1
|
Schmidt JK, Brix L, Brage K, Isaksen C, Kawchuk GN, Castelein J, Jensen TS. Use and applicability of magnetic resonance elastography of the lumbar spine in adults: a scoping review. BMC Med Imaging 2025; 25:131. [PMID: 40269719 PMCID: PMC12016407 DOI: 10.1186/s12880-025-01662-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/03/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Magnetic Resonance Elastography (MRE) is a non-invasive imaging technique that quantifies tissue stiffness by analyzing shear wave propagation. While MRE is widely used in hepatic imaging, its application in the lumbar spine remains an emerging field. Understanding the repeatability and reproducibility of MRE measurements in the lumbar spine is crucial for its clinical implementation. This scoping review aims to summarize current evidence on the use and applicability of MRE for assessing lumbar spine structures, including intervertebral discs and paraspinal muscles. METHODS A systematic literature search was conducted in MEDLINE (PubMed), CINAHL, Embase, and The Cochrane Library. Studies investigating MRE of the lumbar spine in adult populations were included. Key aspects such as MRE acquisition methods, repeatability and reproducibility of measurements, and study heterogeneity were assessed. Extracted data were categorized based on study design, imaging techniques, and primary outcomes related to lumbar stiffness assessment. RESULTS This review identified 11 relevant studies. These studies demonstrated the capability of MRE to characterize shear stiffness in the lumbar intervertebral discs and paravertebral muscles, in both resting states, across various muscle conditions, and under different interventions such as physical activity and therapeutic taping. The review documents the heterogeneous methodological approaches of the studies, highlighting the innovative but varied approaches to this field. Due to this, diverse findings were reported, some of which were contradictory. CONCLUSION The current evidence of MRE of the lumbar spine is promising though limited due to heterogeneous study methodologies. Future research should focus on larger, multicenter studies with standardized protocols. Despite the current limitations in evidence, MRE holds potential for non-invasive lumbar spine assessment and further research validation.
Collapse
Affiliation(s)
- Jonas Kirkegaard Schmidt
- Department of Radiology, Silkeborg Regional Hospital, Silkeborg, Denmark.
- Education of Radiography, University College of Northern Denmark, Aalborg, Denmark.
| | - Lau Brix
- Department of Radiology, Silkeborg Regional Hospital, Silkeborg, Denmark
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karen Brage
- Education of Radiography, UCL University College, Odense, Denmark
- Health Sciences Research Centre, University College of Northern Denmark, Aalborg, Denmark
| | - Christin Isaksen
- Department of Radiology, Silkeborg Regional Hospital, Silkeborg, Denmark
| | - Gregory Neil Kawchuk
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Johannes Castelein
- Department of Radiology, University Medical Center Groningen, Groningen, The Netherlands
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tue Secher Jensen
- Department of Radiology, Silkeborg Regional Hospital, Silkeborg, Denmark
- Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
- University Clinic for Innovative Patient Pathways, Silkeborg, Denmark
| |
Collapse
|
2
|
Cao W, Pomeroy MJ, Liang Z, Gao Y, Shi Y, Tan J, Han F, Wang J, Ma J, Lu H, Abbasi AF, Pickhardt PJ. Lesion Classification by Model-Based Feature Extraction: A Differential Affine Invariant Model of Soft Tissue Elasticity in CT Images. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025; 38:804-818. [PMID: 39164453 PMCID: PMC11950485 DOI: 10.1007/s10278-024-01178-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/22/2024]
Abstract
The elasticity of soft tissues has been widely considered a characteristic property for differentiation of healthy and lesions and, therefore, motivated the development of several elasticity imaging modalities, for example, ultrasound elastography, magnetic resonance elastography, and optical coherence elastography to directly measure the tissue elasticity. This paper proposes an alternative approach of modeling the elasticity for prior knowledge-based extraction of tissue elastic characteristic features for machine learning (ML) lesion classification using computed tomography (CT) imaging modality. The model describes a dynamic non-rigid (or elastic) soft tissue deformation in differential manifold to mimic the tissues' elasticity under wave fluctuation in vivo. Based on the model, a local deformation invariant is formulated using the 1st and 2nd order derivatives of the lesion volumetric CT image and used to generate elastic feature map of the lesion volume. From the feature map, tissue elastic features are extracted and fed to ML to perform lesion classification. Two pathologically proven image datasets of colon polyps and lung nodules were used to test the modeling strategy. The outcomes reached the score of area under the curve of receiver operating characteristics of 94.2% for the polyps and 87.4% for the nodules, resulting in an average gain of 5 to 20% over several existing state-of-the-art image feature-based lesion classification methods. The gain demonstrates the importance of extracting tissue characteristic features for lesion classification, instead of extracting image features, which can include various image artifacts and may vary for different protocols in image acquisition and different imaging modalities.
Collapse
Affiliation(s)
- Weiguo Cao
- Department of Radiology, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Marc J Pomeroy
- Department of Radiology, Stony Brook University, Stony Brook, NY, 11794, USA
- Departments of Radiology and Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Zhengrong Liang
- Department of Radiology, Stony Brook University, Stony Brook, NY, 11794, USA.
- Departments of Radiology and Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Yongfeng Gao
- Department of Radiology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yongyi Shi
- Department of Radiology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Jiaxing Tan
- Department of Computer Science, City University of New York, New York, NY, 10314, USA
| | - Fangfang Han
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Centre, Dallas, TX, 75235, USA
| | - Jianhua Ma
- Department of Radiation Oncology, University of Texas Southwestern Medical Centre, Dallas, TX, 75235, USA
| | - Hongbin Lu
- Department of Biomedical Engineering, The Fourth Medical University, Xi'an, China
| | - Almas F Abbasi
- Department of Radiology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Perry J Pickhardt
- Department of Radiology, School of Medicine, University of Wisconsin, Madison, WI, 53792, USA
| |
Collapse
|
3
|
Mohammadi M, Naghdabadi R, Makkiabadi B. Estimation of shear viscoelasticity via time-domain elastic full waveform inversion in ultrasound shear wave elastography. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2025; 157:3158-3168. [PMID: 40272212 DOI: 10.1121/10.0036372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/20/2025] [Indexed: 04/25/2025]
Abstract
The elastography inversion process typically assumes local homogeneity or ignores viscosity, which can lead to inaccuracies. This study presents a methodology for estimating viscous and elastic properties of a heterogenous media based on time-domain elastic full waveform inversion using the limited data available in conventional ultrasound shear wave elastography (SWE). The proposed method is based on the elastodynamic equation and minimizes a squared residual misfit function. To improve the optimization process, a total viscoelastic search space is considered and a quasi-Newton optimization is employed, where gradients are approximated using the adjoint state method. Additionally, Tikhonov regularization is incorporated to handle noisy and sparse displacement data. The proposed method was evaluated across various scenarios simulating real-world experimental conditions, accounting for noise levels and temporal sampling sparsity of displacement field. Using noisy displacement data from a single slice of three-dimensional volume, imitating the ultrasound SWE, resulted in 2.91% error for elasticity estimation and 23.97% error for viscosity estimation across the field of view. This framework enables the estimation of viscous and elastic properties of heterogeneous media and has shown promising results. Additionally, the optimization was improved, and noisy and sparse displacement data were effectively addressed.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Reza Naghdabadi
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Bahador Makkiabadi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Research Center for Biomedical Technologies and Robotics (RCBTR), Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Choorakuttil RM, Chaubal RN, Pratap T, Arunachalam VK, Kumar SH, Bagri N, Gupta A, Chelladurai A, Nirmalan PK. Prevalence of Chronic Liver Disease Based on Ultrasound Shear Wave Elastography in an Adult Asian Indian Population Attending Outpatient Preventive Radiology Clinics in India. JOURNAL OF CLINICAL ULTRASOUND : JCU 2025; 53:459-468. [PMID: 39513339 DOI: 10.1002/jcu.23888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/13/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
AIM To determine the ultrasound shear wave elastography (SWE)-based prevalence of chronic liver disease in an adult Asian Indian population attending preventive radiology outpatient clinics in India. METHODS Liver stiffness measures (LSMs) were ascertained using ultrasound SWE and interquartile range/median (IQR/M) ratio ≤ 30% kilopascal (kPa) units were considered a good quality measurement. Details of modifiable risk factors including comorbidity and personal risk behaviors were collected. The liver was graded based on the Society of Radiologists in Ultrasound Liver Elastography Consensus Statement and Grades 4 and 5 indicated compensated advanced chronic liver disease (cACLD) and clinically significant portal hypertension (CSPH). A multivariate logistic regression model was used to analyze associations with chronic advanced liver disease. RESULTS The median LSM in the study participants (n = 1145) was 8.0 (IQR 6.5, 9.85) kPa units. 10.65% of the study population had advanced chronic liver disease (cACLD and CSPH) and 22.79% had LSM that was suggestive of cACLD. cACLD and CSPH were significantly associated with comorbidities, personal risk behaviors, and lean and obese body mass indices. Modifiable risk factors were present in 20%-50% of participants with LSM between 7 and 13 kPa. CONCLUSION Information on the prevalence of LSM-based cACLD and CSPH and modifiable risk factors in persons with LSM between 7 and 13 kPa will help to design preventative strategies using LSM as an objective imaging biomarker.
Collapse
Affiliation(s)
- Rijo M Choorakuttil
- Department of Preventive Radiology and Integrated Diagnostics, AMMA Scans-AMMA Centre for Diagnosis and Preventive Medicine Pvt Ltd, Kochi, Kerala, India
| | - Rajas N Chaubal
- Department of Clinical Radiology, Thane Ultrasound Centre, Mumbai, Maharashtra, India
| | - Thara Pratap
- Department of Clinical Radiology, VPS Lakeshore Hospital & Research Centre, Kochi, Kerala, India
| | - Venkatesh K Arunachalam
- Department of Clinical Radiology, Kovai Medical Centre and Hospital, Coimbatore, Tamil Nadu, India
| | - S Harish Kumar
- Division of Ultrasound, Kovai Medical Centre and Hospital, Coimbatore, Tamil Nadu, India
| | - Neha Bagri
- Department of Radiodiagnosis, VMMC & Safdarjung Hospital, New Delhi, India
| | - Anjali Gupta
- Department of Clinical Radiology, Anjali Ultrasound and Colour Doppler Centre, 2nd Floor, Shanti Madhuban Plaza, Agra, Uttar Pradesh, India
| | - Amarnath Chelladurai
- Department of Radiodiagnosis, Stanley Medical College, Chennai, Tamil Nadu, India
| | - Praveen K Nirmalan
- Department of Research, AMMA Scans-AMMA Centre for Diagnosis and Preventive Medicine Pvt ltd, Kochi, Kerala, India
| |
Collapse
|
5
|
Otero Sanchez L, Moreno C. Noninvasive Tests in Assessment of Patients with Alcohol-Associated Liver Disease. Clin Liver Dis 2024; 28:715-729. [PMID: 39362717 DOI: 10.1016/j.cld.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Alcohol-associated liver disease (ALD) remains a significant public health concern, accounting for at least half of cirrhosis cases in Europe. Historically, liver biopsy has been considered the gold standard method for both diagnosing and staging ALD. However, in the past 3 decades, there has been a growing interest in developing noninvasive biomarkers for identifying high-risk patients prone to develop liver-related complications, including elastography methods or blood-based biomarkers. This review aims to summarize currently available noninvasive testing methods that are clinically available for assessing patients with ALD, including notably steatosis and fibrosis.
Collapse
Affiliation(s)
- Lukas Otero Sanchez
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Hôpital Universitaire de Bruxelles, C.U.B. Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium.
| | - Christophe Moreno
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Hôpital Universitaire de Bruxelles, C.U.B. Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
6
|
Shioka I, Morita R, Yagasaki R, Wuergezhen D, Yamashita T, Fujiwara H, Okuda S. Ex vivo SIM-AFM measurements reveal the spatial correlation of stiffness and molecular distributions in 3D living tissue. Acta Biomater 2024; 189:351-365. [PMID: 39379233 DOI: 10.1016/j.actbio.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
Living tissues each exhibit a distinct stiffness, which provides cells with key environmental cues that regulate their behaviors. Despite this significance, our understanding of the spatiotemporal dynamics and the biological roles of stiffness in three-dimensional tissues is currently limited due to a lack of appropriate measurement techniques. To address this issue, we propose a new method combining upright structured illumination microscopy (USIM) and atomic force microscopy (AFM) to obtain precisely coordinated stiffness maps and biomolecular fluorescence images of thick living tissue slices. Using mouse embryonic and adult skin as a representative tissue with mechanically heterogeneous structures inside, we validate the measurement principle of USIM-AFM. Live measurement of tissue stiffness distributions revealed the highly heterogeneous mechanical nature of skin, including nucleated/enucleated epithelium, mesenchyme, and hair follicle, as well as the role of collagens in maintaining its integrity. Furthermore, quantitative analysis comparing stiffness distributions in live tissue samples with those in preserved tissues, including formalin-fixed and cryopreserved tissue samples, unveiled the distinct impacts of preservation processes on tissue stiffness patterns. This series of experiments highlights the importance of live mechanical testing of tissue-scale samples to accurately capture the true spatiotemporal variations in mechanical properties. Our USIM-AFM technique provides a new methodology to reveal the dynamic nature of tissue stiffness and its correlation with biomolecular distributions in live tissues and thus could serve as a technical basis for exploring tissue-scale mechanobiology. STATEMENT OF SIGNIFICANCE: Stiffness, a simple mechanical parameter, has drawn attention in understanding the mechanobiological principles underlying the homeostasis and pathology of living tissues. To explore tissue-scale mechanobiology, we propose a technique integrating an upright structured illumination microscope and an atomic force microscope. This technique enables live measurements of stiffness distribution and fluorescent observation of thick living tissue slices. Experiments revealed the highly heterogeneous mechanical nature of mouse embryonic and adult skin in three dimensions and the previously unnoticed influences of preservation techniques on the mechanical properties of tissue at microscopic resolution. This study provides a new technical platform for live stiffness measurement and biomolecular observation of tissue-scale samples with micron-scale resolution, thus contributing to future studies of tissue- and organ-scale mechanobiology.
