, Spain; Cardiology Department and Instituto de Investigación Sanitaria (imas12), Hospital Universitario 12 de Octubre, Spain; Centro de Investigación Biomédica en Red de enfermedades Cardiovasculares (CIBERCV), Spain
| | - Guillermo Moreno
- Cardiology Department and Instituto de Investigación Sanitaria (imas12), Hospital Universitario 12 de Octubre, Spain; Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense de Madrid, Spain
| | - Héctor Bueno
- Facultad de Medicina, Universidad Complutense de Madrid, Spain; Cardiology Department and Instituto de Investigación Sanitaria (imas12), Hospital Universitario 12 de Octubre, Spain; Centro de Investigación Biomédica en Red de enfermedades Cardiovasculares (CIBERCV), Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Spain
| | - Enrique J Gómez
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, Avenida Complutense 30, Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Patricia Sánchez-González
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, Avenida Complutense 30, Madrid 28040, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
5
|
Dougherty BV, Moore CJ, Rawls KD, Jenior ML, Chun B, Nagdas S, Saucerman JJ, Kolling GL, Wallqvist A, Papin JA. Identifying metabolic adaptations characteristic of cardiotoxicity using paired transcriptomics and metabolomics data integrated with a computational model of heart metabolism. PLoS Comput Biol 2024; 20:e1011919. [PMID: 38422168 PMCID: PMC10931521 DOI: 10.1371/journal.pcbi.1011919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/12/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Improvements in the diagnosis and treatment of cancer have revealed long-term side effects of chemotherapeutics, particularly cardiotoxicity. Here, we present paired transcriptomics and metabolomics data characterizing in vitro cardiotoxicity to three compounds: 5-fluorouracil, acetaminophen, and doxorubicin. Standard gene enrichment and metabolomics approaches identify some commonly affected pathways and metabolites but are not able to readily identify metabolic adaptations in response to cardiotoxicity. The paired data was integrated with a genome-scale metabolic network reconstruction of the heart to identify shifted metabolic functions, unique metabolic reactions, and changes in flux in metabolic reactions in response to these compounds. Using this approach, we confirm previously seen changes in the p53 pathway by doxorubicin and RNA synthesis by 5-fluorouracil, we find evidence for an increase in phospholipid metabolism in response to acetaminophen, and we see a shift in central carbon metabolism suggesting an increase in metabolic demand after treatment with doxorubicin and 5-fluorouracil.
Collapse
Affiliation(s)
- Bonnie V. Dougherty
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Connor J. Moore
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Kristopher D. Rawls
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Matthew L. Jenior
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Bryan Chun
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Sarbajeet Nagdas
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Glynis L. Kolling
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland, United States of America
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
6
|
Becker MMC, Arruda GFA, Berenguer DRF, Buril RO, Cardinale D, Brandão SCS. Anthracycline cardiotoxicity: current methods of diagnosis and possible role of 18F-FDG PET/CT as a new biomarker. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2023; 9:17. [PMID: 36973762 PMCID: PMC10041777 DOI: 10.1186/s40959-023-00161-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/01/2023] [Indexed: 03/29/2023]
Abstract
Despite advances in chemotherapy, the drugs used in cancer treatment remain rather harmful to the cardiovascular system, causing structural and functional cardiotoxic changes. Positron-emission tomography associated with computed tomography (PET/CT) has emerged like a promising technique in the early diagnosis of these adverse drug effects as the myocardial tissue uptake of fluorodeoxyglucose labeled with fluorine-18 (18F-FDG), a glucose analog, is increased after their use. Among these drugs, anthracyclines are the most frequently associated with cardiotoxicity because they promote heart damage through DNA breaks, and induction of an oxidative, proinflammatory, and toxic environment. This review aimed to present the scientific evidence available so far regarding the use of 18F-FDG PET/CT as an early biomarker of anthracycline-related cardiotoxicity. Thus, it discusses the physiological basis for its uptake, hypotheses to justify its increase in the myocardium affected by anthracyclines, importance of 18F-FDG PET/CT findings for cardio-oncology, and primary challenges of incorporating this technique in standard clinical oncology practice.
Collapse
Affiliation(s)
- Mônica M C Becker
- Postgraduate Program in Surgery, Federal University of Pernambuco, Recife, State of Pernambuco, Brazil
| | - Gustavo F A Arruda
- Recife Medical School, Federal University of Pernambuco, Recife, State of Pernambuco, Brazil
| | - Diego R F Berenguer
- Postgraduate Program in Translational Health, Federal University of Pernambuco, Recife, State of Pernambuco, Brazil
| | - Roberto O Buril
- Postgraduate Program in Surgery, Federal University of Pernambuco, Recife, State of Pernambuco, Brazil
| | - Daniela Cardinale
- Cardioncology Unit, European Institute of Oncology, I.R.C.C.S., Milan, Italy
| | - Simone C S Brandão
- Postgraduate Program in Surgery, Federal University of Pernambuco, Recife, State of Pernambuco, Brazil.
- Recife Medical School, Federal University of Pernambuco, Recife, State of Pernambuco, Brazil.
- Nuclear Medicine Department, Hospital das Clínicas, Federal University of Pernambuco, 1st floor, 1235 Avenida Professor Moraes Rego, Recife, State of Pernambuco, 50670-901, Brazil.
| |
Collapse
|
7
|
Jong J, Pinney JR, Packard RRS. Anthracycline-induced cardiotoxicity: From pathobiology to identification of molecular targets for nuclear imaging. Front Cardiovasc Med 2022; 9:919719. [PMID: 35990941 PMCID: PMC9381993 DOI: 10.3389/fcvm.2022.919719] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Anthracyclines are a widely used class of chemotherapy in pediatric and adult cancers, however, their use is hampered by the development of cardiotoxic side-effects and ensuing complications, primarily heart failure. Clinically used imaging modalities to screen for cardiotoxicity are mostly echocardiography and occasionally cardiac magnetic resonance imaging. However, the assessment of diastolic and global or segmental systolic function may not be sensitive to detect subclinical or early stages of cardiotoxicity. Multiple studies have scrutinized molecular nuclear imaging strategies to improve the detection of anthracycline-induced cardiotoxicity. Anthracyclines can activate all forms of cell death in cardiomyocytes. Injury mechanisms associated with anthracycline usage include apoptosis, necrosis, autophagy, ferroptosis, pyroptosis, reactive oxygen species, mitochondrial dysfunction, as well as cardiac fibrosis and perturbation in sympathetic drive and myocardial blood flow; some of which have been targeted using nuclear probes. This review retraces the pathobiology of anthracycline-induced cardiac injury, details the evidence to date supporting a molecular nuclear imaging strategy, explores disease mechanisms which have not yet been targeted, and proposes a clinical strategy incorporating molecular imaging to improve patient management.
Collapse
Affiliation(s)
- Jeremy Jong
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - James R. Pinney
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Ronald Reagan UCLA Medical Center, Los Angeles, CA, United States
- Veterans Affairs West Los Angeles Medical Center, Los Angeles, CA, United States
| | - René R. Sevag Packard
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Ronald Reagan UCLA Medical Center, Los Angeles, CA, United States
- Veterans Affairs West Los Angeles Medical Center, Los Angeles, CA, United States
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
8
|
Mesquita CT, Rezende MF. Precision Medicine: Can 18F-FDG PET Detect Cardiotoxicity Phenotypes? Arq Bras Cardiol 2022; 119:109-110. [PMID: 35830108 PMCID: PMC9352130 DOI: 10.36660/abc.20220393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Claudio Tinoco Mesquita
- Universidade Federal Fluminense, Niterói, RJ - Brasil.,Hospital Pró-Cardíaco, Rio de Janeiro, RJ - Brasil.,Hospital Vitória e Samaritano da Barra, Rio de Janeiro, RJ - Brasil
| | | |
Collapse
|
9
|
Dourado MLC, Dompieri LT, Leitão GM, Mourato FA, Santos RGG, Almeida PJ, Markman B, Melo MDT, Brandão SCS. Aumento de Captação Cardíaca de 18F-FDG Induzida por Quimioterapia em Pacientes com Linfoma: Um Marcador Precoce de Cardiotoxicidade? Arq Bras Cardiol 2022; 118:1049-1058. [PMID: 35703659 PMCID: PMC9345149 DOI: 10.36660/abc.20210463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/01/2021] [Indexed: 11/18/2022] Open
Abstract
Fundamento Ainda não está estabelecido se a captação de fluorodesoxiglicose no miocárdio ocorre exclusivamente por características fisiológicas ou se representa um desarranjo metabólico causado pela quimioterapia. Objetivo Investigar os efeitos da quimioterapia no coração dos pacientes com linfoma por tomografia por emissão de pósitrons associada a tomografia computadorizada (PET/CT) com 2-[18F]-fluoro-2-desoxi-D-glicose (18F-FDG PET/CT) antes, durante e/ou após a quimioterapia. Métodos Setenta pacientes com linfoma submetidos a 18F-FDG PET/CT foram retrospectivamente analisados. O nível de significância foi de 5%. A captação de 18F-FDG foi avaliada por três medidas: captação máxima no ventrículo esquerdo ( standardized uptake value , SUV max), razão SUV cardíaco / aorta e SUV cardíaco / SUV no fígado. Também foram comparados peso corporal, glicemia de jejum, tempo pós-injeção e dose administrada de 18F-FDG entre os exames. Resultados A idade média foi de 50,4 ± 20,1 anos e 50% dos pacientes eram mulheres. A análise foi realizada em dois grupos – PET/CT basal vs. intermediário e PET/CT basal vs pós-terapia. Não houve diferença significativa entre as variáveis clínicas e do protocolo dos exames entre os diferentes momentos avaliados. Nós observamos um aumento na SUV máxima no ventrículo esquerdo de 3,5±1,9 (basal) para 5,6±4,0 (intermediário), p=0,01, e de 4,0±2,2 (basal) para 6,1±4,2 (pós-terapia), p<0,001. Uma porcentagem de aumento ≥30% na SUV máxima no ventrículo esquerdo ocorreu em mais da metade da amostra. O aumento da SUV cardíaca foi acompanhado por um aumento na razão SUV máxima no ventrículo esquerdo / SUV máxima na aorta e SUV média no ventrículo esquerdo /SUV média no fígado. Conclusão O estudo mostrou um aumento evidente na captação cardíaca de 18F-FDG em pacientes com linfoma, durante e após quimioterapia. A literatura corrobora com esses achados e sugere que a 18F-FDG PET/CT pode ser um exame de imagem sensível e confiável para detectar sinais metabólicos precoces de cardiotoxicidade.
