1
|
Kiani P, Vatankhahan H, Zare-Hoseinabadi A, Ferdosi F, Ehtiati S, Heidari P, Dorostgou Z, Movahedpour A, Baktash A, Rajabivahid M, Khatami SH. Electrochemical biosensors for early detection of breast cancer. Clin Chim Acta 2025; 564:119923. [PMID: 39153652 DOI: 10.1016/j.cca.2024.119923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Breast cancer continues to be a significant contributor to global cancer deaths, particularly among women. This highlights the critical role of early detection and treatment in boosting survival rates. While conventional diagnostic methods like mammograms, biopsies, ultrasounds, and MRIs are valuable tools, limitations exist in terms of cost, invasiveness, and the requirement for specialized equipment and trained personnel. Recent shifts towards biosensor technologies offer a promising alternative for monitoring biological processes and providing accurate health diagnostics in a cost-effective, non-invasive manner. These biosensors are particularly advantageous for early detection of primary tumors, metastases, and recurrent diseases, contributing to more effective breast cancer management. The integration of biosensor technology into medical devices has led to the development of low-cost, adaptable, and efficient diagnostic tools. In this framework, electrochemical screening platforms have garnered significant attention due to their selectivity, affordability, and ease of result interpretation. The current review discusses various breast cancer biomarkers and the potential of electrochemical biosensors to revolutionize early cancer detection, making provision for new diagnostic platforms and personalized healthcare solutions.
Collapse
Affiliation(s)
- Pouria Kiani
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Vatankhahan
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Zare-Hoseinabadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Felora Ferdosi
- Department of Radiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sajad Ehtiati
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parasta Heidari
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zahra Dorostgou
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | | | - Aria Baktash
- Department of Medicine, Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Mansour Rajabivahid
- Department of Internal Medicine, Valiasr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Pangua C, Espuelas S, Simón JA, Álvarez S, Martínez-Ohárriz C, Collantes M, Peñuelas I, Calvo A, Irache JM. Enhancing bevacizumab efficacy in a colorectal tumor mice model using dextran-coated albumin nanoparticles. Drug Deliv Transl Res 2024:10.1007/s13346-024-01734-3. [PMID: 39455507 DOI: 10.1007/s13346-024-01734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Bevacizumab is a monoclonal antibody (mAb) that prevents the growth of new blood vessels and is currently employed in the treatment of colorectal cancer (CRC). However, like other mAb, bevacizumab shows a limited penetration in the tumors, hampering their effectiveness and inducing adverse reactions. The aim of this work was to design and evaluate albumin-based nanoparticles, coated with dextran, as carriers for bevacizumab in order to promote its accumulation in the tumor and, thus, improve its antiangiogenic activity. These nanoparticles (B-NP-DEX50) displayed a mean size of about 250 nm and a payload of about 110 µg/mg. In a CRC mice model, these nanoparticles significantly reduced tumor growth and increased tumor doubling time, tumor necrosis and apoptosis more effectively than free bevacizumab. At the end of study, bevacizumab plasma levels were higher in the free drug group, while tumor levels were higher in the B-NP-DEX50 group (2.5-time higher). In line with this, the biodistribution study revealed that nanoparticles accumulated in the tumor core, potentially improving therapeutic efficacy while reducing systemic exposure. In summary, B-NP-DEX can be an adequate alternative to improve the therapeutic efficiency of biologically active molecules, offering a more specific biodistribution to the site of action.
Collapse
Affiliation(s)
- Cristina Pangua
- NANO-VAC Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, C/ Irunlarrea 1, Pamplona, 31008, Spain
| | - Socorro Espuelas
- NANO-VAC Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, C/ Irunlarrea 1, Pamplona, 31008, Spain
- Institute for Health Research (IdiSNA), Pamplona, 31008, Spain
| | - Jon Ander Simón
- Program in Solid Tumors, CIMA of the University of Navarra, Pamplona, 31008, Spain
| | - Samuel Álvarez
- NANO-VAC Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, C/ Irunlarrea 1, Pamplona, 31008, Spain
| | | | - María Collantes
- Radiopharmacy Unit, Clinica Universidad de Navarra, Pamplona, 31008, Spain
- Institute for Health Research (IdiSNA), Pamplona, 31008, Spain
| | - Iván Peñuelas
- Radiopharmacy Unit, Clinica Universidad de Navarra, Pamplona, 31008, Spain
- Translational Molecular Imaging Unit (UNIMTRA), Department of Nuclear Medicine, Clinica Universidad de Navarra, Pamplona, 31008, Spain
- Institute for Health Research (IdiSNA), Pamplona, 31008, Spain
| | - Alfonso Calvo
- Program in Solid Tumors, CIMA of the University of Navarra, Pamplona, 31008, Spain
- Institute for Health Research (IdiSNA), Pamplona, 31008, Spain
| | - Juan M Irache
- NANO-VAC Research Group, Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, C/ Irunlarrea 1, Pamplona, 31008, Spain.