Collapse
Affiliation(s)
- Itsuki Shioka
- Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Ritsuko Morita
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Rei Yagasaki
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Duligengaowa Wuergezhen
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan; Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Tadahiro Yamashita
- Department of System Design Engineering, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | - Hironobu Fujiwara
- Laboratory for Tissue Microenvironment, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe 650-0047, Japan; Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Satoru Okuda
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan; Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa 920-8640, Japan.
| |
Collapse
|
7
|
Choorakuttil RM, Chaubal RN, Pratap T, Chelladurai A, Nirmalan PK. Distribution of Normative Percentiles of Liver Stiffness Measurement Using Ultrasound Shear Wave Elastography in an Adult Asian Indian Population. Indian J Radiol Imaging 2024; 34:596-602. [PMID: 39318556 PMCID: PMC11419765 DOI: 10.1055/s-0044-1782163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Objective The aim of this study was to determine the normative percentiles for liver stiffness measurement (LSM) using shear wave elastography in an adult Asian Indian population as part of the preventive radiology initiative of the Indian Radiological and Imaging Association (IRIA). Methods LSMs were ascertained by two-dimensional (2D) shear wave elastography using the Mindray Resona series of ultrasound machines. The image quality was assessed using the motion stability index (M-STB) and reliability (RLB) map. Ten acquisitions were documented, and an interquartile range-to-median (IQR/M) ratio ≤30% kilopascal (kPa) units was considered a good-quality measurement. A subgroup of the study population without comorbidities was chosen to derive the normative percentile distribution of LSM using a generalized least squares multivariable fractional polynomial regression model that adjusted for sex and body mass index (BMI). The effectiveness of the estimated percentiles was assessed on the entire study population using the greater than 90th percentile value of the LSM as the cutoff for abnormality. Results The study included 852 people who underwent shear wave elastography from June 2022 to July 2023. The magnitude of compensated advanced chronic liver disease (cACLD) and clinically significant portal hypertension (CSPH) was 6.81% (95% confidence interval [CI]: 5.30-8.7) and 4.91% (95% CI: 3.67-6.60), respectively. The normative percentiles were estimated from 282 persons without associated comorbidity and risk factors. The mean age (standard deviation [SD]) of the normal individuals was 40.90 ± 12.92 years, and 210 (71.47%) were males. The mean age (SD) of the 570 persons excluded from the normative percentiles analysis was 47.94 (12.49) years and 72.11% were males. The sex- and BMI-adjusted age-specific 90th percentiles of LSM were 8.76, 8.78, 8.96, 8.97, 9.25, and 9.45 kPa for 18 to 20, 21 to 30, 31 to 40, 41 to 50, 51 to 60, and 61 to 70 years, respectively. Conclusion The sex- and BMI-adjusted age-specific 90th percentiles for LSM using shear wave elastography in Asian Indian adults are almost similar to the greater than 9 kPa cutoff proposed by the Society of Radiologists in Ultrasound Liver Elastography Consensus Statement guidelines to discriminate cACLD and CSPH from normal individuals.
Collapse
Affiliation(s)
- Rijo M. Choorakuttil
- Department of Preventive Radiology and Integrated Diagnostics, AMMA Center for Diagnosis and Preventive Medicine Pvt. Ltd., Kochi, Kerala, India
| | - Rajas N. Chaubal
- Department of Clinical Radiology, Thane Ultrasound Center, Thane, Mumbai, Maharashtra, India
| | - Thara Pratap
- Department of Clinical Radiology, VPS Lakeshore Hospital & Research Center, Kochi, Kerala
| | - Amarnath Chelladurai
- Department of Radiodiagnosis Stanley Medical College, Chennai, Tamil Nadu, India
| | - Praveen K. Nirmalan
- Department of Research, AMMA Center for Diagnosis and Preventive Medicine Pvt. Ltd., Kochi, Kerala, India
| |
Collapse
|
8
|
De Wel B, Huysmans L, Peeters R, Ghysels S, Byloos K, Putzeys G, Maes F, Dupont P, Claeys KG. Test-retest reliability and follow-up of muscle magnetic resonance elastography in adults with and without muscle diseases. J Cachexia Sarcopenia Muscle 2024; 15:1761-1771. [PMID: 38923326 PMCID: PMC11446706 DOI: 10.1002/jcsm.13528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/19/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND We investigated the potential of magnetic resonance elastography (MRE) stiffness measurements in skeletal muscles as an outcome measure, by determining its test-retest reliability, as well as its sensitivity to change in a longitudinal follow-up study. METHODS We assessed test-retest reliability of muscle MRE in 20 subjects with (n = 5) and without (n = 15) muscle diseases and compared this to Dixon proton density fat fraction (PDFF) and volume measurements. Next, we measured MRE muscle stiffness in 21 adults with Becker muscular dystrophy (BMD) and 21 age-matched healthy controls at baseline, and after 9 and 18 months. We compared two different methods of analysing MRE data in this study: 'Method A' used the stiffness maps generated by the Philips MRE software, and 'Method B' applied a custom-made procedure based on wavelength measurements on the MRE images. RESULTS Intraclass correlation coefficients (ICC) of muscle stiffness ranged from good (0.83 for left vastus medialis, P < 0.001) to poor (0.19 for right rectus femoris, P = 0.212) for the examined thigh muscles with Method A, but we did not find a significant test-retest reliability with Method B (P > 0.050 for all). The ICC of muscle PDFF and volume measurements was excellent (>0.90; P < 0.001) for all muscles. At baseline, the average stiffness of all thigh muscles was significantly lower in adults with BMD than in controls for both Method A (-0.2 kPa, P = 0.025) and Method B (-0.6 kPa, P < 0.001). Regardless of which method was used, there was no significant difference in the evolution of muscle stiffness in patients and controls over 18 months. CONCLUSIONS Test-retest reliability of muscle MRE using a simple 2D technique was suboptimal, and did not reliably measure muscle stiffness changes in adults with BMD as compared with controls over 18 months. While the results provide motivation for testing more advanced 3D MRE methods, we conclude that the simple 2D MRE implementation used in this study is not suitable as an outcome measure for characterizing thigh muscle in clinical trials.
Collapse
Affiliation(s)
- Bram De Wel
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
- Department of NeurosciencesLaboratory for Muscle Diseases and Neuropathies, KU Leuven, and Leuven Brain Institute (LBI)LeuvenBelgium
| | - Lotte Huysmans
- Medical Imaging Research CentreUniversity Hospitals LeuvenLeuvenBelgium
- Department ESATPSI, KU LeuvenLeuvenBelgium
| | - Ronald Peeters
- Department of RadiologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Stefan Ghysels
- Department of RadiologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Kris Byloos
- Department of RadiologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Guido Putzeys
- Department of RadiologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Frederik Maes
- Medical Imaging Research CentreUniversity Hospitals LeuvenLeuvenBelgium
- Department ESATPSI, KU LeuvenLeuvenBelgium
| | - Patrick Dupont
- Department of NeurosciencesLaboratory for Cognitive Neurology, KU Leuven, and Leuven Brain Institute (LBI)LeuvenBelgium
| | - Kristl G. Claeys
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
- Department of NeurosciencesLaboratory for Muscle Diseases and Neuropathies, KU Leuven, and Leuven Brain Institute (LBI)LeuvenBelgium
| |
Collapse
|
9
|
Rasheed B, Bjelland Ø, Dalen AF, Schaarschmidt U, Schaathun HG, Pedersen MD, Steinert M, Bye RT. Intraoperative identification of patient-specific elastic modulus of the meniscus during arthroscopy. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 254:108269. [PMID: 38861877 DOI: 10.1016/j.cmpb.2024.108269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/30/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND AND OBJECTIVE Degenerative meniscus tissue has been associated with a lower elastic modulus and can lead to the development of arthrosis. Safe intraoperative measurement of in vivo elastic modulus of the human meniscus could contribute to a better understanding of meniscus health, and for developing surgical simulators where novice surgeons can learn to distinguish healthy from degenerative meniscus tissue. Such measurement can also support intraoperative decision-making by providing a quantitative measure of the meniscus health condition. The objective of this study is to demonstrate a method for intraoperative identification of meniscus elastic modulus during arthroscopic probing using an adaptive observer method. METHODS Ex vivo arthroscopic examinations were performed on five cadaveric knees to estimate the elastic modulus of the anterior, mid-body, and posterior regions of lateral and medial menisci. Real-time intraoperative force-displacement data was obtained and utilized for modulus estimation through an adaptive observer method. For the validation of arthroscopic elastic moduli, an inverse parameter identification approach using optimization, based on biomechanical indentation tests and finite element analyses, was employed. Experimental force-displacement data in various anatomical locations were measured through indentation. An iterative optimization algorithm was employed to optimize elastic moduli and Poisson's ratios by comparing experimental force values at maximum displacement with the corresponding force values from linear elastic region-specific finite element models. Finally, the estimated elastic modulus values obtained from ex vivo arthroscopy were compared against optimized values using a paired t-test. RESULTS The elastic moduli obtained from ex vivo arthroscopy and optimization showcased subject specificity in material properties. Additionally, the results emphasized anatomical and regional specificity within the menisci. The anterior region of the medial menisci exhibited the highest elastic modulus among the anatomical locations studied (9.97±3.20MPa from arthroscopy and 5.05±1.97MPa from finite element-based inverse parameter identification). The paired t-test results indicated no statistically significant difference between the elastic moduli obtained from arthroscopy and inverse parameter identification, suggesting the feasibility of stiffness estimation using arthroscopic examination. CONCLUSIONS This study has demonstrated the feasibility of intraoperative identification of patient-specific elastic modulus for meniscus tissue during arthroscopy.
Collapse
Affiliation(s)
- Bismi Rasheed
- Cyber-Physical Systems Laboratory, Department of ICT and Natural Sciences, Norwegian University of Science and Technology, Å lesund, 6025, Norway; Å lesund Biomechanics Lab, Department of Research and Innovation, Møre and Romsdal Hospital Trust, Å lesund, 6017, Norway.
| | - Øystein Bjelland
- Cyber-Physical Systems Laboratory, Department of ICT and Natural Sciences, Norwegian University of Science and Technology, Å lesund, 6025, Norway; Å lesund Biomechanics Lab, Department of Research and Innovation, Møre and Romsdal Hospital Trust, Å lesund, 6017, Norway
| | - Andreas F Dalen
- Å lesund Biomechanics Lab, Department of Research and Innovation, Møre and Romsdal Hospital Trust, Å lesund, 6017, Norway; Department of Orthopaedic Surgery, Møre and Romsdal Hospital Trust, Å lesund, 6017, Norway
| | - Ute Schaarschmidt
- Cyber-Physical Systems Laboratory, Department of ICT and Natural Sciences, Norwegian University of Science and Technology, Å lesund, 6025, Norway
| | - Hans Georg Schaathun
- Cyber-Physical Systems Laboratory, Department of ICT and Natural Sciences, Norwegian University of Science and Technology, Å lesund, 6025, Norway
| | - Morten D Pedersen
- Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Martin Steinert
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Robin T Bye
- Cyber-Physical Systems Laboratory, Department of ICT and Natural Sciences, Norwegian University of Science and Technology, Å lesund, 6025, Norway
| |
Collapse
|
10
|
Ge GR, Song W, Giannetto MJ, Rolland JP, Nedergaard M, Parker KJ. Mouse brain elastography changes with sleep/wake cycles, aging, and Alzheimer's disease. Neuroimage 2024; 295:120662. [PMID: 38823503 PMCID: PMC11409907 DOI: 10.1016/j.neuroimage.2024.120662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/05/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024] Open
Abstract
Understanding the physiological processes in aging and how neurodegenerative disorders affect cognitive function is a high priority for advancing human health. One specific area of recently enabled research is the in vivo biomechanical state of the brain. This study utilized reverberant optical coherence elastography, a high-resolution elasticity imaging method, to investigate stiffness changes during the sleep/wake cycle, aging, and Alzheimer's disease in murine models. Four-dimensional scans of 44 wildtype mice, 13 mice with deletion of aquaporin-4 water channel, and 12 mice with Alzheimer-related pathology (APP/PS1) demonstrated that (1) cortical tissue became softer (on the order of a 10% decrease in shear wave speed) when young wildtype mice transitioned from wake to anesthetized, yet this effect was lost in aging and with mice overexpressing amyloid-β or lacking the water channel AQP4. (2) Cortical stiffness increased with age in all mice lines, but wildtype mice exhibited the most prominent changes as a function of aging. The study provides novel insight into the brain's biomechanics, the constraints of fluid flow, and how the state of brain activity affects basic properties of cortical tissues.