Collapse
|
10
|
Cadour F, Thuny F, Sourdon J. New Insights in Early Detection of Anticancer Drug-Related Cardiotoxicity Using Perfusion and Metabolic Imaging. Front Cardiovasc Med 2022; 9:813883. [PMID: 35198613 PMCID: PMC8858802 DOI: 10.3389/fcvm.2022.813883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
Cardio-oncology requires a good knowledge of the cardiotoxicity of anticancer drugs, their mechanisms, and their diagnosis for better management. Anthracyclines, anti-vascular endothelial growth factor (VEGF), alkylating agents, antimetabolites, anti-human epidermal growth factor receptor (HER), and receptor tyrosine kinase inhibitors (RTKi) are therapeutics whose cardiotoxicity involves several mechanisms at the cellular and subcellular levels. Current guidelines for anticancer drugs cardiotoxicity are essentially based on monitoring left ventricle ejection fraction (LVEF). However, knowledge of microvascular and metabolic dysfunction allows for better imaging assessment before overt LVEF impairment. Early detection of anticancer drug-related cardiotoxicity would therefore advance the prevention and patient care. In this review, we provide a comprehensive overview of the cardiotoxic effects of anticancer drugs and describe myocardial perfusion, metabolic, and mitochondrial function imaging approaches to detect them before over LVEF impairment.
Collapse
Affiliation(s)
- Farah Cadour
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Franck Thuny
- Aix-Marseille University, University Mediterranean Center of Cardio-Oncology, Unit of Heart Failure and Valvular Heart Diseases, Department of Cardiology, North Hospital, Assistance Publique - Hôpitaux de Marseille, Centre for CardioVascular and Nutrition Research (C2VN), Inserm 1263, Inrae 1260, Marseille, France
| | - Joevin Sourdon
- Aix-Marseille Université, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
- *Correspondence: Joevin Sourdon
| |
Collapse
|
11
|
Seiffert AP, Gómez-Grande A, Castro-Leal G, Rodríguez A, Palomino-Fernández D, Gómez EJ, Sánchez-González P, Bueno H. An image processing tool for the detection of anthracycline-induced cardiotoxicity by evaluating the myocardial metabolic activity in [ 18F]FDG PET/CT. Int J Comput Assist Radiol Surg 2022; 17:373-383. [PMID: 34698987 PMCID: PMC8784503 DOI: 10.1007/s11548-021-02508-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/22/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE Chemotherapy-induced cardiotoxicity is one of the main complications during and after cancer treatment. While echocardiography is the most used technique in clinical practice to evaluate left ventricular (LV) dysfunction, a multimodal approach is preferred for the early detection of anthracycline-induced cardiotoxicity. In this paper, an image processing tool allowing the qualitative and quantitative analysis of myocardial metabolic activity by [18F]fluorodeoxyglucose (FDG) positron emission tomography computed tomography (PET/CT) images, acquired routinely during and after cancer treatment, is presented. METHODS The methodology is based on cardiac single photon emission computed tomography image processing protocols used in clinical practice. LV polar maps are created, and quantitative regional values are calculated. The tool was validated in a study group of 24 patients with Hodgkin or non-Hodgkin lymphoma (HL and NHL, respectively) treated with anthracyclines. Staging, interim and end-of-treatment [18F]FDG PET/CT images were acquired and the presented tool was used to extract the quantitative metrics of LV metabolic activity. RESULTS Results show an overall increase of metabolic activity in the interim PET image acquired while on treatment compared to staging PET, which then decreased in the end-of-treatment scan. Positive correlation coefficients between staging and interim scans, and negative correlation coefficients between interim and end-of-treatment scans also support this finding. Metabolic changes occur predominantly in the septal region. CONCLUSION The proposed methodology and presented software solution provides the capability to assess quantitatively myocardial metabolism acquired by routine [18F]FDG PET/CT scanning during cancer treatment for evaluating anthracycline-induced cardiotoxicity. The [18F]FDG PET/CT septal-lateral uptake ratio is proposed as a new quantitative measure of myocardial metabolism.
Collapse
Affiliation(s)
- Alexander P. Seiffert
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Adolfo Gómez-Grande
- Department of Nuclear Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Gonzalo Castro-Leal
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Antonia Rodríguez
- Department of Hematology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - David Palomino-Fernández
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Enrique J. Gómez
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Patricia Sánchez-González
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería
Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Héctor Bueno
- Cardiology Department and Instituto de Investigación Sanitaria (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
12
|
Choksey A, Timm KN. Cancer Therapy-Induced Cardiotoxicity-A Metabolic Perspective on Pathogenesis, Diagnosis and Therapy. Int J Mol Sci 2021; 23:441. [PMID: 35008867 PMCID: PMC8745714 DOI: 10.3390/ijms23010441] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Long-term cardiovascular complications of cancer therapy are becoming ever more prevalent due to increased numbers of cancer survivors. Cancer therapy-induced cardiotoxicity (CTIC) is an incompletely understood consequence of various chemotherapies, targeted anti-cancer agents and radiation therapy. It is typically detected clinically by a reduction in cardiac left ventricular ejection fraction, assessed by echocardiography. However, once cardiac functional decline is apparent, this indicates irreversible cardiac damage, highlighting a need for the development of diagnostics which can detect CTIC prior to the onset of functional decline. There is increasing evidence to suggest that pathological alterations to cardiac metabolism play a crucial role in the development of CTIC. This review discusses the metabolic alterations and mechanisms which occur in the development of CTIC, with a focus on doxorubicin, trastuzumab, imatinib, ponatinib, sunitinib and radiotherapy. Potential methods to diagnose and predict CTIC prior to functional cardiac decline in the clinic are evaluated, with a view to both biomarker and imaging-based approaches. Finally, the therapeutic potential of therapies which manipulate cardiac metabolism in the context of adjuvant cardioprotection against CTIC is examined. Together, an integrated view of the role of metabolism in pathogenesis, diagnosis and treatment is presented.
Collapse
Affiliation(s)
- Anurag Choksey
- Somerville College, University of Oxford, Woodstock Road, Oxford OX2 6HD, UK;
| | - Kerstin N. Timm
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
13
|
Lang JA, Bhalla S, Ganeshan D, Felder GJ, Itani M. Side Effects of Oncologic Treatment in the Chest: Manifestations at FDG PET/CT. Radiographics 2021; 41:2071-2089. [PMID: 34723703 DOI: 10.1148/rg.2021210130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fluorodeoxyglucose (FDG) PET/CT is a vital imaging technique used for staging, assessing treatment response, and restaging following completion of therapy in patients who are undergoing or have completed oncologic treatment. A variety of adverse effects from chemotherapy, targeted therapy, immunotherapy, and radiation therapy are commonly encountered in oncologic patients. It is important to be aware of the manifestations of these adverse effects seen on FDG PET/CT images to avoid misinterpreting these findings as disease progression. Furthermore, early identification of these complications is important, as it may significantly affect patient management and even lead to a change in treatment strategy. The authors focus on the FDG PET/CT manifestations of a broad spectrum of oncologic therapy-related adverse effects in the thorax, as well as some treatment-related changes that may potentially mimic malignancy. Online supplemental material is available for this article. ©RSNA, 2021.
Collapse
Affiliation(s)
- Jordan A Lang
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box #8131, St Louis, MO 63110 (J.A.L., S.B., M.I.); Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Tex (D.G.); and Department of Radiology, NYU Winthrop Hospital, Mineola, NY (G.J.F.)
| | - Sanjeev Bhalla
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box #8131, St Louis, MO 63110 (J.A.L., S.B., M.I.); Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Tex (D.G.); and Department of Radiology, NYU Winthrop Hospital, Mineola, NY (G.J.F.)
| | - Dhakshinamoorthy Ganeshan
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box #8131, St Louis, MO 63110 (J.A.L., S.B., M.I.); Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Tex (D.G.); and Department of Radiology, NYU Winthrop Hospital, Mineola, NY (G.J.F.)
| | - Gabriel J Felder
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box #8131, St Louis, MO 63110 (J.A.L., S.B., M.I.); Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Tex (D.G.); and Department of Radiology, NYU Winthrop Hospital, Mineola, NY (G.J.F.)
| | - Malak Itani
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, Campus Box #8131, St Louis, MO 63110 (J.A.L., S.B., M.I.); Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Tex (D.G.); and Department of Radiology, NYU Winthrop Hospital, Mineola, NY (G.J.F.)