- Institute for Health Research (IdiSNA), Pamplona, 31008, Spain.
| |
Collapse
|
3
|
Yamanaka-Mitsui S, Oshima N, Odai T, Takao M, Wakana K, Akashi T, Tsuchiya J, Miyasaka N. Primary ovarian neuroendocrine carcinoma expressing substantially intense 18F-FDG uptake: A case report. Radiol Case Rep 2024; 19:4445-4450. [PMID: 39185428 PMCID: PMC11342800 DOI: 10.1016/j.radcr.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 08/27/2024] Open
Abstract
Ovarian neuroendocrine carcinoma is a rare and aggressive tumor with a poor prognosis. Ultrasonography, computed tomography (CT), and magnetic resonance imaging (MRI) are often used for diagnosis. However, no specific features exist, and preoperative diagnosis is often difficult. We present a case in which ovarian neuroendocrine carcinoma was diagnosed postoperatively, with the intention to discuss its imaging features on 18F fluoro-deoxy-glucose positron emission tomography/computed tomography (18F-FDG PET/CT). A 70-year-old woman presented to a local hospital with abdominal pain. CT showed a uterine mass and multiple swollen lymph nodes. The mass expanded from the uterus into the left ovarian vessels on dynamic MRI. The SUVmax of the mass and lymph nodes on 18F-FDG PET/CT were notably elevated to 53.2 and 33.0 respectively. Considering the tumor location and high SUVmax, a malignant uterine tumor was suspected. Total abdominal hysterectomy, bilateral salpingo-oophorectomy, omental biopsy, and resection of the left ovarian vessels were performed. Histological examination confirmed that the tumor was a neuroendocrine carcinoma derived from the left ovary. To the best of our knowledge, there are only few reports on the 18F-FDG uptake in ovarian neuroendocrine carcinomas. Conversely, in other organs, the carcinomas frequently exhibit markedly elevated SUVmax on 18F-FDG PET/CT. It is possible that ovarian neuroendocrine carcinomas share similar traits, and elevated SUVmax could indicate the potential presence of this histological type.
Collapse
Affiliation(s)
- Shiori Yamanaka-Mitsui
- Department of Obstetrics and Gynecology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Noriko Oshima
- Department of Obstetrics and Gynecology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Tamami Odai
- Department of Obstetrics and Gynecology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Maki Takao
- Department of Obstetrics and Gynecology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Kimio Wakana
- Department of Obstetrics and Gynecology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Takumi Akashi
- Department of Diagnostic Pathology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Junichi Tsuchiya
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Naoyuki Miyasaka
- Department of Obstetrics and Gynecology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| |
Collapse
|
4
|
Mititelu R, Mitoi A, Mazilu C, Jinga M, Radu FI, Bucurica A, Mititelu T, Bucurica S. Advancements in hepatocellular carcinoma management: the role of 18F-FDG PET-CT in diagnosing portal vein tumor thrombosis. Nucl Med Commun 2024; 45:651-657. [PMID: 38757155 DOI: 10.1097/mnm.0000000000001863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Portal vein thrombosis, a relatively frequent complication associated with hepatocellular carcinoma (HCC) and liver cirrhosis, is recognized as a significant global health concern. This is mainly due to these conditions' high prevalence and potentially severe outcomes. The aim of our study was to conduct a comprehensive literature review to evaluate the efficacy, accuracy, and clinical implications of 18F-FDG PET-CT in diagnosing and managing portal vein tumor thrombosis (PVTT) in patients with HCC. HCC, which accounts for 80% of liver malignancies, ranks as the fourth most prevalent cancer globally and is a significant contributor to cancer-related mortality. The majority of HCC patients are diagnosed at an advanced stage, leading to a deterioration in patient outcomes. Involvement of the portal vein is also a significant negative factor. This review analyzes the application of 18F-FDG PET-CT in the detection and management of PVTT in patients with HCC, with an emphasis on the importance of the maximum standardized uptake value as an essential diagnostic and prognostic marker. 18F-FDG PET-CT is invaluable for detecting recurrence and guiding management strategies, particularly in patients with high-grade HCC, and plays a pivotal role in differentiating malignant portal vein thrombi from their benign counterparts.