Collapse
Affiliation(s)
- Gary R Ge
- The Institute of Optics, University of Rochester, 480 Intercampus Drive, Rochester, NY 14627, USA
| | - Wei Song
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Michael J Giannetto
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Jannick P Rolland
- The Institute of Optics, University of Rochester, 480 Intercampus Drive, Rochester, NY 14627, USA; Department of Biomedical Engineering, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA; Center for Visual Science, University of Rochester, 361 Meliora Hall, Rochester, NY 14627, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA; Center for Translational Neuromedicine, University of Copenhagen, Blegdamsvej 3B, 2200-N, Denmark.
| | - Kevin J Parker
- Department of Biomedical Engineering, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA; Department of Electrical and Computer Engineering, University of Rochester, 500 Computer Studies Building, Rochester, NY 14627, USA; Department of Imaging Sciences (Radiology), University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
11
|
Filipov T, Teutsch B, Szabó A, Forintos A, Ács J, Váradi A, Hegyi P, Szarvas T, Ács N, Nyirády P, Deák PÁ. Investigating the role of ultrasound-based shear wave elastography in kidney transplanted patients: correlation between non-invasive fibrosis detection, kidney dysfunction and biopsy results-a systematic review and meta-analysis. J Nephrol 2024; 37:1509-1522. [PMID: 38427308 PMCID: PMC11473454 DOI: 10.1007/s40620-023-01856-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/28/2023] [Indexed: 03/02/2024]
Abstract
INTRODUCTION Interstitial fibrosis and tubular atrophy are leading causes of renal allograft failure. Shear wave elastography could be a promising noninvasive method for providing information on the state of the kidney, with specific regard to fibrosis but currently available data in the literature are controversial. Our study aimed to analyze the correlation between shear wave elastography and various kidney dysfunction measures. METHODS This review was registered on PROSPERO (CRD42021283152). We systematically searched three major databases (MEDLINE, Embase, and CENTRAL) for articles concerning renal transplant recipients, shear wave elastography, fibrosis, and kidney dysfunction. Meta-analytical calculations for pooled Pearson and Spearman correlation coefficients (r) were interpreted with 95% confidence intervals (CIs). Heterogeneity was tested with Cochran's Q test. I2 statistic and 95% CI were reported as a measurement of between-study heterogeneity. Study quality was assessed with the QUADAS2 tool. RESULTS In total, 16 studies were included in our meta-analysis. Results showed a moderate correlation between kidney stiffness and interstitial fibrosis and tubular atrophy, graded according to BANFF classification, on biopsy findings for pooled Pearson (r = 0.48; CI: 0.20, 0.69; I2 = 84%) and Spearman correlations (r = 0.57; CI: 0.35, 0.72; I2 = 74%). When compared to kidney dysfunction parameters, we found a moderate correlation between shear wave elastography and resistive index (r = 0.34 CI: 0.13, 0.51; I2 = 67%) and between shear wave elastography and estimated Glomerular Filtration Rate (eGFR) (r = -0.65; CI: - 0.81, - 0.40; I2 = 73%). All our outcomes had marked heterogeneity. CONCLUSION Our results showed a moderate correlation between kidney stiffness measured by shear wave elastography and biopsy results. While noninvasive assessment of kidney fibrosis after transplantation is an important clinical goal, there is insufficient evidence to support the use of elastography over the performance of a kidney biopsy.
Collapse
Affiliation(s)
- Teodóra Filipov
- Department of Interventional Radiology, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Határőr ut 18, 1122, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Brigitta Teutsch
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School University of Pécs, Pécs, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - Anett Szabó
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Urology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Attila Forintos
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Júlia Ács
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Urology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Alex Váradi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- Department of Metagenomics, University of Debrecen, Debrecen, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School University of Pécs, Pécs, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - Tibor Szarvas
- Department of Urology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Nándor Ács
- Department of Obstetrics and Gynecology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Nyirády
- Department of Urology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Pál Ákos Deák
- Department of Interventional Radiology, Heart and Vascular Center, Faculty of Medicine, Semmelweis University, Határőr ut 18, 1122, Budapest, Hungary.
| |
Collapse
|
12
|
Xu H, Xia Q, Shu C, Lan J, Wang X, Gao W, Lv S, Lin R, Xie Z, Xiong X, Li F, Zhang J, Gong X. In vivo endoscopic optical coherence elastography based on a miniature probe. BIOMEDICAL OPTICS EXPRESS 2024; 15:4237-4252. [PMID: 39022537 PMCID: PMC11249679 DOI: 10.1364/boe.521154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 07/20/2024]
Abstract
Optical coherence elastography (OCE) is a functional extension of optical coherence tomography (OCT). It offers high-resolution elasticity assessment with nanoscale tissue displacement sensitivity and high quantification accuracy, promising to enhance diagnostic precision. However, in vivo endoscopic OCE imaging has not been demonstrated yet, which needs to overcome key challenges related to probe miniaturization, high excitation efficiency and speed. This study presents a novel endoscopic OCE system, achieving the first endoscopic OCE imaging in vivo. The system features the smallest integrated OCE probe with an outer diameter of only 0.9 mm (with a 1.2-mm protective tube during imaging). Utilizing a single 38-MHz high-frequency ultrasound transducer, the system induced rapid deformation in tissues with enhanced excitation efficiency. In phantom studies, the OCE quantification results match well with compression testing results, showing the system's high accuracy. The in vivo imaging of the rat vagina demonstrated the system's capability to detect changes in tissue elasticity continually and distinguish between normal tissue, hematomas, and tissue with increased collagen fibers precisely. This research narrows the gap for the clinical implementation of the endoscopic OCE system, offering the potential for the early diagnosis of intraluminal diseases.
Collapse
Affiliation(s)
- Haoxing Xu
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qingrong Xia
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Institute of Medical Imaging, University of South China, Hengyang 421001, China
- Affiliated Nanhua Hospital, University of South China, Hengyang 421002, China
| | - Chengyou Shu
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiale Lan
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiatian Wang
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wen Gao
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shengmiao Lv
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Riqiang Lin
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhihua Xie
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaohui Xiong
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Fei Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Jinke Zhang
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaojing Gong
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
13
|
Abe R, Fukuzawa K, Yoshihara C, Tano M, Saitoh S. Comparison of spin-echo echo planar imaging and gradient-recalled echo sequences in magnetic resonance elastography of liver at 1.5T same MRI scanner. Abdom Radiol (NY) 2024; 49:694-702. [PMID: 38012395 DOI: 10.1007/s00261-023-04098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE Magnetic resonance elastography (MRE) is used to measure liver stiffness with gradient-recalled echo (GRE)-based and spin-echo echo planar imaging (SE-EPI)-based sequences. We compared the liver stiffness (LS) values of the two sequences on a 1.5-T MR imaging scanner. METHODS This is a retrospective study. An MRE imaging section was obtained from a horizontal section of the liver. Region of interest was drawn on the elastogram, and the mean LS and pixel values were measured and compared. The correlations between proton density fat fraction, R2* values, and biochemical data from electronic medical records were confirmed, and multivariate analysis was performed. RESULTS The mean LS values were 3.01 ± 1.78 kPa for GRE and 3.13 ± 1.57 kPa for SE-EPI, showing excellent agreement and a strong correlation between the two sequences (correlation coefficient r = 0.96). The mean pixel values were 369.5 ± 142.7 pixels for GRE and 490.1 ± 197.9 pixels for SE-EPI, showing a significant difference by the Wilcoxon rank sum test (p < 0.01). There were no LS unmeasurable cases in SE-EPI, but seven (2.5%) were unmeasurable in GRE, and multivariate analysis showed a significant difference with p < 0.001 in R2* values (mean, 92.7 Hz) for the GRE method. CONCLUSION The GRE and SE-EPI methods were comparable for LS measurements in 1.5-T liver MRE, indicating that SE-EPI MRE is more useful because GRE MRE may not measure cases with high R2* values and the region of interest tends to be smaller.
Collapse
Affiliation(s)
- Ryouna Abe
- Department of Radiological Technology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, Japan.
| | - Kei Fukuzawa
- Department of Radiological Technology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, Japan
| | - Chiharu Yoshihara
- Department of Radiological Technology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, Japan
| | - Masakatsu Tano
- Department of Radiological Technology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, Japan
| | - Satoshi Saitoh
- Department of Hepatology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, Japan
| |
Collapse
|
14
|
Zerunian M, Masci B, Caruso D, Pucciarelli F, Polici M, Nardacci S, De Santis D, Iannicelli E, Laghi A. Liver Magnetic Resonance Elastography: Focus on Methodology, Technique, and Feasibility. Diagnostics (Basel) 2024; 14:379. [PMID: 38396418 PMCID: PMC10887609 DOI: 10.3390/diagnostics14040379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Magnetic resonance elastography (MRE) is an imaging technique that combines low-frequency mechanical vibrations with magnetic resonance imaging to create visual maps and quantify liver parenchyma stiffness. As in recent years, diffuse liver diseases have become highly prevalent worldwide and could lead to a chronic condition with different stages of fibrosis. There is a strong necessity for a non-invasive, highly accurate, and standardised quantitative assessment to evaluate and manage patients with different stages of fibrosis from diagnosis to follow-up, as the actual reference standard for the diagnosis and staging of liver fibrosis is biopsy, an invasive method with possible peri-procedural complications and sampling errors. MRE could quantitatively evaluate liver stiffness, as it is a rapid and repeatable method with high specificity and sensitivity. MRE is based on the propagation of mechanical shear waves through the liver tissue that are directly proportional to the organ's stiffness, expressed in kilopascals (kPa). To obtain a valid assessment of the real hepatic stiffness values, it is mandatory to obtain a high-quality examination. To understand the pearls and pitfalls of MRE, in this review, we describe our experience after one year of performing MRE from indications and patient preparation to acquisition, quality control, and image analysis.
Collapse
Affiliation(s)
- Marta Zerunian
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (M.Z.); (B.M.); (M.P.); (S.N.); (D.D.S.); (E.I.); (A.L.)
- PhD School in Translational Medicine and Oncology, Department of Medical and Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Benedetta Masci
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (M.Z.); (B.M.); (M.P.); (S.N.); (D.D.S.); (E.I.); (A.L.)
| | - Damiano Caruso
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (M.Z.); (B.M.); (M.P.); (S.N.); (D.D.S.); (E.I.); (A.L.)
| | - Francesco Pucciarelli
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (M.Z.); (B.M.); (M.P.); (S.N.); (D.D.S.); (E.I.); (A.L.)
| | - Michela Polici
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (M.Z.); (B.M.); (M.P.); (S.N.); (D.D.S.); (E.I.); (A.L.)
- PhD School in Translational Medicine and Oncology, Department of Medical and Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Stefano Nardacci
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (M.Z.); (B.M.); (M.P.); (S.N.); (D.D.S.); (E.I.); (A.L.)
| | - Domenico De Santis
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (M.Z.); (B.M.); (M.P.); (S.N.); (D.D.S.); (E.I.); (A.L.)
| | - Elsa Iannicelli
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (M.Z.); (B.M.); (M.P.); (S.N.); (D.D.S.); (E.I.); (A.L.)
| | - Andrea Laghi
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (M.Z.); (B.M.); (M.P.); (S.N.); (D.D.S.); (E.I.); (A.L.)
| |
Collapse
|
15
|
Durcan C, Hossain M, Chagnon G, Perić D, Girard E. Mechanical experimentation of the gastrointestinal tract: a systematic review. Biomech Model Mechanobiol 2024; 23:23-59. [PMID: 37935880 PMCID: PMC10901955 DOI: 10.1007/s10237-023-01773-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/10/2023] [Indexed: 11/09/2023]
Abstract
The gastrointestinal (GI) organs of the human body are responsible for transporting and extracting nutrients from food and drink, as well as excreting solid waste. Biomechanical experimentation of the GI organs provides insight into the mechanisms involved in their normal physiological functions, as well as understanding of how diseases can cause disruption to these. Additionally, experimental findings form the basis of all finite element (FE) modelling of these organs, which have a wide array of applications within medicine and engineering. This systematic review summarises the experimental studies that are currently in the literature (n = 247) and outlines the areas in which experimentation is lacking, highlighting what is still required in order to more fully understand the mechanical behaviour of the GI organs. These include (i) more human data, allowing for more accurate modelling for applications within medicine, (ii) an increase in time-dependent studies, and (iii) more sophisticated in vivo testing methods which allow for both the layer- and direction-dependent characterisation of the GI organs. The findings of this review can also be used to identify experimental data for the readers' own constitutive or FE modelling as the experimental studies have been grouped in terms of organ (oesophagus, stomach, small intestine, large intestine or rectum), test condition (ex vivo or in vivo), number of directions studied (isotropic or anisotropic), species family (human, porcine, feline etc.), tissue condition (intact wall or layer-dependent) and the type of test performed (biaxial tension, inflation-extension, distension (pressure-diameter), etc.). Furthermore, the studies that investigated the time-dependent (viscoelastic) behaviour of the tissues have been presented.
Collapse
Affiliation(s)
- Ciara Durcan
- Zienkiewicz Centre for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, UK
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Mokarram Hossain
- Zienkiewicz Centre for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, UK.
| | - Grégory Chagnon
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Djordje Perić
- Zienkiewicz Centre for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, UK
| | - Edouard Girard
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
- Laboratoire d'Anatomie des Alpes Françaises, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
16
|
Zhang X, Li G, Lin H, Wong VWS, Wong GLH. Noninvasive evaluation of liver fibrosis in MASLD—Imaging/elastography based. METABOLIC STEATOTIC LIVER DISEASE 2024:151-166. [DOI: 10.1016/b978-0-323-99649-5.00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Suwankanit K, Shimizu M, Suzuki K, Kaneda M. Usefulness of Ultrasound Shear Wave Elastography for Detection of Quadriceps Contracture in Immobilized Rats. Animals (Basel) 2023; 14:76. [PMID: 38200807 PMCID: PMC10778017 DOI: 10.3390/ani14010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Quadriceps contracture is an abnormal pathological shortening of the muscle-tendon unit. To improve the prognosis of quadriceps contracture, improvement of its diagnostic method is needed. In this study, we evaluated the diagnostic utility of ultrasound shear wave elastography in a rat model of quadriceps contracture induced by immobilization. Fifty Wistar rats were randomly divided into control and immobilization groups. During up to 4 weeks of joint immobilization, the quadriceps elastic modulus, muscle hardness, creatinine phosphokinase levels, joint range of motion, histopathologic parameters, and levels of fibrosis-associated mRNA expression were measured every week in the immobilization and control groups and compared. In the immobilization group, the elastic modulus gradually but significantly increased (p < 0.05) throughout the immobilization period. However, muscle hardness and serum creatinine phosphokinase levels only increased at 1 and 2 weeks after the start of immobilization, respectively. Muscle atrophy and shortening progressed throughout the immobilization group. Collagen type I and III, α-SMA protein, and mRNA expression of IL-1β and TGF-β1 significantly increased (p < 0.05) throughout in the immobilization group. Ultrasound shear wave elastography is the most useful method for clinical assessment of muscle contracture.