| |
Collapse
|
14
|
Melo MDTD, Paiva MG, Santos MVC, Rochitte CE, Moreira VDM, Saleh MH, Brandão SCS, Gallafrio CC, Goldwasser D, Gripp EDA, Piveta RB, Silva TO, Santo THCE, Ferreira WP, Salemi VMC, Cauduro SA, Barberato SH, Lopes HMC, Pena JLB, Rached HRS, Miglioranza MH, Pinheiro AC, Vrandecic BALM, Cruz CBBV, Nomura CH, Cerbino FME, Costa IBSDS, Coelho Filho OR, Carneiro ACDC, Burgos UMMC, Fernandes JL, Uellendahl M, Calado EB, Senra T, Assunção BL, Freire CMV, Martins CN, Sawamura KSS, Brito MM, Jardim MFS, Bernardes RJM, Diógenes TC, Vieira LDO, Mesquita CT, Lopes RW, Segundo Neto EMV, Rigo L, Marin VLS, Santos MJ, Grossman GB, Quagliato PC, Alcantara MLD, Teodoro JAR, Albricker ACL, Barros FS, Amaral SID, Porto CLL, Barros MVL, Santos SND, Cantisano AL, Petisco ACGP, Barbosa JEM, Veloso OCG, Spina S, Pignatelli R, Hajjar LA, Kalil Filho R, Lopes MACQ, Vieira MLC, Almeida ALC. Brazilian Position Statement on the Use Of Multimodality Imaging in Cardio-Oncology - 2021. Arq Bras Cardiol 2021; 117:845-909. [PMID: 34709307 PMCID: PMC8528353 DOI: 10.36660/abc.20200266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
| | | | | | - Carlos Eduardo Rochitte
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Hospital do Coração (HCOR), São Paulo, SP - Brasil
| | | | - Mohamed Hassan Saleh
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Instituto Dante Pazzanese de Cardiologia, São Paulo, SP - Brasil
| | | | | | - Daniel Goldwasser
- Hospital Federal de Ipanema, Rio de Janeiro, RJ - Brasil
- Hospital Copa D'Or, Rio de Janeiro, RJ - Brasil
- Casa de Saúde São José, Rio de Janeiro, RJ - Brasil
| | - Eliza de Almeida Gripp
- Hospital Pró-Cardíaco, Rio de Janeiro, RJ - Brasil
- Hospital Universitário Antônio Pedro, Rio de Janeiro, RJ - Brasil
| | | | - Tonnison Oliveira Silva
- Hospital Cardio Pulmonar - Centro de Estudos em Cardiologia, Salvador, BA - Brasil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, BA - Brasil
| | | | | | - Vera Maria Cury Salemi
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | - Silvio Henrique Barberato
- CardioEco Centro de Diagnóstico Cardiovascular, Curitiba, PR - Brasil
- Quanta Diagnóstico, Curitiba, PR - Brasil
| | | | | | | | - Marcelo Haertel Miglioranza
- Instituto de Cardiologia do Rio Grande do Sul - Laboratório de Pesquisa e Inovação em Imagem Cardiovascular, Porto Alegre, RS - Brasil
- Hospital Mãe de Deus, Porto Alegre, RS - Brasil
| | | | | | | | - César Higa Nomura
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Hospital Sírio-Libanês, São Paulo, SP - Brasil
| | - Fernanda Mello Erthal Cerbino
- Clínica de Diagnóstico por Imagem, Rio de Janeiro, RJ - Brasil
- Diagnósticos da América AS, Rio de Janeiro, RJ - Brasil
| | | | | | | | | | - Juliano Lara Fernandes
- Radiologia Clínica de Campinas, Campinas, SP - Brasil
- Instituto de Ensino e Pesquisa José Michel Kalaf, Campinas, SP - Brasil
| | - Marly Uellendahl
- Diagnósticos da América AS, Rio de Janeiro, RJ - Brasil
- Universidade Federal de São Paulo (UNIFESP), São Paulo, SP - Brasil
| | | | - Tiago Senra
- Instituto Dante Pazzanese de Cardiologia, São Paulo, SP - Brasil
- Hospital Sírio-Libanês, São Paulo, SP - Brasil
| | - Bruna Leal Assunção
- Universidade de São Paulo Instituto do Câncer do Estado de São Paulo, São Paulo, SP - Brasil
| | - Claudia Maria Vilas Freire
- Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG - Brasil
- ECOCENTER, Belo Horizonte, MG - Brasil
| | | | - Karen Saori Shiraishi Sawamura
- Hospital do Coração (HCOR), São Paulo, SP - Brasil
- Hospital Universitário Antônio Pedro, Rio de Janeiro, RJ - Brasil
- Instituto da Criança da Universidade de São Paulo (USP), São Paulo, SP - Brasil
| | - Márcio Miranda Brito
- Universidade Federal do Tocantins - Campus de Araguaina, Araguaina, TO - Brasil
- Hospital Municipal de Araguaina, Araguaina, TO - Brasil
| | | | | | | | | | - Claudio Tinoco Mesquita
- Hospital Pró-Cardíaco, Rio de Janeiro, RJ - Brasil
- Universidade Federal Fluminense (UFF), Rio de Janeiro, RJ - Brasil
- Hospital Vitória, Rio de Janeiro, RJ - Brasil
| | | | | | - Letícia Rigo
- Hospital Beneficência Portuguesa, São Paulo, SP - Brasil
| | | | | | - Gabriel Blacher Grossman
- Clínica Cardionuclear, Porto Alegre, RS - Brasil
- Hospital Moinhos de Vento, Porto Alegre, RS - Brasil
| | | | - Monica Luiza de Alcantara
- Americas Medical City, Rio de Janeiro, Rio de Janeiro, RJ - Brasil
- Americas Serviços Médicos, Rio de Janeiro, RJ - Brasil
- Rede D'Or, Rio de Janeiro, RJ - Brasil
| | | | | | | | | | | | | | - Simone Nascimento Dos Santos
- Hospital Brasília - Ecocardiografia, Brasília, DF - Brasil
- Eccos Diagnóstico Cardiovascular Avançado, Brasília, DF - Brasil
| | | | | | | | | | | | - Ricardo Pignatelli
- Texas Children's Hospital, Houston, Texas - EUA
- Baylor College of Medicine, Houston, Texas - EUA
| | - Ludhmilla Abrahão Hajjar
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Universidade de São Paulo Instituto do Câncer do Estado de São Paulo, São Paulo, SP - Brasil
| | - Roberto Kalil Filho
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Universidade de São Paulo Instituto do Câncer do Estado de São Paulo, São Paulo, SP - Brasil
| | - Marcelo Antônio Cartaxo Queiroga Lopes
- Hospital Alberto Urquiza Wanderley - Hemodinâmica e Cardiologia Intervencionista, João Pessoa, PB - Brasil
- Hospital Metropolitano Dom José Maria Pires, João Pessoa, PB - Brasil
- Sociedade Brasileira de Cardiologia, Rio de Janeiro, RJ - Brasil
| | - Marcelo Luiz Campos Vieira
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Hospital Israelita Albert Einstein, São Paulo, SP - Brasil
| | - André Luiz Cerqueira Almeida
- Santa Casa de Misericórdia de Feira de Santana - Cardiologia, Feira de Santana, BA - Brasil
- Departamento de Imagem Cardiovascular da Sociedade Brasileira de Cardiologia, São Paulo, SP - Brasil
| |
Collapse
|
15
|
Oudot A, Courteau A, Guillemin M, Vrigneaud JM, Walker PM, Brunotte F, Cochet A, Collin B. [ 123I]MIBG is a better early marker of anthracycline cardiotoxicity than [ 18F]FDG: a preclinical SPECT/CT and simultaneous PET/MR study. EJNMMI Res 2021; 11:92. [PMID: 34542689 PMCID: PMC8452816 DOI: 10.1186/s13550-021-00835-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/06/2021] [Indexed: 01/01/2023] Open
Abstract
Background During anthracycline treatment of cancer, there is a lack for biomarkers of cardiotoxicity besides the cardiac dysfunction. The objective of the present study was to compare [18F]FDG and [123I]MIBG (metaiodobenzylguanidine) in a longitudinal study in a doxorubicin-induced cardiotoxicity rat model. Methods Male Wistar Han rats were intravenously administered 3 times at 10 days’ interval with saline or doxorubicin (5 mg/kg). [123I]MIBG SPECT/CT (single photon emission computed tomography-computed tomography) and simultaneous [18F]FDG PET (positron emission tomography)/7 Tesla cardiac MR (magnetic resonance) imaging acquisitions were performed at 24 h interval before first doxorubicin / saline injection and every 2 weeks during 6 weeks. At 6 weeks, the heart tissue was collected for histomorphometry measurements. Results At week 4, left ventricle (LV) end-diastolic volume was significantly reduced in the doxorubicin group. At week 6, the decreased LV end-diastolic volume was maintained, and LV end-systolic volume was increased resulting in a significant reduction of LV ejection fraction (47 ± 6% vs. 70 ± 3%). At weeks 4 and 6, but not at week 2, myocardial [18F]FDG uptake was decreased compared with the control group (respectively, 4.2 ± 0.5%ID/g and 9.2 ± 0.8%ID/g at week 6). Moreover, [18F]FDG cardiac uptake correlated with cardiac function impairment. In contrast, from week 2, a significant decrease of myocardial [123I]MIBG heart to mediastinum ratio was detected in the doxorubicin group and was maintained at weeks 4 and 6 with a 45.6% decrease at week 6. Conclusion This longitudinal study precises that after doxorubicin treatment, cardiac [123I]MIBG uptake is significantly reduced as early as 2 weeks followed by the decrease of the LV end-diastolic volume and [18F]FDG uptake at 4 weeks and finally by the increase of LV end-systolic volume and decrease of LV ejection fraction at 6 weeks. Cardiac innervation imaging should thus be considered as an early key feature of anthracycline cardiac toxicity. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00835-1.
Collapse
Affiliation(s)
- Alexandra Oudot
- Centre Georges-François Leclerc - Unicancer, Nuclear Medicine Department, Plateforme d'Imagerie et de Radiothérapie Précliniques, 1, rue Professeur Marion, BP 77980, 21 079, Dijon Cedex, France.
| | - Alan Courteau
- Centre Georges-François Leclerc - Unicancer, Nuclear Medicine Department, Plateforme d'Imagerie et de Radiothérapie Précliniques, 1, rue Professeur Marion, BP 77980, 21 079, Dijon Cedex, France.,ImVIA, EA 7535, Université de Bourgogne-Franche-Comté, Dijon, France
| | - Mélanie Guillemin
- Centre Georges-François Leclerc - Unicancer, Nuclear Medicine Department, Plateforme d'Imagerie et de Radiothérapie Précliniques, 1, rue Professeur Marion, BP 77980, 21 079, Dijon Cedex, France
| | - Jean-Marc Vrigneaud
- Centre Georges-François Leclerc - Unicancer, Nuclear Medicine Department, Plateforme d'Imagerie et de Radiothérapie Précliniques, 1, rue Professeur Marion, BP 77980, 21 079, Dijon Cedex, France.,ImVIA, EA 7535, Université de Bourgogne-Franche-Comté, Dijon, France
| | | | - François Brunotte
- ImVIA, EA 7535, Université de Bourgogne-Franche-Comté, Dijon, France
| | - Alexandre Cochet
- Centre Georges-François Leclerc - Unicancer, Nuclear Medicine Department, Plateforme d'Imagerie et de Radiothérapie Précliniques, 1, rue Professeur Marion, BP 77980, 21 079, Dijon Cedex, France.,ImVIA, EA 7535, Université de Bourgogne-Franche-Comté, Dijon, France
| | - Bertrand Collin
- Centre Georges-François Leclerc - Unicancer, Nuclear Medicine Department, Plateforme d'Imagerie et de Radiothérapie Précliniques, 1, rue Professeur Marion, BP 77980, 21 079, Dijon Cedex, France.,ICMUB, UMR CNRS 6302, Université de Bourgogne-Franche-Comté, Dijon, France
| |
Collapse
|
16
|
Minamimoto R. Series of myocardial FDG uptake requiring considerations of myocardial abnormalities in FDG-PET/CT. Jpn J Radiol 2021; 39:540-557. [PMID: 33517516 PMCID: PMC8175248 DOI: 10.1007/s11604-021-01097-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/16/2021] [Indexed: 12/18/2022]
Abstract
Distinct from cardiac PET performed with preparation to control physiological FDG uptake in the myocardium, standard FDG-PET/CT performed with 4-6 h of fasting will show variation in myocardial FDG uptake. For this reason, important signs of myocardial and pericardial abnormality revealed by myocardial FDG uptake tend to be overlooked. However, recognition of possible underlying disease will support further patient management to avoid complications due to the disease. This review demonstrates the mechanism of FDG uptake in the myocardium, discusses the factors affecting uptake, and provides notable image findings that may suggest underlying disease.