Collapse
Affiliation(s)
- Raluca Mititelu
- Department of Nuclear Medicine, University of Medicine and Pharmacy Carol Davila,
- Department of Nuclear Medicine, University Emergency Central Military Hospital,
| | - Alexandru Mitoi
- Department of Nuclear Medicine, University Emergency Central Military Hospital,
| | - Catalin Mazilu
- Department of Nuclear Medicine, University Emergency Central Military Hospital,
| | - Mariana Jinga
- Department of Internal Medicine and Gastroenterology, University of Medicine and Pharmacy Carol Davila,
- Department of Gastroenterology, University Emergency Central Military Hospital,
| | - Florentina Ionita Radu
- Department of Internal Medicine and Gastroenterology, University of Medicine and Pharmacy Carol Davila,
- Department of Gastroenterology, University Emergency Central Military Hospital,
| | - Ana Bucurica
- Faculty of General Medicine, University of Medicine and Pharmacy Carol Davila and
| | - Teodora Mititelu
- Faculty of General Medicine, University of Medicine and Pharmacy Carol Davila and
- Institute of Military Medicine, Bucharest, Romania
| | - Sandica Bucurica
- Department of Internal Medicine and Gastroenterology, University of Medicine and Pharmacy Carol Davila,
- Department of Gastroenterology, University Emergency Central Military Hospital,
| |
Collapse
|
5
|
Park JY, Park SM, Lee TS, Kang SY, Kim JY, Yoon HJ, Kim BS, Moon BS. Radiopharmaceuticals for Skeletal Muscle PET Imaging. Int J Mol Sci 2024; 25:4860. [PMID: 38732077 PMCID: PMC11084667 DOI: 10.3390/ijms25094860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
The skeletal muscles account for approximately 40% of the body weight and are crucial in movement, nutrient absorption, and energy metabolism. Muscle loss and decline in function cause a decrease in the quality of life of patients and the elderly, leading to complications that require early diagnosis. Positron emission tomography/computed tomography (PET/CT) offers non-invasive, high-resolution visualization of tissues. It has emerged as a promising alternative to invasive diagnostic methods and is attracting attention as a tool for assessing muscle function and imaging muscle diseases. Effective imaging of muscle function and pathology relies on appropriate radiopharmaceuticals that target key aspects of muscle metabolism, such as glucose uptake, adenosine triphosphate (ATP) production, and the oxidation of fat and carbohydrates. In this review, we describe how [18F]fluoro-2-deoxy-D-glucose ([18F]FDG), [18F]fluorocholine ([18F]FCH), [11C]acetate, and [15O]water ([15O]H2O) are suitable radiopharmaceuticals for diagnostic imaging of skeletal muscles.
Collapse
Affiliation(s)
- Joo Yeon Park
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.Y.P.); (S.M.P.); (S.Y.K.); (J.-Y.K.); (H.-J.Y.)
| | - Sun Mi Park
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.Y.P.); (S.M.P.); (S.Y.K.); (J.-Y.K.); (H.-J.Y.)
| | - Tae Sup Lee
- Division of RI Applications, Korea Institute Radiological and Medical Sciences, Seoul 01812, Republic of Korea;
| | - Seo Young Kang
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.Y.P.); (S.M.P.); (S.Y.K.); (J.-Y.K.); (H.-J.Y.)
| | - Ji-Young Kim
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.Y.P.); (S.M.P.); (S.Y.K.); (J.-Y.K.); (H.-J.Y.)
| | - Hai-Jeon Yoon
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.Y.P.); (S.M.P.); (S.Y.K.); (J.-Y.K.); (H.-J.Y.)
| | - Bom Sahn Kim
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.Y.P.); (S.M.P.); (S.Y.K.); (J.-Y.K.); (H.-J.Y.)
| | - Byung Seok Moon
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.Y.P.); (S.M.P.); (S.Y.K.); (J.-Y.K.); (H.-J.Y.)
| |
Collapse
|
6
|
Lehman VT, Tiegs-Heiden CA, Broski SM. Beyond Anatomy: Fat-Suppressed MR and Molecular Imaging of Spinal Pain Generators. Radiol Clin North Am 2024; 62:247-261. [PMID: 38272618 DOI: 10.1016/j.rcl.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Spine pain is highly prevalent and costly, but evaluation with clinical features and anatomic imaging remain limited. Fat-suppressed MR imaging and molecular imaging (MI) may help identify inflammatory, lesional, and malignant causes. Numerous MI agents are available, each with advantages and disadvantages. Herein, FDG PET, prostate-specific membrane antigen (PSMA), bone radiotracers, and others are highlighted. No specific pain MI agents have been identified, but mechanisms of key agents are shown in video format, and the mechanism of PSMA as a theranostic agent is displayed. A multidisciplinary approach is needed to master this topic.