Collapse
Affiliation(s)
- Kanokwan Suwankanit
- Department of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-0054, Japan;
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Miki Shimizu
- Department of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-0054, Japan;
| | - Kazuhiko Suzuki
- Laboratory of Veterinary Toxicology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-0054, Japan;
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan;
| |
Collapse
|
18
|
Wang C, Zhu J, Ma J, Meng X, Ma Z, Fan F. Optical coherence elastography and its applications for the biomechanical characterization of tissues. JOURNAL OF BIOPHOTONICS 2023; 16:e202300292. [PMID: 37774137 DOI: 10.1002/jbio.202300292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023]
Abstract
The biomechanical characterization of the tissues provides significant evidence for determining the pathological status and assessing the disease treatment. Incorporating elastography with optical coherence tomography (OCT), optical coherence elastography (OCE) can map the spatial elasticity distribution of biological tissue with high resolution. After the excitation with the external or inherent force, the tissue response of the deformation or vibration is detected by OCT imaging. The elastogram is assessed by stress-strain analysis, vibration amplitude measurements, and quantification of elastic wave velocities. OCE has been used for elasticity measurements in ophthalmology, endoscopy, and oncology, improving the precision of diagnosis and treatment of disease. In this article, we review the OCE methods for biomechanical characterization and summarize current OCE applications in biomedicine. The limitations and future development of OCE are also discussed during its translation to the clinic.
Collapse
Affiliation(s)
- Chongyang Wang
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| | | | - Jiawei Ma
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| | - Xiaochen Meng
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| | - Zongqing Ma
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| | - Fan Fan
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| |
Collapse
|
19
|
Morrison O, Destrade M, Tripathi BB. An atlas of the heterogeneous viscoelastic brain with local power-law attenuation synthesised using Prony-series. Acta Biomater 2023; 169:66-87. [PMID: 37507033 DOI: 10.1016/j.actbio.2023.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
This review addresses the acute need to acknowledge the mechanical heterogeneity of brain matter and to accurately calibrate its local viscoelastic material properties accordingly. Specifically, it is important to compile the existing and disparate literature on attenuation power-laws and dispersion to make progress in wave physics of brain matter, a field of research that has the potential to explain the mechanisms at play in diffuse axonal injury and mild traumatic brain injury in general. Currently, viscous effects in the brain are modelled using Prony-series, i.e., a sum of decaying exponentials at different relaxation times. Here we collect and synthesise the Prony-series coefficients appearing in the literature for twelve regions: brainstem, basal ganglia, cerebellum, corona radiata, corpus callosum, cortex, dentate gyrus, hippocampus, thalamus, grey matter, white matter, homogeneous brain, and for eight different mammals: pig, rat, human, mouse, cow, sheep, monkey and dog. Using this data, we compute the fractional-exponent attenuation power-laws for different tissues of the brain, the corresponding dispersion laws resulting from causality, and the averaged Prony-series coefficients. STATEMENT OF SIGNIFICANCE: Traumatic brain injuries are considered a silent epidemic and finite element methods (FEMs) are used in modelling brain deformation, requiring access to viscoelastic properties of brain. To the best of our knowledge, this work presents 1) the first multi-frequency viscoelastic atlas of the heterogeneous brain, 2) the first review focusing on viscoelastic modelling in both FEMs and experimental works, 3) the first attempt to conglomerate the disparate existing literature on the viscoelastic modelling of the brain and 4) the largest collection of viscoelastic parameters for the brain (212 different Prony-series spanning 12 different tissues and 8 different animal surrogates). Furthermore, this work presents the first brain atlas of attenuation power-laws essential for modelling shear waves in brain.
Collapse
Affiliation(s)
- Oisín Morrison
- School of Mathematical and Statistical Sciences, University of Galway, University Road, Galway, Ireland
| | - Michel Destrade
- School of Mathematical and Statistical Sciences, University of Galway, University Road, Galway, Ireland
| | - Bharat B Tripathi
- School of Mathematical and Statistical Sciences, University of Galway, University Road, Galway, Ireland.
| |
Collapse
|
20
|
van Schelt AS, Beek KJ, Wassenaar NPM, Schrauben EM, Runge JH, Gecse KB, van der Bilt JDW, Neefjes-Borst EA, Buskens CJ, Nederveen AJ, Stoker J. Viscoelastic properties of small bowel mesentery at MR elastography in Crohn's disease: a prospective cross-sectional exploratory study. Eur Radiol Exp 2023; 7:53. [PMID: 37718360 PMCID: PMC10505604 DOI: 10.1186/s41747-023-00366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/22/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Creeping fat is a pathological feature of small bowel Crohn's disease (CD), with literature suggesting that bowel resection with extended mesenteric resection is related to less postoperative recurrences. Conventional imaging is unable to accurately quantify the disease involvement (i.e., fibrosis) of creeping fat. Quantification of disease involvement could be useful in decision-making for additional extended mesenteric resection. We investigated the feasibility of magnetic resonance elastography (MRE) of the mesentery and if MRE is capable to detect fibrotic disease involvement of mesentery in active CD. METHODS Multifrequency MRE yielded spatial stiffness (shear wave speed, SWS, |G*|) and fluidity maps (φ). Viscoelastic properties of seven CD patients' mesentery were compared to age- and sex-matched healthy volunteers (HV) (Mann-Whitney U-test). Within CD patients, the affected and "presumably" unaffected mesentery were compared (Wilcoxon-signed rank test). Repeatability was tested in 15 HVs (Bland-Altman analysis, coefficient of variation [CoV]). Spearman rank correlations were used to investigate the relation between microscopically scored amount of mesenteric fibrosis and viscoelastic parameters. RESULTS SWS, |G*|, and φ of affected mesentery in CD were higher compared to HV (p = 0.017, p = 0.001, p = 0.017). Strong correlations were found between percentage of area of mesenteric fibrosis and SWS and |G*| (p < 0.010). No differences were found within CD between affected and presumably unaffected mesentery. Repeatability of SWS showed 95% limits of agreement of (-0.09, 0.13 m/s) and within-subject CoV of 5.3%. CONCLUSION MRE may have the potential to measure fibrotic disease involvement of the mesentery in CD, possibly guiding clinical decision-making with respect to extended mesenteric resection. TRIAL REGISTRATION Dutch trial register, NL9105 , registered 7 December 2020. RELEVANCE STATEMENT MRE may have the potential to measure the amount of mesenteric fibrosis of the affected mesenteric fat in active Crohn's disease, giving more insight into disease progression and could potentially play a role in clinical decision-making for extended mesenteric resection. KEY POINTS • MRE of the mesentery in patients with active CD is feasible. • Fluidity and stiffness of the mesentery increase in active CD, while stiffness correlates with the histopathological amount of mesenteric fibrosis. • MRE provides biomarkers to quantify mesenteric disease activity in active CD.
Collapse
Affiliation(s)
- Anne-Sophie van Schelt
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Kim Johanna Beek
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam, The Netherlands.
| | - Nienke Petronella Maria Wassenaar
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Eric M Schrauben
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jurgen H Runge
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Krisztina Barbara Gecse
- Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jarmila D W van der Bilt
- Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - E Andra Neefjes-Borst
- Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Christianne Johanna Buskens
- Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap Stoker
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Kopecká B, Ravnik D, Jelen K, Bittner V. Objective Methods of Muscle Tone Diagnosis and Their Application-A Critical Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:7189. [PMID: 37631726 PMCID: PMC10458714 DOI: 10.3390/s23167189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
"Muscle tone" is a clinically important and widely used term and palpation is a crucial skill for its diagnosis. However, the term is defined rather vaguely, and palpation is not measurable objectively. Therefore, several methods have been developed to measure muscle tone objectively, in terms of biomechanical properties of the muscle. This article aims to summarize these approaches. Through database searches, we identified those studies related to objective muscle tone measurement in vivo, in situ. Based on them, we described existing methods and devices and compared their reliability. Furthermore, we presented an extensive list of the use of these methods in different fields of research. Although it is believed by some authors that palpation cannot be replaced by a mechanical device, several methods have already proved their utility in muscle biomechanical property diagnosis. There appear to be two issues preventing wider usage of these objective methods in clinical practice. Firstly, a high variability of their reliability, and secondly, a lack of valid mathematical models that would provide the observed mechanical characteristics with a clear physical significance and allow the results to be compared with each other.
Collapse
Affiliation(s)
- Barbora Kopecká
- Faculty of Physical Education and Sport, Charles University, 162 52 Prague, Czech Republic
| | - David Ravnik
- Faculty of Health Sciences, University of Primorska, 6310 Izola, Slovenia
| | - Karel Jelen
- Faculty of Physical Education and Sport, Charles University, 162 52 Prague, Czech Republic
| | - Václav Bittner
- Faculty of Science, Humanities and Education, Technical University of Liberec, 461 17 Liberec, Czech Republic
| |
Collapse
|
22
|
Mandeville R, Deshmukh S, Tan ET, Kumar V, Sanchez B, Dowlatshahi AS, Luk J, See RHB, Leochico CFD, Thum JA, Bazarek S, Johnston B, Brown J, Wu J, Sneag D, Rutkove S. A scoping review of current and emerging techniques for evaluation of peripheral nerve health, degeneration and regeneration: part 2, non-invasive imaging. J Neural Eng 2023; 20:041002. [PMID: 37369193 DOI: 10.1088/1741-2552/ace217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/27/2023] [Indexed: 06/29/2023]
Abstract
Peripheral neuroregenerative research and therapeutic options are expanding exponentially. With this expansion comes an increasing need to reliably evaluate and quantify nerve health. Valid and responsive measures of the nerve status are essential for both clinical and research purposes for diagnosis, longitudinal follow-up, and monitoring the impact of any intervention. Furthermore, novel biomarkers can elucidate regenerative mechanisms and open new avenues for research. Without such measures, clinical decision-making is impaired, and research becomes more costly, time-consuming, and sometimes infeasible. Part 1 of this two-part scoping review focused on neurophysiology. In part 2, we identify and critically examine many current and emerging non-invasive imaging techniques that have the potential to evaluate peripheral nerve health, particularly from the perspective of regenerative therapies and research.
Collapse
Affiliation(s)
- Ross Mandeville
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Swati Deshmukh
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Ek Tsoon Tan
- Department of Radiology, Hospital for Special Surgery, New York, NY 10021, United States of America
| | - Viksit Kumar
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Benjamin Sanchez
- Department Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, United States of America
| | - Arriyan S Dowlatshahi
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Justin Luk
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Reiner Henson B See
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Carl Froilan D Leochico
- Department of Physical Medicine and Rehabilitation, St. Luke's Medical Center, Global City, Taguig, The Philippines
- Department of Rehabilitation Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, The Philippines
| | - Jasmine A Thum
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Stanley Bazarek
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, United States of America
| | - Benjamin Johnston
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, United States of America
| | - Justin Brown
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Jim Wu
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Darryl Sneag
- Department of Radiology, Hospital for Special Surgery, New York, NY 10021, United States of America
| | - Seward Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| |
Collapse
|
23
|
Wang C, Wu Y, Dong X, Armacki M, Sitti M. In situ sensing physiological properties of biological tissues using wireless miniature soft robots. SCIENCE ADVANCES 2023; 9:eadg3988. [PMID: 37285426 DOI: 10.1126/sciadv.adg3988] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
Implanted electronic sensors, compared with conventional medical imaging, allow monitoring of advanced physiological properties of soft biological tissues continuously, such as adhesion, pH, viscoelasticity, and biomarkers for disease diagnosis. However, they are typically invasive, requiring being deployed by surgery, and frequently cause inflammation. Here we propose a minimally invasive method of using wireless miniature soft robots to in situ sense the physiological properties of tissues. By controlling robot-tissue interaction using external magnetic fields, visualized by medical imaging, we can recover tissue properties precisely from the robot shape and magnetic fields. We demonstrate that the robot can traverse tissues with multimodal locomotion and sense the adhesion, pH, and viscoelasticity on porcine and mice gastrointestinal tissues ex vivo, tracked by x-ray or ultrasound imaging. With the unprecedented capability of sensing tissue physiological properties with minimal invasion and high resolution deep inside our body, this technology can potentially enable critical applications in both basic research and clinical practice.