Collapse
Affiliation(s)
- Ryogo Minamimoto
- Division of Nuclear Medicine, Department of Radiology, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjyuku-ku, Tokyo, 162-8655, Japan.
| |
Collapse
|
17
|
Ansheles AA, Sergienko IV, Prus YA, Sergienko VB. Nuclear imaging of chemotherapy-induced cardiotoxicity. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2021. [DOI: 10.15829/1728-8800-2021-2537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The high efficiency of modern chemotherapy has made it possible to achieve great success in the treatment of cancer. Cardiovascular adverse effects are a major disadvantage of anticancer therapy, often requiring low and less effective doses or even drug withdrawal. Nuclear imaging techniques are the most sensitive in early detection of left ventricular damage and dysfunction during chemotherapy. This review presents modern data on the potential of nuclear imaging of cardiotoxicity.
Collapse
Affiliation(s)
| | | | - Yu. A. Prus
- National Medical Research Center of Cardiology
| | | |
Collapse
|
18
|
Dougherty BV, Rawls KD, Kolling GL, Vinnakota KC, Wallqvist A, Papin JA. Identifying functional metabolic shifts in heart failure with the integration of omics data and a heart-specific, genome-scale model. Cell Rep 2021; 34:108836. [PMID: 33691118 DOI: 10.1016/j.celrep.2021.108836] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/07/2021] [Accepted: 02/17/2021] [Indexed: 11/28/2022] Open
Abstract
In diseased states, the heart can shift to use different carbon substrates, measured through changes in uptake of metabolites by imaging methods or blood metabolomics. However, it is not known whether these measured changes are a result of transcriptional changes or external factors. Here, we explore transcriptional changes in late-stage heart failure using publicly available data integrated with a model of heart metabolism. First, we present a heart-specific genome-scale metabolic network reconstruction (GENRE), iCardio. Next, we demonstrate the utility of iCardio in interpreting heart failure gene expression data by identifying tasks inferred from differential expression (TIDEs), which represent metabolic functions associated with changes in gene expression. We identify decreased gene expression for nitric oxide (NO) and N-acetylneuraminic acid (Neu5Ac) synthesis as common metabolic markers of heart failure. The methods presented here for constructing a tissue-specific model and identifying TIDEs can be extended to multiple tissues and diseases of interest.
Collapse
Affiliation(s)
- Bonnie V Dougherty
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Kristopher D Rawls
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Glynis L Kolling
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA
| | - Kalyan C Vinnakota
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD 21702, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD 21702, USA
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
19
|
Houson H, Hedrick A, Awasthi V. Drug-induced cardiomyopathy: Characterization of a rat model by [ 18F]FDG/PET and [ 99mTc]MIBI/SPECT. Animal Model Exp Med 2020; 3:295-303. [PMID: 33532704 PMCID: PMC7824964 DOI: 10.1002/ame2.12136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Drug-induced cardiomyopathy is a significant medical problem. Clinical diagnosis of myocardial injury is based on initial electrocardiogram, levels of circulating biomarkers, and perfusion imaging with single photon emission computed tomography (SPECT). Positron emission tomography (PET) is an alternative imaging modality that provides better resolution and sensitivity than SPECT, improves diagnostic accuracy, and allows therapeutic monitoring. The objective of this study was to assess the detection of drug-induced cardiomyopathy by PET using 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and compare it with the conventional SPECT technique with [99mTc]-Sestamibi (MIBI). METHODS Cardiomyopathy was induced in Sprague Dawley rats using high-dose isoproterenol. Nuclear [18F]FDG/PET and [99mTc]MIBI/SPECT were performed before and after isoproterenol administration. [18F]FDG (0.1 mCi, 200-400 µL) and [99mTc]MIBI (2 mCi, 200-600 µL) were administered via the tail vein and imaging was performed 1 hour postinjection. Isoproterenol-induced injury was confirmed by the plasma level of cardiac troponin and triphenyltetrazolium chloride (TTC) staining. RESULTS Isoproterenol administration resulted in an increase in circulating cardiac troponin I and showed histologic damage in the myocardium. Visually, preisoproterenol and postisoproterenol images showed alterations in cardiac accumulation of [18F]FDG, but not of [99mTc]MIBI. Image analysis revealed that myocardial uptake of [18F]FDG reduced by 60% after isoproterenol treatment, whereas that of [99mTc]MIBI decreased by 45%. CONCLUSION We conclude that [18F]FDG is a more sensitive radiotracer than [99mTc]MIBI for imaging of drug-induced cardiomyopathy. We theorize that isoproterenol-induced cardiomyopathy impacts cellular metabolism more than perfusion, which results in more substantial changes in [18F]FDG uptake than in [99mTc]MIBI accumulation in cardiac tissue.
Collapse
Affiliation(s)
- Hailey Houson
- Research Imaging FacilityDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Oklahoma Health Science CenterOklahoma CityOKUSA
| | - Andria Hedrick
- Research Imaging FacilityDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Oklahoma Health Science CenterOklahoma CityOKUSA
| | - Vibhudutta Awasthi
- Research Imaging FacilityDepartment of Pharmaceutical SciencesCollege of PharmacyUniversity of Oklahoma Health Science CenterOklahoma CityOKUSA
- Hexakit, Inc.EdmondOKUSA
| |
Collapse
|
20
|
Kim J, Cho SG, Kang SR, Yoo SW, Kwon SY, Min JJ, Bom HS, Song HC. Association between FDG uptake in the right ventricular myocardium and cancer therapy-induced cardiotoxicity. J Nucl Cardiol 2020; 27:2154-2163. [PMID: 30719656 DOI: 10.1007/s12350-019-01617-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND The aim of this study was to investigate changes in myocardial uptake evaluated by oncologic 18F-fluorodeoxyglucose (FDG) PET/CT scans and to determine the relationship between myocardial FDG uptake and cancer therapy-induced cardiotoxicity in breast cancer patients who underwent anthracycline or trastuzumab. METHODS We reviewed 121 consecutive patients who underwent oncologic FDG PET/CT and echocardiography at baseline and post-therapy with anthracyclines or trastuzumab for breast cancer. Grade in LV wall, uptake pattern in LV wall, and the presence of RV wall uptake were assessed by visual analysis, and the mean SUV in the LV and RV walls and the change of SUV (ΔSUV) between baseline and post-therapy PET/CT were measured by quantitative analysis. Multiple logistic regression analyses were performed to evaluate the association between PET parameters and cardiotoxicity. RESULTS Fifteen patients (12%) showed cardiotoxicity after therapy. The cardiotoxic group tended to show more diffuse LV uptake, higher SUV, and ΔSUV of RV wall than the non-cardiotoxic group following therapy with anthracyclines or trastuzumab. Logistic regression analysis showed that the presence of RV wall uptake, SUV of RV wall (> 1.8), and ΔSUV of RV wall (> 0.4) were significantly associated with cardiotoxicity after controlling for age, radiotherapy, and treatment. CONCLUSIONS The presence of RV wall uptake and the increase of SUV of RV wall on post-therapy PET/CT were associated with cardiotoxicity in breast cancer patients who underwent anthracycline or trastuzumab. Oncologic FDG PET/CT scans can provide information regarding cancer therapy-induced cardiotoxicity as well as tumor response.
Collapse
Affiliation(s)
- Jahae Kim
- Department of Nuclear Medicine, Chonnam National University Hospital, Gwangju, South Korea
| | - Sang-Geon Cho
- Department of Nuclear Medicine, Chonnam National University Hospital, Gwangju, South Korea
| | - Sae-Ryung Kang
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Su Woong Yoo
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Seong Young Kwon
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Hee-Seung Bom
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Ho-Chun Song
- Department of Nuclear Medicine, Chonnam National University Hospital, Gwangju, South Korea.
- Department of Nuclear Medicine, Chonnam National University Hospital and Medical School, Jebongro 42, Donggu, Gwangju, 61469, Republic of Korea.
| |
Collapse
|
21
|
Makavos G, Ikonomidis I, Palios J, Rigopoulos A, Katogiannis K, Parissis J, Paraskevaidis I, Noutsias M. Cardiac imaging in cardiotoxicity: a focus on clinical practice. Heart Fail Rev 2020; 26:1175-1187. [PMID: 32306221 DOI: 10.1007/s10741-020-09952-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cancer therapeutics induced cardiotoxicity has emerged as an important factor of long-term adverse cardiovascular outcomes in survivors of various malignant diseases. Early detection of myocardial injury in the setting of cancer treatment is important for the initiation of targeted cardioprotective therapy, in order to prevent irreversible cardiac dysfunction and heart failure, while not withholding a potentially life-saving cancer therapy. Cardiac imaging techniques including echocardiography, cardiac magnetic resonance, and nuclear cardiac imaging are the main tools for the identification of cardiotoxicity. There is also growing evidence for the detection of subclinical cardiac dysfunction in cancer patients by speckle tracking echocardiography. In this review article, we focus on current and emerging data regarding the role of cardiac imaging for the detection of changes in myocardial function related with cancer treatment in clinical practice.