Collapse
Affiliation(s)
- Vance T Lehman
- Department of Radiology, Mayo Clinic, 200 1st Street SouthWest, Rochester, MN 55905, USA.
| | | | - Stephen M Broski
- Department of Radiology, Mayo Clinic, 200 1st Street SouthWest, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Vafa RG, Sabahizadeh A, Mofarrah R. Guarding the heart: How SGLT-2 inhibitors protect against chemotherapy-induced cardiotoxicity: SGLT-2 inhibitors and chemotherapy-induced cardiotoxicity. Curr Probl Cardiol 2024; 49:102350. [PMID: 38128634 DOI: 10.1016/j.cpcardiol.2023.102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
The introduction of chemotherapy agents has significantly transformed cancer treatment, with anthracyclines being one of the most commonly used drugs. While these agents have proven to be highly effective against various types of cancers, they come with complications, including neurotoxicity, nephrotoxicity, and cardiotoxicity. Among these side effects, cardiotoxicity is the leading cause of morbidity and mortality, with anthracyclines being the primary culprit. Chemotherapy medications have various mechanisms that can lead to cardiac injury. Hence, numerous studies have been conducted to decrease the cardiotoxicity of these treatments. Combination therapy with beta-blockers, Angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers have effectively reduced such outcomes. However, a definitive preventive strategy is yet to be established. Meanwhile, sodium-glucose co-transporter-2 (SGLT-2) inhibitors lower blood glucose levels in type 2 diabetes by reducing its re-absorption in the kidneys. They are thus considered potent drugs for glycemic control and reduction of cardiovascular risks. Recent studies have shown that SGLT-2 inhibitors are crucial in preventing chemotherapy-induced cardiotoxicity. They enhance heart cell viability, prevent degenerative changes, stimulate autophagy, and reduce cell death. This drug class also reduces inflammation by inhibiting reactive oxygen species and inflammatory cytokine production. Moreover, it can not only reverse the harmful effects of anticancer agents on the heart structure but also enhance the effectiveness of chemotherapy by minimizing potential consequences on the heart. In conclusion, SGLT-2 inhibitors hold promise as a therapeutic strategy for protecting cancer patients from chemotherapy-induced heart damage and improving cardiovascular outcomes.
Collapse
|
8
|
Thangudu S, Tsai CY, Lin WC, Su CH. Modified gefitinib conjugated Fe 3O 4 NPs for improved delivery of chemo drugs following an image-guided mechanistic study of inner vs. outer tumor uptake for the treatment of non-small cell lung cancer. Front Bioeng Biotechnol 2023; 11:1272492. [PMID: 37877039 PMCID: PMC10591449 DOI: 10.3389/fbioe.2023.1272492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023] Open
Abstract
Gefitinib (GEF) is an FDA-approved anti-cancer drug for the first-line treatment of patients with metastatic non-small cell lung cancer (NSCLC). However, the efficacy of anticancer drugs is limited due to their non-specificity, lower accumulation at target sites, and systemic toxicity. Herein, we successfully synthesized a modified GEF (mGEF) drug and conjugated to Iron oxide nanoparticles (Fe3O4 NPs) for the treatment of NSCLC via magnetic resonance (MR) image-guided drug delivery. A traditional EDC coupling pathway uses mGEF to directly conjugate to Fe3O4 NPs to overcom the drug leakage issues. As a result, we found in vitro drug delivery on mGEF- Fe3O4 NPs exhibits excellent anticancer effects towards the PC9 cells selectively, with an estimated IC 50 value of 2.0 μM. Additionally, in vivo MRI and PET results demonstrate that the NPs could accumulate in tumor-specific regions with localized cell growth inhibition. Results also revealed that outer tumor region exhibiting a stronger contrast than the tinner tumor region which may due necrosis in inner tumor region. In vivo biodistribution further confirms Fe3O4 NPs are more biocompatible and are excreated after the treatment. Overall, we believe that this current strategy of drug modification combined with chemical conjugation on magnetic NPs will lead to improved cancer chemotherapy as well as understanding the tumor microenvironments for better therapeutic outcomes.