Collapse
Affiliation(s)
- Chunxiang Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
- Institute for Biomedical Engineering, ETH Zürich, Zürich 8092, Switzerland
| | - Yingdan Wu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
| | - Xiaoguang Dong
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
- Institute for Biomedical Engineering, ETH Zürich, Zürich 8092, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
24
|
Low G, Ferguson C, Locas S, Tu W, Manolea F, Sam M, Wilson MP. Multiparametric MR assessment of liver fat, iron, and fibrosis: a concise overview of the liver "Triple Screen". Abdom Radiol (NY) 2023; 48:2060-2073. [PMID: 37041393 DOI: 10.1007/s00261-023-03887-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 04/13/2023]
Abstract
Chronic liver disease (CLD) is a common source of morbidity and mortality worldwide. Non-alcoholic fatty liver disease (NAFLD) serves as a major cause of CLD with a rising annual prevalence. Additionally, iron overload can be both a cause and effect of CLD with a negative synergistic effect when combined with NAFLD. The development of state-of-the-art multiparametric MR solutions has led to a change in the diagnostic paradigm in CLD, shifting from traditional liver biopsy to innovative non-invasive methods for providing accurate and reliable detection and quantification of the disease burden. Novel imaging biomarkers such as MRI-PDFF for fat, R2 and R2* for iron, and liver stiffness for fibrosis provide important information for diagnosis, surveillance, risk stratification, and treatment. In this article, we provide a concise overview of the MR concepts and techniques involved in the detection and quantification of liver fat, iron, and fibrosis including their relative strengths and limitations and discuss a practical abbreviated MR protocol for clinical use that integrates these three MR biomarkers into a single simplified MR assessment. Multiparametric MR techniques provide accurate and reliable non-invasive detection and quantification of liver fat, iron, and fibrosis. These techniques can be combined in a single abbreviated MR "Triple Screen" assessment to offer a more complete metabolic imaging profile of CLD.
Collapse
Affiliation(s)
- Gavin Low
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada
| | - Craig Ferguson
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada
| | - Stephanie Locas
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada
| | - Wendy Tu
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada
| | - Florin Manolea
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada
| | - Medica Sam
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada
| | - Mitchell P Wilson
- Department of Radiology and Diagnostic Imaging, University of Alberta Hospital, WMC 2B2.41 8440-112 ST, Edmonton, AB, T6G2B7, Canada.
| |
Collapse
|
25
|
Sarvazyan N, Francy B, Egorov V. Vaginal tactile imaging: A review. PELVIPERINEOLOGY 2023; 42:28-42. [PMID: 39574944 PMCID: PMC11580800 DOI: 10.34057/ppj.2023.42.01.2022-5-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Vaginal Tactile Imaging is a novel technology that creates a visual map of the female pelvic floor based on its biomechanical properties. The vaginal tactile imager is a medical device built on this technology to assist clinicians in diagnosis and prognosis of pelvic floor conditions and treatment from detailed characterization of vaginal tissue elasticity, pelvic support and function. This information is presented in the form of tactile images, a format in which pressure mapping is combined with spatial dimensions. The dynamic pressure patterns are combined using two opposing areas along the vaginal walls during Valsalva maneuver, voluntary and reflex muscle contraction, and involuntary relaxation. Based on these measurements, the biomechanical integrity score of the pelvic floor was developed and introduced to facilitate clinical interpretation of the complex data. This article begins with a brief overview of the tactile imaging for a broad spectrum of applications, clinical research findings and their respective impact. Then the article focuses on the evolution of the technology and its progressive development for the female pelvic floor disorders characterization and diagnostics, including evaluation of surgical intervention. Finally, future possibilities for tactile imaging are discussed, including applications in obstetrics and a fusion with ultrasound imaging.
Collapse
|
26
|
McAuley R, Nolan A, Curatolo A, Alexandrov S, Zvietcovich F, Varea Bejar A, Marcos S, Leahy M, Birkenfeld JS. Co-axial acoustic-based optical coherence vibrometry probe for the quantification of resonance frequency modes in ocular tissue. Sci Rep 2022; 12:18834. [PMID: 36336702 PMCID: PMC9637745 DOI: 10.1038/s41598-022-21978-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/07/2022] [Indexed: 11/08/2022] Open
Abstract
We present a co-axial acoustic-based optical coherence vibrometry probe (CoA-OCV) for vibro-acoustic resonance quantification in biological tissues. Sample vibrations were stimulated via a loudspeaker, and pre-compensation was used to calibrate the acoustic spectrum. Sample vibrations were measured via phase-sensitive swept-source optical coherence tomography (OCT). Resonance frequencies of corneal phantoms were measured at varying intraocular pressures (IOP), and dependencies on Young´s Modulus (E), phantom thickness and IOP were observed. Cycling IOP revealed hysteresis. For E = 0.3 MPa, resonance frequencies increased with IOP at a rate of 3.9, 3.7 and 3.5 Hz/mmHg for varied thicknesses and 1.7, 2.5 and 2.8 Hz/mmHg for E = 0.16 MPa. Resonance frequencies increased with thickness at a rate of 0.25 Hz/µm for E = 0.3 MPa, and 0.40 Hz/µm for E = 0.16 MPa. E showed the most predominant impact in the shift of the resonance frequencies. Full width at half maximum (FWHM) of the resonance modes increased with increasing thickness and decreased with increasing E. Only thickness and E contributed to the variance of FWHM. In rabbit corneas, resonance frequencies of 360-460 Hz were observed. The results of the current study demonstrate the feasibility of CoA-OCV for use in future OCT-V studies.
Collapse
Affiliation(s)
- Ryan McAuley
- Tissue Optics and Microcirculation Imaging Facility, School of Physics, University of Galway, Galway, Ireland.
| | - A Nolan
- Tissue Optics and Microcirculation Imaging Facility, School of Physics, University of Galway, Galway, Ireland
| | - A Curatolo
- Instituto de Óptica, Consejo Superior de Investigaciones Científicas (IO-CSIC), Madrid, Spain
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
- International Centre for Translational Eye Research, Warsaw, Poland
| | - S Alexandrov
- Tissue Optics and Microcirculation Imaging Facility, School of Physics, University of Galway, Galway, Ireland
| | - F Zvietcovich
- Instituto de Óptica, Consejo Superior de Investigaciones Científicas (IO-CSIC), Madrid, Spain
| | - A Varea Bejar
- Instituto de Óptica, Consejo Superior de Investigaciones Científicas (IO-CSIC), Madrid, Spain
| | - S Marcos
- Instituto de Óptica, Consejo Superior de Investigaciones Científicas (IO-CSIC), Madrid, Spain
- Center for Visual Science, The Institute of Optics, Flaum Eye Institute, University of Rochester, Rochester, New York, USA
| | - M Leahy
- Tissue Optics and Microcirculation Imaging Facility, School of Physics, University of Galway, Galway, Ireland
| | - J S Birkenfeld
- Instituto de Óptica, Consejo Superior de Investigaciones Científicas (IO-CSIC), Madrid, Spain.
| |
Collapse
|
27
|
Introduction of a Novel Image-Based and Non-Invasive Method for the Estimation of Local Elastic Properties of Great Vessels. ELECTRONICS 2022. [DOI: 10.3390/electronics11132055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: In the context of a growing demand for the use of in silico models to meet clinical requests, image-based methods play a crucial role. In this study, we present a parametric equation able to estimate the elasticity of vessel walls, non-invasively and indirectly, from information uniquely retrievable from imaging. Methods: A custom equation was iteratively refined and tuned from the simulations of a wide range of different vessel models, leading to the definition of an indirect method able to estimate the elastic modulus E of a vessel wall. To test the effectiveness of the predictive capability to infer the E value, two models with increasing complexity were used: a U-shaped vessel and a patient-specific aorta. Results: The original formulation was demonstrated to deviate from the ground truth, with a difference of 89.6%. However, the adoption of our proposed equation was found to significantly increase the reliability of the estimated E value for a vessel wall, with a mean percentage error of 9.3% with respect to the reference values. Conclusion: This study provides a strong basis for the definition of a method able to estimate local mechanical information of vessels from data easily retrievable from imaging, thus potentially increasing the reliability of in silico cardiovascular models.
Collapse
|
28
|
Alexandrovskaya Y, Baum O, Sovetsky A, Matveyev A, Matveev L, Sobol E, Zaitsev V. Optical Coherence Elastography as a Tool for Studying Deformations in Biomaterials: Spatially-Resolved Osmotic Strain Dynamics in Cartilaginous Samples. MATERIALS (BASEL, SWITZERLAND) 2022; 15:904. [PMID: 35160851 PMCID: PMC8838169 DOI: 10.3390/ma15030904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 12/15/2022]
Abstract
This paper presents a recently developed variant of phase-resolved Optical Coherence Elastography (OCE) enabling non-contact visualization of transient local strains of various origins in biological tissues and other materials. In this work, we demonstrate the possibilities of this new technique for studying dynamics of osmotically-induced strains in cartilaginous tissue impregnated with optical clearing agents (OCA). For poroelastic water-containing biological tissues, application of non-isotonic OCAs, various contrast additives, as well as drug solutions administration, may excite transient spatially-inhomogeneous strain fields of high magnitude in the tissue bulk, initiating mechanical and structural alterations. The range of the strain reliably observed by OCE varied from ±10-3 to ±0.4 for diluted and pure glycerol, correspondingly. The OCE-technique used made it possible to reveal previously inaccessible details of the complex spatio-temporal evolution of alternating-sign osmotic strains at the initial stages of agent diffusion. Qualitatively different effects produced by particular hydrophilic OCAs, such as glycerol and iohexol, are discussed, as well as concentration-dependent differences. Overall, the work demonstrates the unique abilities of the new OCE-modality in providing a deeper insight in real-time kinetics of osmotically-induced strains relevant to a broad range of biomedical applications.
Collapse
Affiliation(s)
- Yulia Alexandrovskaya
- Institute of Photon Technologies, Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, 2 Pionerskaya Street, Troitsk, 108840 Moscow, Russia;
| | - Olga Baum
- Institute of Photon Technologies, Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, 2 Pionerskaya Street, Troitsk, 108840 Moscow, Russia;
| | - Alexander Sovetsky
- Institute of Applied Physics of the Russian Academy of Sciences, 46 Uljanova Street, 603950 Nizhny Novgorod, Russia; (A.S.); (A.M.); (L.M.); (V.Z.)
| | - Alexander Matveyev
- Institute of Applied Physics of the Russian Academy of Sciences, 46 Uljanova Street, 603950 Nizhny Novgorod, Russia; (A.S.); (A.M.); (L.M.); (V.Z.)
| | - Lev Matveev
- Institute of Applied Physics of the Russian Academy of Sciences, 46 Uljanova Street, 603950 Nizhny Novgorod, Russia; (A.S.); (A.M.); (L.M.); (V.Z.)
| | - Emil Sobol
- UCI Health Beckman Laser Institute & Medical Clinic, 1002 Health Sciences Rd., Irvine, CA 92612, USA;
| | - Vladimir Zaitsev
- Institute of Applied Physics of the Russian Academy of Sciences, 46 Uljanova Street, 603950 Nizhny Novgorod, Russia; (A.S.); (A.M.); (L.M.); (V.Z.)
| |
Collapse
|
29
|
Zvietcovich F, Larin KV. Wave-based optical coherence elastography: The 10-year perspective. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2022; 4:012007. [PMID: 35187403 PMCID: PMC8856668 DOI: 10.1088/2516-1091/ac4512] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
After 10 years of progress and innovation, optical coherence elastography (OCE) based on the propagation of mechanical waves has become one of the major and the most studied OCE branches, producing a fundamental impact in the quantitative and nondestructive biomechanical characterization of tissues. Preceding previous progress made in ultrasound and magnetic resonance elastography; wave-based OCE has pushed to the limit the advance of three major pillars: (1) implementation of novel wave excitation methods in tissues, (2) understanding new types of mechanical waves in complex boundary conditions by proposing advance analytical and numerical models, and (3) the development of novel estimators capable of retrieving quantitative 2D/3D biomechanical information of tissues. This remarkable progress promoted a major advance in answering basic science questions and the improvement of medical disease diagnosis and treatment monitoring in several types of tissues leading, ultimately, to the first attempts of clinical trials and translational research aiming to have wave-based OCE working in clinical environments. This paper summarizes the fundamental up-to-date principles and categories of wave-based OCE, revises the timeline and the state-of-the-art techniques and applications lying in those categories, and concludes with a discussion on the current challenges and future directions, including clinical translation research.