Collapse
Affiliation(s)
- George Makavos
- 2nd Department of Cardiology, "Attikon" Hospital, National and Kapodistrian University of Athens Medical School, Rimini 1, Haidari, 12462, Athens, Greece.
| | - Ignatios Ikonomidis
- 2nd Department of Cardiology, "Attikon" Hospital, National and Kapodistrian University of Athens Medical School, Rimini 1, Haidari, 12462, Athens, Greece
| | - John Palios
- 2nd Department of Cardiology, "Attikon" Hospital, National and Kapodistrian University of Athens Medical School, Rimini 1, Haidari, 12462, Athens, Greece
| | - Angelos Rigopoulos
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany
| | - Konstantinos Katogiannis
- 2nd Department of Cardiology, "Attikon" Hospital, National and Kapodistrian University of Athens Medical School, Rimini 1, Haidari, 12462, Athens, Greece
| | - John Parissis
- 2nd Department of Cardiology, "Attikon" Hospital, National and Kapodistrian University of Athens Medical School, Rimini 1, Haidari, 12462, Athens, Greece
| | - Ioannis Paraskevaidis
- Department of Clinical Therapeutics, "Alexandra" Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Michel Noutsias
- Mid-German Heart Center, Department of Internal Medicine III, Division of Cardiology, Angiology and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle (Saale), Germany
| |
Collapse
|
22
|
FDG-PET Imaging of Doxorubicin-Induced Cardiotoxicity: a New Window on an Old Problem. CURRENT CARDIOVASCULAR IMAGING REPORTS 2019. [DOI: 10.1007/s12410-019-9517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Seraphim A, Westwood M, Bhuva AN, Crake T, Moon JC, Menezes LJ, Lloyd G, Ghosh AK, Slater S, Oakervee H, Manisty CH. Advanced Imaging Modalities to Monitor for Cardiotoxicity. Curr Treat Options Oncol 2019; 20:73. [PMID: 31396720 PMCID: PMC6687672 DOI: 10.1007/s11864-019-0672-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Early detection and treatment of cardiotoxicity from cancer therapies is key to preventing a rise in adverse cardiovascular outcomes in cancer patients. Over-diagnosis of cardiotoxicity in this context is however equally hazardous, leading to patients receiving suboptimal cancer treatment, thereby impacting cancer outcomes. Accurate screening therefore depends on the widespread availability of sensitive and reproducible biomarkers of cardiotoxicity, which can clearly discriminate early disease. Blood biomarkers are limited in cardiovascular disease and clinicians generally still use generic screening with ejection fraction, based on historical local expertise and resources. Recently, however, there has been growing recognition that simple measurement of left ventricular ejection fraction using 2D echocardiography may not be optimal for screening: diagnostic accuracy, reproducibility and feasibility are limited. Modern cancer therapies affect many myocardial pathways: inflammatory, fibrotic, metabolic, vascular and myocyte function, meaning that multiple biomarkers may be needed to track myocardial cardiotoxicity. Advanced imaging modalities including cardiovascular magnetic resonance (CMR), computed tomography (CT) and positron emission tomography (PET) add improved sensitivity and insights into the underlying pathophysiology, as well as the ability to screen for other cardiotoxicities including coronary artery, valve and pericardial diseases resulting from cancer treatment. Delivering screening for cardiotoxicity using advanced imaging modalities will however require a significant change in current clinical pathways, with incorporation of machine learning algorithms into imaging analysis fundamental to improving efficiency and precision. In the future, we should aspire to personalized rather than generic screening, based on a patient’s individual risk factors and the pathophysiological mechanisms of the cancer treatment they are receiving. We should aspire that progress in cardiooncology is able to track progress in oncology, and to ensure that the current ‘one size fits all’ approach to screening be obsolete in the very near future.
Collapse
Affiliation(s)
- Andreas Seraphim
- Department of Cardiovascular Imaging, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK.,Institute of Cardiovascular Sciences, University College London, Chenies Mews, London, UK
| | - Mark Westwood
- Department of Cardiovascular Imaging, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK.,Department of Cardio-oncology, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK
| | - Anish N Bhuva
- Department of Cardiovascular Imaging, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK.,Institute of Cardiovascular Sciences, University College London, Chenies Mews, London, UK
| | - Tom Crake
- Department of Cardio-oncology, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK
| | - James C Moon
- Department of Cardiovascular Imaging, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK.,Institute of Cardiovascular Sciences, University College London, Chenies Mews, London, UK
| | - Leon J Menezes
- Department of Cardiovascular Imaging, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK
| | - Guy Lloyd
- Department of Cardiovascular Imaging, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK
| | - Arjun K Ghosh
- Department of Cardiovascular Imaging, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK.,Department of Cardio-oncology, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK
| | - Sarah Slater
- Department of Haematology, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK
| | - Heather Oakervee
- Department of Oncology, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK
| | - Charlotte H Manisty
- Department of Cardiovascular Imaging, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK. .,Institute of Cardiovascular Sciences, University College London, Chenies Mews, London, UK. .,Department of Cardio-oncology, Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, EC1A 7BE, UK.
| |
Collapse
|
24
|
Cardiac molecular pathways influenced by doxorubicin treatment in mice. Sci Rep 2019; 9:2514. [PMID: 30792528 PMCID: PMC6385261 DOI: 10.1038/s41598-019-38986-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/14/2019] [Indexed: 11/08/2022] Open
Abstract
Doxorubicin (DOX) is a potent chemotherapeutic with distinct cardiotoxic properties. Understanding the underlying cardiotoxic mechanisms on a molecular level would enable the early detection of cardiotoxicity and implementation of prophylactic treatment. Our goal was to map the patterns of different radiopharmaceuticals as surrogate markers of specific metabolic pathways induced by chemotherapy. Therefore, cardiac distribution of 99mTc-sestamibi, 99mTc-Annexin V, 99mTc-glucaric acid and [18F]FDG and cardiac expression of Bcl-2, caspase-3 and -8, TUNEL, HIF-1α, and p53 were assessed in response to DOX exposure in mice. A total of 80 mice (64 treated, 16 controls) were evaluated. All radiopharmaceuticals showed significantly increased uptake compared to controls, with peak cardiac uptake after one (99mTc-Annexin V), two (99mTc-sestamibi), three ([18F]FDG), or four (99mTc-glucaric acid) cycles of DOX. Strong correlations (p < 0.01) were observed between 99mTc-Annexin V, caspase 3 and 8, and TUNEL, and between [18F]FDG and HIF-1α. This suggests that the cardiac DOX response starts with apoptosis at low exposure levels, as indicated by 99mTc-Annexin V and histological apoptosis markers. Late process membrane disintegration can possibly be detected by 99mTc-sestamibi and 99mTc-glucaric acid. [18F]FDG signifies an early adaptive response to DOX, which can be further exploited clinically in the near future.
Collapse
|
25
|
Abstract
Cancer therapy may lead to cardiovascular complications and can promote each aspect of cardiac disease manifestation, such as vascular disease including coronary heart disease, myocardial diseases including heart failure, structural heart diseases including valvular heart diseases, and rhythm disorders. All potential complications of cancer therapy onto the cardiovascular system require imaging for diagnostic workup as well as monitoring of therapy. Transthoracic echocardiography (TTE) is the most frequently used tool for assessment of cardiac function during or after cancer therapy in daily clinical routine. With modern techniques like strain analysis, echocardiography allows to detect a variety of cardiac diseases as caused by cancer therapy even at subclinical stages. For further workup, specific imaging techniques including nuclear imaging are needed in a multimodality imaging approach to in detail characterize the underlying pathophysiology and to improve the management of the patients. Therefore, the field of imaging in cardio-oncology is rapidly growing. This review article will give an overview about existing literature regarding the role of imaging in the diagnostic evaluation and management of therapy in patient with prior or ongoing cancer therapy.
Collapse
Affiliation(s)
- Amir Abbas Mahabadi
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
26
|
Sarocchi M, Bauckneht M, Arboscello E, Capitanio S, Marini C, Morbelli S, Miglino M, Congiu AG, Ghigliotti G, Balbi M, Brunelli C, Sambuceti G, Ameri P, Spallarossa P. An increase in myocardial 18-fluorodeoxyglucose uptake is associated with left ventricular ejection fraction decline in Hodgkin lymphoma patients treated with anthracycline. J Transl Med 2018; 16:295. [PMID: 30359253 PMCID: PMC6202821 DOI: 10.1186/s12967-018-1670-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022] Open
Abstract
Background Doxorubicin (DOX)-based chemotherapy for Hodgkin lymphoma (HL) yields excellent disease-free survival, but poses a substantial risk of subsequent left ventricular (LV) dysfunction and heart failure, typically with delayed onset. At the cellular level, this cardiotoxicity includes deranged cardiac glucose metabolism. Methods By reviewing the hospital records from January 2008 through December 2016, we selected HL patients meeting the following criteria: ≥ 18 year-old; first-line DOX-containing chemotherapy; no diabetes and apparent cardiovascular disease; 18-fluoro-deoxyglucose positron emission tomography (18FDG-PET) scans before treatment (PETSTAGING), after 2 cycles (PETINTERIM) and at the end of treatment (PETEOT); at least one echocardiography ≥ 6 months after chemotherapy completion (ECHOPOST). We then evaluated the changes in LV 18FDG standardized uptake values (SUV) during the course of DOX therapy, and the relationship between LV-SUV and LV ejection fraction (LVEF), as calculated from the LV diameters in the echocardiography reports with the Teicholz formula. Results Forty-three patients (35 ± 13 year-old, 58% males) were included in the study, with 26 (60%) also having a baseline echocardiography available (ECHOPRE). LV-SUV gradually increased from PETSTAGING (log-transformed mean 0.20 ± 0.27) to PETINTERIM (0.27 ± 0.35) to PETEOT (0.30 ± 0.41; P for trend < 0.001). ECHOPOST was performed 22 ± 17 months after DOX chemotherapy. Mean LVEF was normal (68.8 ± 10.3%) and only three subjects (7%) faced a drop below the upper normal limit of 53%. However, when patients were categorized by median LV-SUV, LVEF at ECHOPOST resulted significantly lower in those with LV-SUV above than below the median value at both PETINTERIM (65.5 ± 11.8% vs. 71.9 ± 7.8%, P = 0.04) and PETEOT (65.6 ± 12.2% vs. 72.2 ± 7.0%, P = 0.04). This was also the case when only patients with ECHOPRE and ECHOPOST were considered (LVEF at ECHOPOST 64.7 ± 8.9% vs. 73.4 ± 7.6%, P = 0.01 and 64.6 ± 9.3% vs. 73.5 ± 7.0%, P = 0.01 for those with LV-SUV above vs. below the median at PETINTERIM and PETEOT, respectively). Furthermore, the difference between LVEF at ECHOPRE and ECHOPOST was inversely correlated with LV-SUV at PETEOT (P < 0.01, R2 = − 0.30). Conclusions DOX-containing chemotherapy causes an increase in cardiac 18FDG uptake, which is associated with a decline in LVEF. Future studies are warranted to understand the molecular basis and the potential clinical implications of this observation.