Collapse
Affiliation(s)
- Fernando Zvietcovich
- University of Houston, Biomedical Engineering, Houston, TX, United States, 77204
| | - Kirill V. Larin
- University of Houston, Biomedical Engineering, Houston, TX, United States, 77204,
| |
Collapse
|
30
|
Aphinives C, Kiatsayompoo W, Eurboonyanun K, Twinprai P, Jaruchainiwat S. Tissue stiffness in BPH patients from magnetic resonance elastography. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [PMCID: PMC8667017 DOI: 10.1186/s43055-021-00679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background BPH is commonly found in older men which can lead to lower urinary tract symptoms. Magnetic resonance elastography (MRE) is an innovative, noninvasive imaging technique used to evaluate tissue stiffness. There has not been any study, however, that assessed the tissue stiffness in patients with BPH. A prospective descriptive study was performed to demonstrated MRI and MRE techniques of the prostate gland in ten patients with BPH to assess tissue stiffness, features of BPH on MRI and components of BPH in the area of increased stiffness. Results MRI and MRE examinations in all patients were successful without any complications. The mean tissue stiffness of the whole prostate gland was 4.40 ± 0.71 kPa with good reproducibility (ICC 0.82). Stromal components and mixed glandular-stromal components tended to be associated with the areas of increased stiffness on stiffness images, 50.6% for stromal components and 37.9% for mixed glandular-stromal components. Some MRI findings were seen on the patients with high mean stiffness values such as prostatic calcification, type-5 BPH pattern and large prostate volumes. Conclusions Prostate MRE is a useful noninvasive reproducible diagnostic tool for evaluating prostate tissue stiffness by both qualitative and quantitative assessments. The mean prostate tissue stiffness from MRE in patients with BPH in this study was 4.40 ± 0.71 kPa. Some MRI features might be associated with increased tissue stiffness. Trial registration: PID 229. Registered 4 October 2019. http://md.redcap.kku.ac.th
Collapse
|
31
|
Kharat A, Vanpully NS, Jeeson JC. Simplified Guide to MR Elastography in Early Detection of Hepatic Fibrosis with Case Reports: The New Norm in Assessing Liver Health. Indian J Radiol Imaging 2021; 31:644-652. [PMID: 34790310 PMCID: PMC8590563 DOI: 10.1055/s-0041-1735929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The current unhealthy diets and sedentary lifestyle have led to increase in the prevalence of diabetes and metabolic syndrome globally. Fatty liver is a common occurrence in metabolic syndrome. The liver health is often ignored due to delayed warning signs. Fatty changes of the liver is one of the common findings in ultrasonography. Ultrasound does not detect fibrosis except when cirrhosis is developed. Early stages of fibrosis are asymptomatic with no significant laboratory or preliminary imaging findings. With fibrosis, the elasticity of the liver is reduced and becomes stiffer. Over the years, many techniques have developed to assess the stiffness of the liver, starting from palpation, ultrasonography, and recently developed magnetic resonance elastography (MRE). In this article, we have tried to simplify the concepts of MRE to detect fibrosis and present few case reports. The basic steps involved in generating elastograms and interpretation with some insight on how to incorporate it into the clinical workflow are discussed. MRE is superior to various other available techniques and even offers certain advantages over biopsy. MRE is FDA approved for liver fibrosis since 2009, yet it is hardly used in the Indian setting. MRE is a safe and noninvasive technique to evaluate a large volume of the liver and can be a new norm for the evaluation of fatty liver. Magnetic resonance imaging (MRI)-based elastography techniques hold an exciting future in providing mechanical properties of tissues in various organs like spleen, brain, kidney, and heart.
Collapse
Affiliation(s)
- Amit Kharat
- Department of Radiology, Dr. D.Y. Patil Medical College, Hospital & Research Centre, Pimpri, Pune, Maharashtra, India
| | - Nikhith Soman Vanpully
- Department of Radiology, Dr. D.Y. Patil Medical College, Hospital & Research Centre, Pimpri, Pune, Maharashtra, India
| | - Jacob Cheeran Jeeson
- Department of Radiology, Dr. D.Y. Patil Medical College, Hospital & Research Centre, Pimpri, Pune, Maharashtra, India
| |
Collapse
|
32
|
Silver FH, Kelkar N, Deshmukh T, Ritter K, Ryan N, Nadiminti H. Characterization of the Biomechanical Properties of Skin Using Vibrational Optical Coherence Tomography: Do Changes in the Biomechanical Properties of Skin Stroma Reflect Structural Changes in the Extracellular Matrix of Cancerous Lesions? Biomolecules 2021; 11:1712. [PMID: 34827711 PMCID: PMC8615800 DOI: 10.3390/biom11111712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Early detection of skin cancer is of critical importance since the five-year survival rate for early detected skin malignancies is 99% but drops to 27% for cancer that has spread to distant lymph nodes and other organs. Over 2.5 million benign skin biopsies (55% of the total) are performed each year in the US at an alarming cost of USD ~2.5 B. Therefore there is an unmet need for novel non-invasive diagnostic approaches to better differentiate between cancerous and non-cancerous lesions, especially in cases when there is a legitimate doubt that a biopsy may be required. The purpose of this study is to determine whether the differences in the extracellular matrices among normal skin, actinic keratosis (AK), basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) can be assessed non-invasively using vibrational optical coherence tomography (VOCT). VOCT is a new diagnostic technology that uses infrared light and audible sound applied transversely to tissue to measure the resonant frequencies and elastic moduli of cells, dermal collagen, blood vessels and fibrous tissue in skin and lesion stroma without physically touching the skin. Our results indicate that the cellular, vascular and fibrotic resonant frequency peaks are altered in AK, BCC and SCC compared to those peaks observed in normal skin and can serve as physical biomarkers defining the differences between benign and cancerous skin lesions. The resonant frequency is increased from a value of 50 Hz in normal skin to a value of about 80 Hz in pre- and cancerous lesions. A new vascular peak is seen at 130 Hz in cancerous lesions that may reflect the formation of new tumor blood vessels. The peak at 260 Hz is similar to that seen in the skin of a subject with Scleroderma and skin wounds that have healed. The peak at 260 Hz appears to be associated with the deposition of large amounts of stiff fibrous collagen in the stroma surrounding cancerous lesions. Based on the results of this pilot study, VOCT can be used to non-invasively identify physical biomarkers that can help differentiate between benign and cancerous skin lesions. The appearance of new stiff cellular, fragile new vessels, and stiff fibrous material based on resonant frequency peaks and changes in the extracellular matrix can be used as a fingerprint of pre- and cancerous skin lesions.
Collapse
MESH Headings
- Humans
- Tomography, Optical Coherence/methods
- Skin Neoplasms/pathology
- Skin Neoplasms/diagnostic imaging
- Skin Neoplasms/metabolism
- Skin Neoplasms/diagnosis
- Extracellular Matrix/metabolism
- Keratosis, Actinic/diagnostic imaging
- Keratosis, Actinic/pathology
- Keratosis, Actinic/metabolism
- Carcinoma, Basal Cell/pathology
- Carcinoma, Basal Cell/diagnostic imaging
- Carcinoma, Basal Cell/metabolism
- Skin/diagnostic imaging
- Skin/metabolism
- Skin/pathology
- Carcinoma, Squamous Cell/diagnostic imaging
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/metabolism
- Female
- Male
- Middle Aged
- Aged
- Biomechanical Phenomena
- Vibration
- Adult
Collapse
Affiliation(s)
- Frederick H. Silver
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- OptoVibronex, LLC., Allentown, PA 18104, USA; (N.K.); (T.D.)
| | - Nikita Kelkar
- OptoVibronex, LLC., Allentown, PA 18104, USA; (N.K.); (T.D.)
| | - Tanmay Deshmukh
- OptoVibronex, LLC., Allentown, PA 18104, USA; (N.K.); (T.D.)
| | - Kelly Ritter
- Dermatology, Summit Health, Berkeley Heights, NJ 07922, USA; (K.R.); (N.R.); (H.N.)
| | - Nicole Ryan
- Dermatology, Summit Health, Berkeley Heights, NJ 07922, USA; (K.R.); (N.R.); (H.N.)
| | - Hari Nadiminti
- Dermatology, Summit Health, Berkeley Heights, NJ 07922, USA; (K.R.); (N.R.); (H.N.)
| |
Collapse
|
33
|
Practical and clinical applications of pancreatic magnetic resonance elastography: a systematic review. Abdom Radiol (NY) 2021; 46:4744-4764. [PMID: 34076721 DOI: 10.1007/s00261-021-03143-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/13/2022]
Abstract
Magnetic resonance elastography (MRE) is a non-invasive technique suitable for assessing mechanical properties of tissues, i.e., stiffness. MRE of the pancreas is relatively new, but recently an increasing number of studies have successfully assessed pancreas diseases with MRE aiming to differentiate healthy from pathological pancreatic tissue with or without fibrosis. This review will systematically describe the practical and clinical applications of pancreatic MRE. We conducted a systematic literature search with a pre-specified search strategy using PubMed and Embase according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. English peer-reviewed articles applying MRE of the pancreas were included. Two independent reviewers assessed the studies. The literature search yielded 14 studies. The pancreatic stiffness for healthy volunteers ranged from 1.11. to 1.21 kPa at a driver frequency of 40 Hz. In benign tumors, the stiffness values were slightly higher or sometimes even lower (range 0.78 to 2.00 kPa), compared to the healthy pancreas parenchyma whereas, in malignant tumors, the stiffness values tended to be higher (1.42 to 6.06 kPa). The pancreatic stiffness was increased in both acute (median: 1.99 kPa) and chronic pancreatitis (> 1.50 kPa). MRE is a promising technique for detecting and quantifying pancreatic stiffness. It is related to fibrosis and seems to be useful in assessing treatment response and clinical follow-up of pancreatic diseases. However, most of the described practical settings were characterized by a lack of uniformity and inconsistency in reporting standards across studies. Harmonization between centers is necessary to achieve more consensus and optimization of pancreatic MRE protocols.
Collapse
|
34
|
Seyedpour SM, Nabati M, Lambers L, Nafisi S, Tautenhahn HM, Sack I, Reichenbach JR, Ricken T. Application of Magnetic Resonance Imaging in Liver Biomechanics: A Systematic Review. Front Physiol 2021; 12:733393. [PMID: 34630152 PMCID: PMC8493836 DOI: 10.3389/fphys.2021.733393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
MRI-based biomechanical studies can provide a deep understanding of the mechanisms governing liver function, its mechanical performance but also liver diseases. In addition, comprehensive modeling of the liver can help improve liver disease treatment. Furthermore, such studies demonstrate the beginning of an engineering-level approach to how the liver disease affects material properties and liver function. Aimed at researchers in the field of MRI-based liver simulation, research articles pertinent to MRI-based liver modeling were identified, reviewed, and summarized systematically. Various MRI applications for liver biomechanics are highlighted, and the limitations of different viscoelastic models used in magnetic resonance elastography are addressed. The clinical application of the simulations and the diseases studied are also discussed. Based on the developed questionnaire, the papers' quality was assessed, and of the 46 reviewed papers, 32 papers were determined to be of high-quality. Due to the lack of the suitable material models for different liver diseases studied by magnetic resonance elastography, researchers may consider the effect of liver diseases on constitutive models. In the future, research groups may incorporate various aspects of machine learning (ML) into constitutive models and MRI data extraction to further refine the study methodology. Moreover, researchers should strive for further reproducibility and rigorous model validation and verification.
Collapse
Affiliation(s)
- Seyed M. Seyedpour
- Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Stuttgart, Germany
- Biomechanics Lab, Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Stuttgart, Germany
| | - Mehdi Nabati
- Department of Mechanical Engineering, Faculty of Engineering, Boğaziçi University, Istanbul, Turkey
| | - Lena Lambers
- Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Stuttgart, Germany
- Biomechanics Lab, Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Stuttgart, Germany
| | - Sara Nafisi
- Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - Hans-Michael Tautenhahn
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Charité Mitte, Berlin, Germany
| | - Jürgen R. Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany
- Center of Medical Optics and Photonics, Friedrich Schiller University, Jena, Germany
- Michael Stifel Center for Data-driven and Simulation Science Jena, Friedrich Schiller University, Jena, Germany
| | - Tim Ricken
- Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Stuttgart, Germany
- Biomechanics Lab, Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
35
|
McGee KP, Hwang K, Sullivan DC, Kurhanewicz J, Hu Y, Wang J, Li W, Debbins J, Paulson E, Olsen JR, Hua C, Warner L, Ma D, Moros E, Tyagi N, Chung C. Magnetic resonance biomarkers in radiation oncology: The report of AAPM Task Group 294. Med Phys 2021; 48:e697-e732. [PMID: 33864283 PMCID: PMC8361924 DOI: 10.1002/mp.14884] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/16/2022] Open
Abstract
A magnetic resonance (MR) biologic marker (biomarker) is a measurable quantitative characteristic that is an indicator of normal biological and pathogenetic processes or a response to therapeutic intervention derived from the MR imaging process. There is significant potential for MR biomarkers to facilitate personalized approaches to cancer care through more precise disease targeting by quantifying normal versus pathologic tissue function as well as toxicity to both radiation and chemotherapy. Both of which have the potential to increase the therapeutic ratio and provide earlier, more accurate monitoring of treatment response. The ongoing integration of MR into routine clinical radiation therapy (RT) planning and the development of MR guided radiation therapy systems is providing new opportunities for MR biomarkers to personalize and improve clinical outcomes. Their appropriate use, however, must be based on knowledge of the physical origin of the biomarker signal, the relationship to the underlying biological processes, and their strengths and limitations. The purpose of this report is to provide an educational resource describing MR biomarkers, the techniques used to quantify them, their strengths and weakness within the context of their application to radiation oncology so as to ensure their appropriate use and application within this field.
Collapse
Affiliation(s)
| | - Ken‐Pin Hwang
- Department of Imaging PhysicsDivision of Diagnostic ImagingMD Anderson Cancer CenterUniversity of TexasHoustonTexasUSA
| | | | - John Kurhanewicz
- Department of RadiologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Yanle Hu
- Department of Radiation OncologyMayo ClinicScottsdaleArizonaUSA
| | - Jihong Wang
- Department of Radiation OncologyMD Anderson Cancer CenterUniversity of TexasHoustonTexasUSA
| | - Wen Li
- Department of Radiation OncologyUniversity of ArizonaTucsonArizonaUSA
| | - Josef Debbins
- Department of RadiologyBarrow Neurologic InstitutePhoenixArizonaUSA
| | - Eric Paulson
- Department of Radiation OncologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Jeffrey R. Olsen
- Department of Radiation OncologyUniversity of Colorado Denver ‐ Anschutz Medical CampusDenverColoradoUSA
| | - Chia‐ho Hua
- Department of Radiation OncologySt. Jude Children’s Research HospitalMemphisTennesseeUSA
| | | | - Daniel Ma
- Department of Radiation OncologyMayo ClinicRochesterMinnesotaUSA
| | - Eduardo Moros
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
| | - Neelam Tyagi
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Caroline Chung
- Department of Radiation OncologyMD Anderson Cancer CenterUniversity of TexasHoustonTexasUSA
| |
Collapse
|
36
|
Zampini MA, Guidetti M, Royston TJ, Klatt D. Measuring viscoelastic parameters in Magnetic Resonance Elastography: a comparison at high and low magnetic field intensity. J Mech Behav Biomed Mater 2021; 120:104587. [PMID: 34034077 DOI: 10.1016/j.jmbbm.2021.104587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/21/2021] [Accepted: 05/08/2021] [Indexed: 12/21/2022]
Abstract
Magnetic Resonance Elastography (MRE) is a non-invasive imaging technique which involves motion-encoding MRI for the estimation of the shear viscoelastic properties of soft tissues through the study of shear wave propagation. The technique has been found informative for disease diagnosis, as well as for monitoring of the effects of therapies. The development of MRE and its validation have been supported by the use of tissue-mimicking phantoms. In this paper we present our new MRE protocol using a low magnetic field tabletop MRI device at 0.5 T and sinusoidal uniaxial excitation in a geometrical focusing condition. Results obtained for gelatin are compared to those previously obtained using high magnetic field MRE at 11.7 T. A multi-frequency investigation is also provided via a comparison of commonly used rheological models: Maxwell, Springpot, Voigt, Zener, Jeffrey, fractional Voigt and fractional Zener. Complex shear modulus values were comparable when processed from images acquired with the tabletop low field scanner and the high field scanner. This study serves as a validation of the presented tabletop MRE protocol and paves the way for MRE experiments on ex-vivo tissue samples in both normal and pathological conditions.