Collapse
Affiliation(s)
- Matteo Sarocchi
- Cardiovascular Diseases Unit, IRCCS Ospedale Policlinico San Martino, IRCCS Italian Cardiovascular Network, Genova, Italy.,Department of Internal Medicine, University of Genova, Genoa, Italy
| | - Matteo Bauckneht
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Health Sciences, University of Genova, Genoa, Italy
| | - Eleonora Arboscello
- Emergency Medicine Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Selene Capitanio
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Cecilia Marini
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,CNR Institute of Molecular Bioimaging and Physiology, Milan, Italy
| | - Silvia Morbelli
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Health Sciences, University of Genova, Genoa, Italy
| | - Maurizio Miglino
- Department of Internal Medicine, University of Genova, Genoa, Italy.,Haematology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Giorgio Ghigliotti
- Cardiovascular Diseases Unit, IRCCS Ospedale Policlinico San Martino, IRCCS Italian Cardiovascular Network, Genova, Italy.,Department of Internal Medicine, University of Genova, Genoa, Italy
| | - Manrico Balbi
- Cardiovascular Diseases Unit, IRCCS Ospedale Policlinico San Martino, IRCCS Italian Cardiovascular Network, Genova, Italy.,Department of Internal Medicine, University of Genova, Genoa, Italy
| | - Claudio Brunelli
- Cardiovascular Diseases Unit, IRCCS Ospedale Policlinico San Martino, IRCCS Italian Cardiovascular Network, Genova, Italy.,Department of Internal Medicine, University of Genova, Genoa, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,CNR Institute of Molecular Bioimaging and Physiology, Milan, Italy
| | - Pietro Ameri
- Cardiovascular Diseases Unit, IRCCS Ospedale Policlinico San Martino, IRCCS Italian Cardiovascular Network, Genova, Italy. .,Department of Internal Medicine & Center of Excellence for Biomedical Research, University of Genova, Genoa, Italy.
| | - Paolo Spallarossa
- Cardiovascular Diseases Unit, IRCCS Ospedale Policlinico San Martino, IRCCS Italian Cardiovascular Network, Genova, Italy
| |
Collapse
|
27
|
Finessi M, Nicolotti DG, Bisi G, Deandreis D. Doxorubicin Effect on Myocardial Metabolism as a Prerequisite for Subsequent Development of Cardiac Toxicity: Are There Unsuspected Confounders? J Nucl Med 2018; 59:713. [DOI: 10.2967/jnumed.117.205856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
28
|
Bauckneht M, Morbelli S, Fiz F, Ferrarazzo G, Piva R, Nieri A, Sarocchi M, Spallarossa P, Canepari ME, Arboscello E, Bellodi A, Massaia M, Gallamini A, Bruzzi P, Marini C, Sambuceti G. A Score-Based Approach to 18F-FDG PET Images as a Tool to Describe Metabolic Predictors of Myocardial Doxorubicin Susceptibility. Diagnostics (Basel) 2017; 7:57. [PMID: 29072629 PMCID: PMC5745393 DOI: 10.3390/diagnostics7040057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/13/2017] [Accepted: 10/23/2017] [Indexed: 01/21/2023] Open
Abstract
PURPOSE To verify the capability of 18F-fluorodeoxy-glucose positron emission tomography/computed tomography (FDG-PET/CT) to identify patients at higher risk of developing doxorubicin (DXR)-induced cardiotoxicity, using a score-based image approach. METHODS 36 patients underwent FDG-PET/CT. These patients had shown full remission after DXR-based chemotherapy for Hodgkin's disease (DXR dose: 40-50 mg/m² per cycle), and were retrospectively enrolled. Inclusion criteria implied the presence of both pre- and post-chemotherapy clinical evaluation encompassing electrocardiogram (ECG) and echocardiography. Myocardial metabolism at pre-therapy PET was evaluated according to both standardized uptake value (SUV)- and score-based approaches. The capability of the score-based image assessment to predict the occurrence of cardiac toxicity with respect to SUV measurement was then evaluated. RESULTS In contrast to the SUV-based approach, the five-point scale method does not linearly stratify the risk of the subsequent development of cardiotoxicity. However, converting the five-points scale to a dichotomic evaluation (low vs. high myocardial metabolism), FDG-PET/CT showed high diagnostic accuracy in the prediction of cardiac toxicity (specificity = 100% and sensitivity = 83.3%). In patients showing high myocardial uptake at baseline, in which the score-based method is not able to definitively exclude the occurrence of cardiac toxicity, myocardial SUV mean quantification is able to further stratify the risk between low and intermediate risk classes. CONCLUSIONS the score-based approach to FDG-PET/CT images is a feasible method for predicting DXR-induced cardiotoxicity. This method might improve the inter-reader and inter-scanner variability, thus allowing the evaluation of FDG-PET/CT images in a multicentral setting.
Collapse
Affiliation(s)
- Matteo Bauckneht
- Nuclear Medicine, Policlinico San Martino Hospital and Department of Health Sciences, University of Genoa, 16132 Genoa, Italy.
| | - Silvia Morbelli
- Nuclear Medicine, Policlinico San Martino Hospital and Department of Health Sciences, University of Genoa, 16132 Genoa, Italy.
| | - Francesco Fiz
- Nuclear Medicine, Policlinico San Martino Hospital and Department of Health Sciences, University of Genoa, 16132 Genoa, Italy.
- Nuclear Medicine Unit, Department of Radiology, Uni-Klinikum, 72070 Tübingen, Germany.
| | - Giulia Ferrarazzo
- Nuclear Medicine, Policlinico San Martino Hospital and Department of Health Sciences, University of Genoa, 16132 Genoa, Italy.
| | - Roberta Piva
- Nuclear Medicine, Policlinico San Martino Hospital and Department of Health Sciences, University of Genoa, 16132 Genoa, Italy.
| | - Alberto Nieri
- Nuclear Medicine, Policlinico San Martino Hospital and Department of Health Sciences, University of Genoa, 16132 Genoa, Italy.
| | - Matteo Sarocchi
- Clinic of Cardiovascular Diseases, Policlinico San Martino Hospital, 16132 Genoa, Italy.
| | - Paolo Spallarossa
- Clinic of Cardiovascular Diseases, Policlinico San Martino Hospital, 16132 Genoa, Italy.
| | | | - Eleonora Arboscello
- Clinic of Internal Medicine 3, Department Internal Medicine, Policlinico San Martino Hospital, 16132 Genoa, Italy.
| | - Andrea Bellodi
- Clinic of Internal Medicine 3, Department Internal Medicine, Policlinico San Martino Hospital, 16132 Genoa, Italy.
| | - Massimo Massaia
- Ematology Unit, ASO Santa Croce e Carle, 12100 Cuneo, Italy.
| | - Andrea Gallamini
- Department of Research, Innovation and Statistics, Antoine Lacassagne Cancer Centre, 06189 Nice, France.
| | - Paolo Bruzzi
- Epidemiology Unit, Policlinic San Martino Hospital, 16132 Genoa, Italy.
| | - Cecilia Marini
- CNR Institute of Bioimaging and Molecular Physiology, Section of Genoa, 20090 Milan, Italy.
| | - Gianmario Sambuceti
- Nuclear Medicine, Policlinico San Martino Hospital and Department of Health Sciences, University of Genoa, 16132 Genoa, Italy.
| |
Collapse
|
29
|
Sourdon J, Lager F, Viel T, Balvay D, Moorhouse R, Bennana E, Renault G, Tharaux PL, Dhaun N, Tavitian B. Cardiac Metabolic Deregulation Induced by the Tyrosine Kinase Receptor Inhibitor Sunitinib is rescued by Endothelin Receptor Antagonism. Theranostics 2017; 7:2757-2774. [PMID: 28824714 PMCID: PMC5562214 DOI: 10.7150/thno.19551] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/31/2017] [Indexed: 02/06/2023] Open
Abstract
The growing field of cardio-oncology addresses the side effects of cancer treatment on the cardiovascular system. Here, we explored the cardiotoxicity of the antiangiogenic therapy, sunitinib, in the mouse heart from a diagnostic and therapeutic perspective. We showed that sunitinib induces an anaerobic switch of cellular metabolism within the myocardium which is associated with the development of myocardial fibrosis and reduced left ventricular ejection fraction as demonstrated by echocardiography. The capacity of positron emission tomography with [18F]fluorodeoxyglucose to detect the changes in cardiac metabolism caused by sunitinib was dependent on fasting status and duration of treatment. Pan proteomic analysis in the myocardium showed that sunitinib induced (i) an early metabolic switch with enhanced glycolysis and reduced oxidative phosphorylation, and (ii) a metabolic failure to use glucose as energy substrate, similar to the insulin resistance found in type 2 diabetes. Co-administration of the endothelin receptor antagonist, macitentan, to sunitinib-treated animals prevented both metabolic defects, restored glucose uptake and cardiac function, and prevented myocardial fibrosis. These results support the endothelin system in mediating the cardiotoxic effects of sunitinib and endothelin receptor antagonism as a potential therapeutic approach to prevent cardiotoxicity. Furthermore, metabolic and functional imaging can monitor the cardiotoxic effects and the benefits of endothelin antagonism in a theranostic approach.