Collapse
Affiliation(s)
- Marco Andrea Zampini
- University of Illinois at Chicago, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA; MR Solutions Ltd, Ashbourne House, Old Portsmouth Rd, Guildford, United Kingdom; Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.
| | - Martina Guidetti
- University of Illinois at Chicago, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Thomas J Royston
- University of Illinois at Chicago, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Dieter Klatt
- University of Illinois at Chicago, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
37
|
Follow-Up of Liver Stiffness with Shear Wave Elastography in Chronic Hepatitis C Patients in Sustained Virological Response Augments Clinical Risk Assessment. Processes (Basel) 2021. [DOI: 10.3390/pr9050753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study aimed to observe the effect of the direct-acting antiviral (DAA) therapy on liver stiffness (LS) and serum biomarkers. We prospectively observed 35 patients with chronic hepatitis C infection and attained a sustained virological response (SVR) after antiviral therapy. Shear wave elastography (SWE) measurement was performed at the beginning of DAA treatment and at 48 weeks after the end of treatment (EOT48w). The METAVIR score and the score for varices needing treatment (VNT) were determined based on the LS values; the fibrosis-4 (FIB4) score was calculated from laboratory tests. The baseline LS (mean ± standard deviation = 2.59 ± 0.89 m/s) decreased significantly after successful DAA therapy (1.90 ± 0.50 m/s; p < 0.001). The METAVIR score showed significant improvement at EOT48w (F0/1 = 9, F2 = 2, F3 = 10, F4 = 14) compared to the initial status (F0/1 = 2, F2 = 1, F3 = 7, F4 = 25; p < 0.028). The FIB4 score indicated less fibrosis after therapy (2.04 ± 1.12) than at baseline (3.51 ± 2.24; p < 0.018). Meanwhile, the number of patients with a high-risk of VNT was significantly less at EOT48w (4 vs. 15 at baseline; OR = 0.17 95% confidence interval (CI) = 0.05–0.59, p < 0.007). SWE indicates a significant resolution of liver fibrosis when chronic hepatitis C patients are in SVR, coinciding with a lower risk of VNT.
Collapse
|
38
|
Use of Vibrational Optical Coherence Tomography to Analyze the Mechanical Properties of Composite Materials. SENSORS 2021; 21:s21062001. [PMID: 33809029 PMCID: PMC7998841 DOI: 10.3390/s21062001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/26/2021] [Accepted: 03/06/2021] [Indexed: 11/24/2022]
Abstract
Energy storage and dissipation by composite materials are important design parameters for sensors and other devices. While polymeric materials can reversibly store energy by decreased chain randomness (entropic loss) they fail to be able to dissipate energy effectively and ultimately fail due to fatigue and molecular chain breakage. In contrast, composite tissues, such as muscle and tendon complexes, store and dissipate energy through entropic changes in collagen (energy storage) and viscous losses (energy dissipation) by muscle fibers or through fluid flow of the interfibrillar matrix. In this paper we review the molecular basis for energy storage and dissipation by natural composite materials in an effort to aid in the development of improved substrates for sensors, implants and other commercial devices. In addition, we introduce vibrational optical coherence tomography, a new technique that can be used to follow energy storage and dissipation by composite materials without physically touching them.
Collapse
|
39
|
Arani A, Manduca A, Ehman RL, Huston Iii J. Harnessing brain waves: a review of brain magnetic resonance elastography for clinicians and scientists entering the field. Br J Radiol 2021; 94:20200265. [PMID: 33605783 PMCID: PMC8011257 DOI: 10.1259/bjr.20200265] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Brain magnetic resonance elastography (MRE) is an imaging technique capable of accurately and non-invasively measuring the mechanical properties of the living human brain. Recent studies have shown that MRE has potential to provide clinically useful information in patients with intracranial tumors, demyelinating disease, neurodegenerative disease, elevated intracranial pressure, and altered functional states. The objectives of this review are: (1) to give a general overview of the types of measurements that have been obtained with brain MRE in patient populations, (2) to survey the tools currently being used to make these measurements possible, and (3) to highlight brain MRE-based quantitative biomarkers that have the highest potential of being adopted into clinical use within the next 5 to 10 years. The specifics of MRE methodology strategies are described, from wave generation to material parameter estimations. The potential clinical role of MRE for characterizing and planning surgical resection of intracranial tumors and assessing diffuse changes in brain stiffness resulting from diffuse neurological diseases and altered intracranial pressure are described. In addition, the emerging technique of functional MRE, the role of artificial intelligence in MRE, and promising applications of MRE in general neuroscience research are presented.
Collapse
Affiliation(s)
- Arvin Arani
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Armando Manduca
- Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
40
|
Charles JP, Fu FH, Anderst WJ. Predictions of Anterior Cruciate Ligament Dynamics From Subject-Specific Musculoskeletal Models and Dynamic Biplane Radiography. J Biomech Eng 2021; 143:031006. [PMID: 33030199 PMCID: PMC7871995 DOI: 10.1115/1.4048710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/17/2020] [Indexed: 01/13/2023]
Abstract
In vivo knee ligament forces are important to consider for informing rehabilitation or clinical interventions. However, they are difficult to directly measure during functional activities. Musculoskeletal models and simulations have become the primary methods by which to estimate in vivo ligament loading. Previous estimates of anterior cruciate ligament (ACL) forces range widely, suggesting that individualized anatomy may have an impact on these predictions. Using ten subject-specific (SS) lower limb musculoskeletal models, which include individualized musculoskeletal geometry, muscle architecture, and six degree-of-freedom knee joint kinematics from dynamic biplane radiography (DBR), this study provides SS estimates of ACL force (anteromedial-aACL; and posterolateral-pACL bundles) during the full gait cycle of treadmill walking. These forces are compared to estimates from scaled-generic (SG) musculoskeletal models to assess the effect of musculoskeletal knee joint anatomy on predicted forces and the benefit of SS modeling in this context. On average, the SS models demonstrated a double force peak during stance (0.39-0.43 xBW per bundle), while only a single force peak during stance was observed in the SG aACL. No significant differences were observed between continuous SG and SS ACL forces; however, root mean-squared differences between SS and SG predictions ranged from 0.08 xBW to 0.27 xBW, suggesting SG models do not reliably reflect forces predicted by SS models. Force predictions were also found to be highly sensitive to ligament resting length, with ±10% variations resulting in force differences of up to 84%. Overall, this study demonstrates the sensitivity of ACL force predictions to SS anatomy, specifically musculoskeletal joint geometry and ligament resting lengths, as well as the feasibility for generating SS musculoskeletal models for a group of subjects to predict in vivo tissue loading during functional activities.
Collapse
Affiliation(s)
- James P. Charles
- Evolutionary Morphology and Biomechanics Lab, Musculoskeletal Biology, University of Liverpool, Liverpool L7 8TX, UK; Biodynamics Lab, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15260
| | - Freddie H. Fu
- Biodynamics Lab, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15260
| | - William J. Anderst
- Biodynamics Lab, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
41
|
Zheng R, Shi C, Wang C, Shi N, Qiu T, Chen W, Shi Y, Wang H. Imaging-Based Staging of Hepatic Fibrosis in Patients with Hepatitis B: A Dynamic Radiomics Model Based on Gd-EOB-DTPA-Enhanced MRI. Biomolecules 2021; 11:307. [PMID: 33670596 PMCID: PMC7922315 DOI: 10.3390/biom11020307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Accurate grading of liver fibrosis can effectively assess the severity of liver disease and help doctors make an appropriate diagnosis. This study aimed to perform the automatic staging of hepatic fibrosis on patients with hepatitis B, who underwent gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging with dynamic radiomics analysis. The proposed dynamic radiomics model combined imaging features from multi-phase dynamic contrast-enhanced (DCE) images and time-domain information. Imaging features were extracted from the deep learning-based segmented liver volume, and time-domain features were further explored to analyze the variation in features during contrast enhancement. Model construction and evaluation were based on a 132-case data set. The proposed model achieved remarkable performance in significant fibrosis (fibrosis stage S1 vs. S2-S4; accuracy (ACC) = 0.875, area under the curve (AUC) = 0.867), advanced fibrosis (S1-S2 vs. S3-S4; ACC = 0.825, AUC = 0.874), and cirrhosis (S1-S3 vs. S4; ACC = 0.850, AUC = 0.900) classifications in the test set. It was more dominant compared with the conventional single-phase or multi-phase DCE-based radiomics models, normalized liver enhancement, and some serological indicators. Time-domain features were found to play an important role in the classification models. The dynamic radiomics model can be applied for highly accurate automatic hepatic fibrosis staging.
Collapse
Affiliation(s)
- Rencheng Zheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China;
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China
| | - Chunzi Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201052, China; (C.S.); (N.S.); (T.Q.)
| | - Chengyan Wang
- Human Phenome Institute, Fudan University, Shanghai 200433, China;
| | - Nannan Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201052, China; (C.S.); (N.S.); (T.Q.)
| | - Tian Qiu
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201052, China; (C.S.); (N.S.); (T.Q.)
| | - Weibo Chen
- Market Solutions Center, Philips Healthcare, Shanghai 200072, China;
| | - Yuxin Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201052, China; (C.S.); (N.S.); (T.Q.)
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China;
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China
- Human Phenome Institute, Fudan University, Shanghai 200433, China;
| |
Collapse
|
42
|
Sowinski DR, McGarry MDJ, Van Houten EEW, Gordon-Wylie S, Weaver JB, Paulsen KD. Poroelasticity as a Model of Soft Tissue Structure: Hydraulic Permeability Reconstruction for Magnetic Resonance Elastography in Silico. FRONTIERS IN PHYSICS 2021; 8:617582. [PMID: 36340954 PMCID: PMC9635531 DOI: 10.3389/fphy.2020.617582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Magnetic Resonance Elastography allows noninvasive visualization of tissue mechanical properties by measuring the displacements resulting from applied stresses, and fitting a mechanical model. Poroelasticity naturally lends itself to describing tissue - a biphasic medium, consisting of both solid and fluid components. This article reviews the theory of poroelasticity, and shows that the spatial distribution of hydraulic permeability, the ease with which the solid matrix permits the flow of fluid under a pressure gradient, can be faithfully reconstructed without spatial priors in simulated environments. The paper describes an in-house MRE computational platform - a multi-mesh, finite element poroelastic solver coupled to an artificial epistemic agent capable of running Bayesian inference to reconstruct inhomogenous model mechanical property images from measured displacement fields. Building on prior work, the domain of convergence for inference is explored, showing that hydraulic permeabilities over several orders of magnitude can be reconstructed given very little prior knowledge of the true spatial distribution.
Collapse
Affiliation(s)
- Damian R. Sowinski
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | | | | | - Scott Gordon-Wylie
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - John B Weaver
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Dartmouth-Hitchcock Medical Center, Department of Radiology, Lebanon, NH, United States
| | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Dartmouth-Hitchcock Medical Center, Center for Surgical Innovation, Lebanon, NH, United States
| |
Collapse
|
43
|
Neidhardt M, Bengs M, Latus S, Schlüter M, Saathoff T, Schlaefer A. 4D deep learning for real-time volumetric optical coherence elastography. Int J Comput Assist Radiol Surg 2021; 16:23-27. [PMID: 32997312 PMCID: PMC7822782 DOI: 10.1007/s11548-020-02261-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/10/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Elasticity of soft tissue provides valuable information to physicians during treatment and diagnosis of diseases. A number of approaches have been proposed to estimate tissue stiffness from the shear wave velocity. Optical coherence elastography offers a particularly high spatial and temporal resolution. However, current approaches typically acquire data at different positions sequentially, making it slow and less practical for clinical application. METHODS We propose a new approach for elastography estimations using a fast imaging device to acquire small image volumes at rates of 831 Hz. The resulting sequence of phase image volumes is fed into a 4D convolutional neural network which handles both spatial and temporal data processing. We evaluate the approach on a set of image data acquired for gelatin phantoms of known elasticity. RESULTS Using the neural network, the gelatin concentration of unseen samples was predicted with a mean error of 0.65 ± 0.81 percentage points from 90 subsequent volumes of phase data only. We achieve a data acquisition and data processing time of under 12 ms and 22 ms, respectively. CONCLUSIONS We demonstrate direct volumetric optical coherence elastography from phase image data. The approach does not rely on particular stimulation or sampling sequences and allows the estimation of elastic tissue properties of up to 40 Hz.
Collapse
Affiliation(s)
- M Neidhardt
- Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Hamburg, Germany.
| | - M Bengs
- Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Hamburg, Germany
| | - S Latus
- Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Hamburg, Germany
| | - M Schlüter
- Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Hamburg, Germany
| | - T Saathoff
- Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Hamburg, Germany
| | - A Schlaefer
- Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
44
|
Plaikner M, Kremser C, Viveiros A, Zoller H, Henninger B. [Magnetic resonance elastography of the liver : Worth knowing for clinical routine]. Radiologe 2020; 60:966-978. [PMID: 32399783 DOI: 10.1007/s00117-020-00690-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Magnetic resonance elastography (MRE) is a noninvasive, quantitative, MRI-based method to evaluate liver stiffness. Beside biopsy and ultrasound elastography, this imaging method plays in many places a significant role in the detection and additive characterization of chronic liver disease. OBJECTIVES, MATERIALS AND METHODS Based on the literature, a brief review of the underlying method and the commercially available products is given. Furthermore, the practical procedure, the analysis, and the interpretation of clinically relevant questions are illustrated and a comparison with ultrasound elastography is provided. RESULTS This relative "young" MRI method allows extensive evaluation of mechanical properties of the liver and is an important diagnostic tool especially in follow-up examinations. The MRE of the liver is with a maximum technical failure rate of 5.8% a robust technique with high accuracy and an excellent re-test reliability as well as intra- and interobserver reproducibility. There is a high diagnostic certainty within the framework of most important clinical indications, the quantification of fibrosis, and with a very good correlation with the "gold standard" biopsy. CONCLUSION Based on its rising clinical relevance and the broad usage, MRE of the liver is increasingly used in many centers and in routine liver protocols. Therefore, basic knowledge of this method is essential for every radiologist.
Collapse
Affiliation(s)
- Michaela Plaikner
- Radiologie, Medizinische Universität Innsbruck, Anichstraße 35, 6020, Innsbruck, Österreich.
| | - Christian Kremser
- Radiologie, Medizinische Universität Innsbruck, Anichstraße 35, 6020, Innsbruck, Österreich
| | - André Viveiros
- Innere Medizin I, Medizinische Universität Innsbruck, Anichstraße 35, 6020, Innsbruck, Österreich
| | - Heinz Zoller
- Innere Medizin I, Medizinische Universität Innsbruck, Anichstraße 35, 6020, Innsbruck, Österreich
| | - Benjamin Henninger
- Radiologie, Medizinische Universität Innsbruck, Anichstraße 35, 6020, Innsbruck, Österreich
| |
Collapse
|
45
|
Mishra J, Kumar B, Targhotra M, Sahoo PK. Advanced and futuristic approaches for breast cancer diagnosis. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00113-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Breast cancer is the most frequent cancer and one of the most common causes of death in women, impacting almost 2 million women each year. Tenacity or perseverance of breast cancer in women is very high these days with an extensive increasing rate of 3 to 5% every year. Along with hurdles faced during treatment of breast tumor, one of the crucial causes of delay in treatment is invasive and poor diagnostic techniques for breast cancer hence the early diagnosis of breast tumors will help us to improve its management and treatment in the initial stage.
Main body
Present review aims to explore diagnostic techniques for breast cancer that are currently being used, recent advancements that aids in prior detection and evaluation and are extensively focused on techniques that are going to be future of breast cancer detection with better efficiency and lesser pain to patients so that it helps to a physician to prevent delay in treatment of cancer. Here, we have discussed mammography and its advanced forms that are the need of current era, techniques involving radiation such as radionuclide methods, the potential of nanotechnology by using nanoparticle in breast cancer, and how the new inventions such as breath biopsy, and X-ray diffraction of hair can simply use as a prominent method in breast cancer early and easy detection tool.
Conclusion
It is observed significantly that advancement in detection techniques is helping in early diagnosis of breast cancer; however, we have to also focus on techniques that will improve the future of cancer diagnosis in like optical imaging and HER2 testing.
Collapse
|
46
|
Wilson MP, Katlariwala P, Low G. More Studies are Needed Evaluating the Diagnostic Accuracy of Magnetic Resonance Elastography for Allograft Renal Transplant Rejection. Korean J Radiol 2020; 21:1024-1025. [PMID: 32677387 PMCID: PMC7369209 DOI: 10.3348/kjr.2020.0242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/07/2020] [Accepted: 03/07/2020] [Indexed: 01/19/2023] Open
Affiliation(s)
- Mitchell P Wilson
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Canada.
| | - Prayash Katlariwala
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Canada
| | - Gavin Low
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Canada
| |
Collapse
|
47
|
Choi B, Choi IY, Cha SH, Yeom SK, Chung HH, Lee SH, Cha J, Lee JH. Feasibility of computed tomography texture analysis of hepatic fibrosis using dual-energy spectral detector computed tomography. Jpn J Radiol 2020; 38:1179-1189. [PMID: 32666182 DOI: 10.1007/s11604-020-01020-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/06/2020] [Indexed: 12/01/2022]
Abstract
PURPOSE To evaluate feasibility of computer tomography texture analysis (CTTA) at different energy level using dual-energy spectral detector CT for liver fibrosis. MATERIALS AND METHODS Eighty-seven patients who underwent a spectral CT examination and had a reference standard of liver fibrosis (histopathologic findings, n = 61, or clinical findings for normal, n = 26) were included. Mean gray-level intensity, mean number of positive pixels (MPP), entropy, skewness, and kurtosis using commercially available software (TexRAD) were compared at different energy levels. Optimal CTTA parameter cutoffs to diagnose liver fibrosis were evaluated. CTTA parameters at different energy levels correlated with liver fibrosis. The association of CTTA parameters with energy level was evaluated. RESULTS Mean gray-level intensity, skewness, kurtosis, and entropy showed significant differences between patients with and without clinically significant hepatic fibrosis (P < 0.05). Mean gray-level intensity at 50 keV was significantly positively correlated with liver fibrosis (ρ = 0.502, P < 0.001). To diagnose stages F2-F4, entropy and mean gray-level intensity at low keV level showed the largest area under the curve (AUC; 0.79 and 0.79). Estimated marginal means (EMMs) of mean gray-level intensity showed prominent differences at low energy levels. CONCLUSION CTTA parameters from different keV levels demonstrated meaningful accuracy for diagnosis of liver fibrosis or clinically significant hepatic fibrosis.
Collapse
Affiliation(s)
- ByukGyung Choi
- Department of Radiology, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan, 15355, Republic of Korea
| | - In Young Choi
- Department of Radiology, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan, 15355, Republic of Korea.
| | - Sang Hoon Cha
- Department of Radiology, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan, 15355, Republic of Korea
| | - Suk Keu Yeom
- Department of Radiology, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan, 15355, Republic of Korea
| | - Hwan Hoon Chung
- Department of Radiology, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan, 15355, Republic of Korea
| | - Seung Hwa Lee
- Department of Radiology, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan, 15355, Republic of Korea
| | - Jaehyung Cha
- Department of Biostatistics, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan, 15355, Republic of Korea
| | - Ju-Han Lee
- Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan, 15355, Republic of Korea
| |
Collapse
|
48
|
Mastrogiacomo S, Dou W, Jansen JA, Walboomers XF. Magnetic Resonance Imaging of Hard Tissues and Hard Tissue Engineered Bio-substitutes. Mol Imaging Biol 2020; 21:1003-1019. [PMID: 30989438 DOI: 10.1007/s11307-019-01345-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Magnetic resonance imaging (MRI) is a non-invasive diagnostic imaging tool based on the detection of protons into the tissues. This imaging technique is remarkable because of high spatial resolution, strong soft tissue contrast and specificity, and good depth penetration. However, MR imaging of hard tissues, such as bone and teeth, remains challenging due to low proton content in such tissues as well as to very short transverse relaxation times (T2). To overcome these issues, new MRI techniques, such as sweep imaging with Fourier transformation (SWIFT), ultrashort echo time (UTE) imaging, and zero echo time (ZTE) imaging, have been developed for hard tissues imaging with promising results reported. Within this article, MRI techniques developed for the detection of hard tissues, such as bone and dental tissues, have been reviewed. The main goal was thus to give a comprehensive overview on the corresponding (pre-) clinical applications and on the potential future directions with such techniques applied. In addition, a section dedicated to MR imaging of novel biomaterials developed for hard tissue applications was given as well.
Collapse
Affiliation(s)
- Simone Mastrogiacomo
- Department of Biomaterials, Radboud University Medical Center, Philips van Leijdenlaan 25, 6525 EX, Nijmegen, The Netherlands.
- Laboratory of Functional and Molecular Imaging, NINDS, National Institutes of Health, Building 10, 5S261, Bethesda, MD, 20892, USA.
| | - Weiqiang Dou
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
- GE Healthcare, MR Research, Beijing, People's Republic of China
| | - John A Jansen
- Department of Biomaterials, Radboud University Medical Center, Philips van Leijdenlaan 25, 6525 EX, Nijmegen, The Netherlands
| | - X Frank Walboomers
- Department of Biomaterials, Radboud University Medical Center, Philips van Leijdenlaan 25, 6525 EX, Nijmegen, The Netherlands
| |
Collapse
|
49
|
Helmi H, Siddiqui A, Yan Y, Basij M, Hernandez-Andrade E, Gelovani J, Hsu CD, Hassan SS, Mehrmohammadi M. The role of noninvasive diagnostic imaging in monitoring pregnancy and detecting patients at risk for preterm birth: a review of quantitative approaches. J Matern Fetal Neonatal Med 2020; 35:568-591. [PMID: 32089024 DOI: 10.1080/14767058.2020.1722099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Preterm birth (PTB) is the leading cause of neonatal morbidity and mortality worldwide. The ability to predict patients at risk for preterm birth remains a major health challenge. The currently available clinical diagnostics such as cervical length and fetal fibronectin may detect only up to 30% of patients who eventually experience a spontaneous preterm birth. This paper reviews ongoing efforts to improve the ability to conduct a risk assessment for preterm birth. In particular, this work focuses on quantitative methods of imaging using ultrasound-based techniques, magnetic resonance imaging, and optical imaging modalities. While ultrasound imaging is the major modality for preterm birth risk assessment, a summary of efforts to adopt other imaging modalities is also discussed to identify the technical and diagnostic limits associated with adopting them in clinical settings. We conclude the review by proposing a new approach using combined photoacoustic, ultrasound, and elastography as a potential means to better assess cervical tissue remodeling, and thus improve the detection of patients at-risk of PTB.
Collapse
Affiliation(s)
- Hamid Helmi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Adeel Siddiqui
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Yan Yan
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Maryam Basij
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Edgar Hernandez-Andrade
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, MI, USA
| | - Juri Gelovani
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Sonia S Hassan
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA.,Office of Women's Health, Wayne State University, Detroit, MI, USA
| | - Mohammad Mehrmohammadi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA.,Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI, USA
| |
Collapse
|
50
|
Pei S, Zhang B, Cong S, Liu J, Wu S, Dong Y, Zhang L, Zhang S. Ultrasound Real-Time Tissue Elastography Improves the Diagnostic Performance of the ACR Thyroid Imaging Reporting and Data System in Differentiating Malignant from Benign Thyroid Nodules: A Summary of 1525 Thyroid Nodules. Int J Endocrinol 2020; 2020:1749351. [PMID: 32351557 PMCID: PMC7178472 DOI: 10.1155/2020/1749351] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/24/2020] [Accepted: 03/11/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND To explore the correlation between the ultrasound elasticity score (ES) of real-time tissue elastography (RTE) and the malignant risk stratification of the Thyroid Imaging Reporting and Data System (TI-RADS) and to evaluate the added value of RTE to TI-RADS in differentiating malignant nodules from benign ones. METHODS A total of 1,498 patients (885 women and 613 men; mean age of 43.5 ± 12.4 years) with 1,525 confirmed thyroid nodules (D = maximum diameter, D ≤ 2.5 cm) confirmed by fine-needle aspiration (FNA) and/or surgery were included. The nodules were divided into four groups based on their sizes (D ≤ 0.5 cm, 0.5 < D ≤ 1.0 cm, 1.0 < D ≤ 2.0 cm, and 2.0 < D ≤ 2.5 cm). We assigned an ES of RTE and malignant risk stratification of the TI-RADS category to each nodule. The correlation between the ES of RTE and the malignant risk stratification of TI-RADS category was analyzed by the Spearman's rank correlation. The diagnostic performances of RTE, TI-RADS, and their combination were compared by the receiver operator characteristic (ROC) analysis. RESULTS The ES of RTE and the malignant risk stratification of TI-RADS showed a strong correlation in the size intervals of 0.5 < D ≤ 1.0 cm, 1.0 < D ≤ 2.0 cm, and 2.0 < D ≤ 2.5 cm (r = 0.768, 0.711, and 0.743, respectively). The diagnostic performance of their combination for each size interval was always better than RTE or TI-RADS alone (for all, P < 0.001). CONCLUSIONS Overall, The ES of RTE was strongly correlated with the malignant risk stratification of TI-RADS. The diagnostic performance of the combination of RTE and TI-RADS outperformed RTE or TI-RADS alone. Therefore, RTE may be an adjunctive tool to the current TI-RADS system for differentiating malignant from benign thyroid nodules.
Collapse
Affiliation(s)
- Shufang Pei
- Department of Ultrasound, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Bin Zhang
- Department of Radiology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Shuzhen Cong
- Department of Ultrasound, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Juanjuan Liu
- Department of Ultrasound, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Suqing Wu
- Department of Ultrasound, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yuhao Dong
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Lu Zhang
- Department of Radiology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|