Collapse
Affiliation(s)
- Joevin Sourdon
- Paris Cardiovascular Research Center (PARCC); INSERM UMR970; Université Paris Descartes; Paris, France
| | - Franck Lager
- Institut Cochin, Université Paris Descartes, INSERM U1016, Paris 75014, France
| | - Thomas Viel
- Paris Cardiovascular Research Center (PARCC); INSERM UMR970; Université Paris Descartes; Paris, France
| | - Daniel Balvay
- Paris Cardiovascular Research Center (PARCC); INSERM UMR970; Université Paris Descartes; Paris, France
| | - Rebecca Moorhouse
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Evangeline Bennana
- Institut Cochin, Université Paris Descartes, INSERM U1016, Paris 75014, France
- 3P5 proteomics facility, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Gilles Renault
- Institut Cochin, Université Paris Descartes, INSERM U1016, Paris 75014, France
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Research Center (PARCC); INSERM UMR970; Université Paris Descartes; Paris, France
| | - Neeraj Dhaun
- University/British Heart Foundation Centre of Research Excellence, The Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Bertrand Tavitian
- Paris Cardiovascular Research Center (PARCC); INSERM UMR970; Université Paris Descartes; Paris, France
- Service de Radiologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| |
Collapse
|
30
|
Bauckneht M, Ferrarazzo G, Fiz F, Morbelli S, Sarocchi M, Pastorino F, Ghidella A, Pomposelli E, Miglino M, Ameri P, Emionite L, Ticconi F, Arboscello E, Buschiazzo A, Massimelli EA, Fiordoro S, Borra A, Cossu V, Bozzano A, Ibatici A, Ponzoni M, Spallarossa P, Gallamini A, Bruzzi P, Sambuceti G, Marini C. Doxorubicin Effect on Myocardial Metabolism as a Prerequisite for Subsequent Development of Cardiac Toxicity: A Translational 18F-FDG PET/CT Observation. J Nucl Med 2017. [PMID: 28646013 DOI: 10.2967/jnumed.117.191122] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The present translational study aimed to verify whether serial 18F-FDG PET/CT predicts doxorubicin cardiotoxicity. Methods: Fifteen athymic mice were treated intravenously with saline (n = 5) or with 5 or 7.5 mg of doxorubicin per kilogram (n = 5 each) and underwent dynamic small-animal PET beforehand and afterward to estimate left ventricular (LV) metabolic rate of glucose (MRGlu). Thereafter, we retrospectively identified 69 patients who had been successfully treated with a regimen of doxorubicin, bleomycin, vinblastine, and dacarbazine for Hodgkin disease (HD) and had undergone 4 consecutive 18F-FDG PET/CT scans. Volumes of interest were drawn on LV myocardium to quantify mean SUV. All patients were subsequently interviewed by telephone (median follow-up, 30 mo); 36 of them agreed to undergo electrocardiography and transthoracic echocardiography. Results: In mice, LV MRGlu was 17.9 ± 4.4 nmol × min-1 × g-1 at baseline. Doxorubicin selectively and dose-dependently increased this value in the standard-dose (27.9 ± 9 nmol × min-1 × g-1, P < 0.05 vs. controls) and high-dose subgroups (37.2 ± 7.8 nmol × min-1 × g-1, P < 0.01 vs. controls, P < 0.05 vs. standard-dose). In HD patients, LV SUV showed a progressive increase during doxorubicin treatment that persisted at follow-up. New-onset cardiac abnormalities appeared in 11 of 36 patients (31%). In these subjects, pretherapy LV SUV was markedly lower with respect to the remaining patients (1.53 ± 0.9 vs. 3.34 ± 2.54, respectively, P < 0.01). Multivariate analysis confirmed the predictive value of baseline LV SUV for subsequent cardiac abnormalities. Conclusion: Doxorubicin dose-dependently increases LV MRGlu, particularly in the presence of low baseline 18F-FDG uptake. These results imply that low myocardial 18F-FDG uptake before the initiation of doxorubicin chemotherapy in HD patients may predict the development of chemotherapy-induced cardiotoxicity, suggesting that prospective clinical trials are warranted to test this hypothesis.
Collapse
Affiliation(s)
- Matteo Bauckneht
- Nuclear Medicine, IRCCS-AOU San Martino-IST and University of Genoa, Genoa, Italy
| | - Giulia Ferrarazzo
- Nuclear Medicine, IRCCS-AOU San Martino-IST and University of Genoa, Genoa, Italy
| | - Francesco Fiz
- Nuclear Medicine, IRCCS-AOU San Martino-IST and University of Genoa, Genoa, Italy.,Nuclear Medicine Unit, Department of Radiology, Tübingen, Germany
| | - Silvia Morbelli
- Nuclear Medicine, IRCCS-AOU San Martino-IST and University of Genoa, Genoa, Italy
| | - Matteo Sarocchi
- Clinic of Cardiovascular Diseases, IRCCS-AOU San Martino-IST, Genoa, Italy
| | - Fabio Pastorino
- Unit of Experimental Therapy in Oncology, IRCCS Gaslini, Genoa, Italy
| | - Alberto Ghidella
- Clinic of Cardiovascular Diseases, IRCCS-AOU San Martino-IST, Genoa, Italy
| | - Elena Pomposelli
- Nuclear Medicine, IRCCS-AOU San Martino-IST and University of Genoa, Genoa, Italy
| | - Maurizio Miglino
- Haematology Clinic, University of Genoa, IRCCS-AOU San Martino-IST, Genoa, Italy
| | - Pietro Ameri
- Clinic of Cardiovascular Diseases, IRCCS-AOU San Martino-IST, Genoa, Italy
| | - Laura Emionite
- Animal Facility, IRCCS-AOU San Martino-IST, Genoa, Italy
| | - Flavia Ticconi
- Nuclear Medicine, IRCCS-AOU San Martino-IST and University of Genoa, Genoa, Italy
| | | | - Ambra Buschiazzo
- Nuclear Medicine, IRCCS-AOU San Martino-IST and University of Genoa, Genoa, Italy
| | | | - Salvatore Fiordoro
- Nuclear Medicine, IRCCS-AOU San Martino-IST and University of Genoa, Genoa, Italy
| | - Anna Borra
- Nuclear Medicine, IRCCS-AOU San Martino-IST and University of Genoa, Genoa, Italy
| | - Vanessa Cossu
- Nuclear Medicine, IRCCS-AOU San Martino-IST and University of Genoa, Genoa, Italy
| | - Annalisa Bozzano
- Nuclear Medicine, IRCCS-AOU San Martino-IST and University of Genoa, Genoa, Italy
| | - Adalberto Ibatici
- Haematology Clinic, University of Genoa, IRCCS-AOU San Martino-IST, Genoa, Italy
| | - Mirco Ponzoni
- Unit of Experimental Therapy in Oncology, IRCCS Gaslini, Genoa, Italy
| | - Paolo Spallarossa
- Clinic of Cardiovascular Diseases, IRCCS-AOU San Martino-IST, Genoa, Italy
| | - Andrea Gallamini
- Department of Research, Innovation, and Statistics, Lacassagne Cancer Centre, Nice, France
| | - Paolo Bruzzi
- Epidemiology Unit, IRCCS-AOU San Martino-IST, Genoa, Italy; and
| | - Gianmario Sambuceti
- Nuclear Medicine, IRCCS-AOU San Martino-IST and University of Genoa, Genoa, Italy
| | - Cecilia Marini
- CNR Institute of Bioimaging and Molecular Physiology, Section of Genoa, Milan, Italy
| |
Collapse
|
31
|
Simoni LJC, Brandão SCS. New Imaging Methods for Detection of Drug-Induced Cardiotoxicity in Cancer Patients. CURRENT CARDIOVASCULAR IMAGING REPORTS 2017. [DOI: 10.1007/s12410-017-9415-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Substantial Increase in Myocardial FDG Uptake on Interim PET/CT May Be an Early Sign of Adriamycin-Induced Cardiotoxicity. Clin Nucl Med 2017; 41:462-3. [PMID: 26909713 DOI: 10.1097/rlu.0000000000001194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cumulative cardiotoxicity is a well-established adverse effect of Adriamycin therapy. Although dose dependent, cardiotoxicity has been recently reported to occur even at lower doses than usually proposed. Conventional imaging detection and/or clinical manifestation of the deterioration in cardiac function occur late in the process; thus, it is desirable to have noninvasive markers to detect toxicity at an early stage. Several biochemical markers including troponin and atrial natriuretic peptide were explored for this purpose. The present case depicts that a significant increase in myocardial FDG uptake on posttherapy PET/CT can be a potential imaging biomarker of Adriamycin-induced cardiotoxicity.
Collapse
|
33
|
Intra-patient Variability of FDG Standardized Uptake Values in Mediastinal Blood Pool, Liver, and Myocardium during R-CHOP Chemotherapy in Patients with Diffuse Large B-cell Lymphoma. Nucl Med Mol Imaging 2016; 50:300-307. [PMID: 27994685 DOI: 10.1007/s13139-016-0432-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/09/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022] Open
Abstract
PURPOSE 18F-fluorodeoxyglucose (FDG) PET/CT is useful for staging and evaluating treatment response in patients with diffuse large B-cell lymphoma (DLBCL). A five-point scale model using the mediastinal blood pool (MBP) and liver as references is a recommended method for interpreting treatment response. We evaluated the variability in standardized uptake values (SUVs) of the MBP, liver, and myocardium during chemotherapy in patients with DLBCL. METHODS We analyzed 60 patients with DLBCL who received rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP) treatment and underwent baseline, interim, and final FDG PET/CT scans. The FDG uptakes of lymphoma lesions, MBP, liver, and myocardium were assessed, and changes in the MBP and liver SUV and possible associated factors were evaluated. RESULTS The SUV of the liver did not change significantly during the chemotherapy. However, the SUVmean of MBP showed a significant change though the difference was small (p = 0.019). SUVmean of MBP and liver at baseline and interim scans was significantly lower in patients with advanced Ann Arbor stage on diagnosis. The SUVmean of the MBP and liver was negatively correlated with the volumetric index of lymphoma lesions in baseline scans (r = -0.547, p < 0.001; r = -0.502, p < 0.001). Positive myocardial FDG uptake was more frequently observed in interim and final scans than in the baseline scan, but there was no significant association between the MBP and liver uptake and myocardial uptake. CONCLUSIONS The SUV of the liver was not significantly changed during R-CHOP chemotherapy in patients with DLBCL, whereas the MBP SUV of the interim scan decreased slightly. However, the SUV of the reference organs may be affected by tumor burden, and this should be considered when assessing follow-up scans. Although myocardial FDG uptake was more frequently observed after R-CHOP chemotherapy, it did not affect the SUV of the MBP and liver.
Collapse
|
34
|
Pepe A, Pizzino F, Gargiulo P, Perrone-Filardi P, Cadeddu C, Mele D, Monte I, Novo G, Zito C, Di Bella G. Cardiovascular imaging in the diagnosis and monitoring of cardiotoxicity: cardiovascular magnetic resonance and nuclear cardiology. J Cardiovasc Med (Hagerstown) 2016; 17 Suppl 1:e45-e54. [PMID: 27183525 DOI: 10.2459/jcm.0000000000000380] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chemotherapy-induced cardiotoxicity (CTX) is a determining factor for the quality of life and mortality of patients administered potentially cardiotoxic drugs and in long-term cancer survivors. Therefore, prevention and early detection of CTX are highly desirable, as is the exploration of alternative therapeutic strategies and/or the proposal of potentially cardioprotective treatments. In recent years, cardiovascular imaging has acquired a pivotal role in this setting. Although echocardiography remains the diagnostic method most used to monitor cancer patients, the need for more reliable, reproducible and accurate detection of early chemotherapy-induced CTX has encouraged the introduction of second-line advanced imaging modalities, such as cardiac magnetic resonance (CMR) and nuclear techniques, into the clinical setting. This review of the Working Group on Drug Cardiotoxicity and Cardioprotection of the Italian Society of Cardiology aims to afford an overview of the most important findings from the literature about the role of CMR and nuclear techniques in the management of chemotherapy-treated patients, describe conventional and new parameters for detecting CTX from both diagnostic and prognostic perspectives and provide integrated insight into the role of CMR and nuclear techniques compared with other imaging tools and versus the positions of the most important international societies.
Collapse
Affiliation(s)
- Alessia Pepe
- aU.O.C. Magnetic Resonance Imaging, Fondazione Toscana G. Monasterio C.N.R., Pisa bDepartment of Clinical and Experimental Medicine. Section of Cardiology A.O.U. Policlinico 'G. Martino' University of Messina, Messina cSDN, Institute of Diagnostic and Nuclear Development dDepartment of Advanced Biomedical Sciences, 'Federico II' University, Naples eDepartment of Medical Sciences 'Mario Aresu', University of Cagliari, Cagliari fCardiology Unit, University Hospital of Ferrara, Ferrara gDepartment of General Surgery and Medical-Surgery Specialities, University of Catania, Catania hChair and Division of Cardiology, University of Palermo, Palermo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rosa GM, Gigli L, Tagliasacchi MI, Di Iorio C, Carbone F, Nencioni A, Montecucco F, Brunelli C. Update on cardiotoxicity of anti-cancer treatments. Eur J Clin Invest 2016; 46:264-284. [PMID: 26728634 DOI: 10.1111/eci.12589] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/30/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Anti-cancer treatments markedly improved the prognosis of patients, but unfortunately might be hampered by cardiotoxicity. Both symptomatic and asymptomatic clinical forms of heart failure have been reported, which may be reversible or irreversible. The aim of this review is to provide an overview of the antineoplastic agents associated with cardiac toxicity and of the available diagnostic techniques. METHODS AND METHODS This narrative review is based on material from MEDLINE and PUBMED up to November 2015. We looked at the terms antineoplastic drugs and cardiac toxicity in combination with echocardiography, troponins, cardiac magnetic resonance, and positron emission tomography. RESULTS Anthracyclines, monoclonal antibodies, fluoropyrimidines, taxanes, alkylating agents, vinka alkaloids were reported to induce different clinical manifestations of cardioxicity. Chest radiotherapy is also associated with various forms of cardiac damage, which are indistinguishable from those found in patients with heart disease of other aetiologies and that may even appear several years after administration. Among diagnostic techniques, echocardiography is a noninvasive, cost-effective, and widely available imaging tool. Nuclear imaging and cardiac magnetic resonance may be used but are not so widely available and are more difficult to perform. Finally, some biomarkers, such as troponins, may be used to evaluate cardiac damage, but establishing the optimal timing of troponin assessment remains unclear and defining the cut-off point for positivity is still an important goal. CONCLUSIONS Cardiotoxicity of anti-cancer treatments is associated with development of heart failure. Novel diagnostic tools might be relevant to early recognize irreversible forms cardiac diseases.
Collapse
Affiliation(s)
- Gian Marco Rosa
- Division of Cardiology, Department of Internal Medicine, University of Genoa - IRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Lorenzo Gigli
- Division of Cardiology, Department of Internal Medicine, University of Genoa - IRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Maria Isabella Tagliasacchi
- Division of Cardiology, Department of Internal Medicine, University of Genoa - IRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Cecilia Di Iorio
- Division of Cardiology, Department of Internal Medicine, University of Genoa - IRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Federico Carbone
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, Geneva University, Geneva, Switzerland
| | - Alessio Nencioni
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Azienda Ospedaliera Universitaria San Martino-IST, Istituto Nazionale per la Ricerca Sul Cancro, Genoa, Italy
| | - Fabrizio Montecucco
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, Geneva University, Geneva, Switzerland
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa - IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Claudio Brunelli
- Division of Cardiology, Department of Internal Medicine, University of Genoa - IRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| |
Collapse
|
36
|
Herrmann J, Lerman A. An update on cardio-oncology. Trends Cardiovasc Med 2014; 24:285-95. [PMID: 25153017 PMCID: PMC4258878 DOI: 10.1016/j.tcm.2014.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 12/22/2022]
Abstract
Over the past decades, there have been great advancements in the survival outcome of patients with cancer. As a consequence, treatment regimens are being extended to patient populations that would not have qualified in the past based on comorbidities and age. Furthermore, the anti-cancer regimens, which have been and are being used, can cause considerable morbidity and even mortality. In fact, new drugs such as tyrosine kinase inhibitors have yielded unanticipated side effects in frequency and severity. The cardiovascular disease spectrum is an important element in all of these. In order to optimize the outcome of cancer patients with cardiovascular diseases existing prior to cancer treatment or developing as a consequence of it, a new discipline called "cardio-oncology" has evolved over the past few years. Herein, we review the latest developments in this field including cardiotoxicities, vascular toxicities, and arrhythmias. This field is taking on more shape as cardiologists, oncologists, and hematologists are forming alliances, programs, and clinics, supported by the development of expert consensus statements on best management approaches and care of the cancer patient with cardiovascular diseases.
Collapse
Affiliation(s)
- Joerg Herrmann
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905.
| | - Amir Lerman
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| |
Collapse
|
37
|
Basu S, Borde C, Kand P. Increasing cardiac 18F-fluorodeoxyglucose (FDG) uptake on PET–CT as a biomarker for cardiotoxicity of chemo-radiotherapy in cancer: A myth or a reality? Radiother Oncol 2014; 112:451-2. [DOI: 10.1016/j.radonc.2014.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 04/18/2014] [Indexed: 11/29/2022]
|
38
|
Kongbundansuk S, Hundley WG. Noninvasive imaging of cardiovascular injury related to the treatment of cancer. JACC Cardiovasc Imaging 2014; 7:824-38. [PMID: 25124015 PMCID: PMC4183055 DOI: 10.1016/j.jcmg.2014.06.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 06/20/2014] [Accepted: 06/26/2014] [Indexed: 01/03/2023]
Abstract
The introduction of multiple treatments for cancer, including chemotherapeutic agents and radiation therapy, has significantly reduced cancer-related morbidity and mortality. However, these therapies can promote a variety of toxicities, among the most severe being the ones involving the cardiovascular system. Currently, for many surviving cancer patients, cardiovascular (CV) events represent the primary cause of morbidity and mortality. Recent data suggest that CV injury occurs early during cancer treatment, creating a substrate for subsequent cardiovascular events. Researchers have investigated the utility of noninvasive imaging strategies to detect the presence of CV injury during and after completion of cancer treatment because it starts early during cancer therapy, often preceding the development of chemotherapy or cancer therapeutics related cardiac dysfunction. In this State-of-the-Art Paper, we review the utility of current clinical and investigative CV noninvasive modalities for the identification and characterization of cancer treatment-related CV toxicity.
Collapse
Affiliation(s)
- Suwat Kongbundansuk
- Department of Internal Medicine (Section on Cardiology), Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - W Gregory Hundley
- Department of Internal Medicine (Section on Cardiology), Wake Forest School of Medicine, Winston-Salem, North Carolina; Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina.
| |
Collapse
|
39
|
D’Amore C, Gargiulo P, Paolillo S, Pellegrino AM, Formisano T, Mariniello A, Della Ratta G, Iardino E, D’Amato M, La Mura L, Fabiani I, Fusco F, Perrone Filardi P. Nuclear imaging in detection and monitoring of cardiotoxicity. World J Radiol 2014; 6:486-492. [PMID: 25071889 PMCID: PMC4109100 DOI: 10.4329/wjr.v6.i7.486] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/21/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Cardiotoxicity as a result of cancer treatment is a novel and serious public health issue that has a significant impact on a cancer patient’s management and outcome. The coexistence of cancer and cardiac disease in the same patient is more common because of aging population and improvements in the efficacy of antitumor agents. Left ventricular dysfunction is the most typical manifestation and can lead to heart failure. Left ventricular ejection fraction measurement by echocardiography and multigated radionuclide angiography is the most common diagnostic approach to detect cardiac damage, but it identifies a late manifestation of myocardial injury. Early non-invasive imaging techniques are needed for the diagnosis and monitoring of cardiotoxic effects. Although echocardiography and cardiac magnetic resonance are the most commonly used imaging techniques for cardiotoxicity assessment, greater attention is focused on new nuclear cardiologic techniques, which can identify high-risk patients in the early stage and visualize the pathophysiologic process at the tissue level before clinical manifestation. The aim of this review is to summarize the role of nuclear imaging techniques in the non-invasive detection of myocardial damage related to antineoplastic therapy at the reversible stage, focusing on the current role and future perspectives of nuclear imaging techniques and molecular radiotracers in detection and monitoring of cardiotoxicity.
Collapse
|