Collapse
Affiliation(s)
- Suresh Thangudu
- Center for General Education, Chang Gung University, Taoyuan, Taiwan
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Ching-Yi Tsai
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chia-Hao Su
- Center for General Education, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Guglielmo P, Alongi P, Baratto L, Abenavoli E, Buschiazzo A, Celesti G, Conte M, Filice R, Gorica J, Jonghi-Lavarini L, Lanzafame H, Laudicella R, Librando M, Linguanti F, Mattana F, Miceli A, Olivari L, Piscopo L, Romagnolo C, Santo G, Vento A, Volpe F, Evangelista L. Head-to-Head Comparison of FDG and Radiolabeled FAPI PET: A Systematic Review of the Literature. Life (Basel) 2023; 13:1821. [PMID: 37763225 PMCID: PMC10533171 DOI: 10.3390/life13091821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
FAPI-based radiopharmaceuticals are a novel class of tracers, mainly used for PET imaging, which have demonstrated several advantages over [18F]FDG, especially in the case of low-grade or well-differentiated tumors. We conducted this systematic review to evaluate all the studies where a head-to-head comparison had been performed to explore the potential utility of FAPI tracers in clinical practice. FAPI-based radiopharmaceuticals have shown promising results globally, in particular in detecting peritoneal carcinomatosis, but studies with wider populations are needed to better understand all the advantages of these new radiopharmaceuticals.
Collapse
Affiliation(s)
| | - Pierpaolo Alongi
- Nuclear Medicine Unit, A.R.N.A.S. Ospedali Civico, Di Cristina e Benfratelli, 90127 Palermo, Italy;
| | - Lucia Baratto
- Department of Radiology, Division of Pediatric Radiology, Lucile Packard Children’s Hospital, Stanford University, Stanford, CA 94304, USA;
| | - Elisabetta Abenavoli
- Nuclear Medicine Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy;
| | - Ambra Buschiazzo
- Nuclear Medicine Division, Santa Croce and Carle Hospital, 12100 Cuneo, Italy;
| | - Greta Celesti
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98122 Messina, Italy; (G.C.); (M.L.)
| | - Miriam Conte
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (J.G.)
| | - Rossella Filice
- Unit of Nuclear Medicine, Biomedical Department of Internal and Specialist Medicine, University of Palermo, 90133 Palermo, Italy; (R.F.); (R.L.)
| | - Joana Gorica
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (J.G.)
| | - Lorenzo Jonghi-Lavarini
- Department of Nuclear Medicine, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy;
| | - Helena Lanzafame
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, 45147 Essen, Germany;
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Riccardo Laudicella
- Unit of Nuclear Medicine, Biomedical Department of Internal and Specialist Medicine, University of Palermo, 90133 Palermo, Italy; (R.F.); (R.L.)
| | - Maria Librando
- Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, 98122 Messina, Italy; (G.C.); (M.L.)
| | - Flavia Linguanti
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy;
| | - Francesco Mattana
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCSS, 20141 Milan, Italy;
| | - Alberto Miceli
- Nuclear Medicine Unit, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy;
| | - Laura Olivari
- Nuclear Medicine Unit, IRCCS Ospedale Sacro Cuore Don Calabria, 37024 Negrar, Italy;
| | - Leandra Piscopo
- Department of Advanced Biomedical Sciences, University Federico II, 80138 Naples, Italy; (L.P.); (F.V.)
| | - Cinzia Romagnolo
- Department of Nuclear Medicine, “Ospedali Riuniti” Hospital, 60126 Ancona, Italy;
| | - Giulia Santo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy;
| | - Antonio Vento
- Nuclear Medicine Department, ASP 1-P.O. San Giovanni di Dio, 92100 Agrigento, Italy;
| | - Fabio Volpe
- Department of Advanced Biomedical Sciences, University Federico II, 80138 Naples, Italy; (L.P.); (F.V.)
| | - Laura Evangelista
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy;
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| |
Collapse
|
10
|
Pandurang TP, Cacaccio J, Durrani FA, Dukh M, Alsaleh AZ, Sajjad M, D'Souza F, Kumar D, Pandey RK. A Remarkable Difference in Pharmacokinetics of Fluorinated Versus Iodinated Photosensitizers Derived from Chlorophyll-a and a Direct Correlation between the Tumor Uptake and Anti-Cancer Activity. Molecules 2023; 28:molecules28093782. [PMID: 37175191 PMCID: PMC10180080 DOI: 10.3390/molecules28093782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
To investigate and compare the pharmacokinetic profile and anti-cancer activity of fluorinated and iodinated photosensitizers (PSs), the 3-(1'-(o-fluorobenzyloxy)ethyl pyropheophorbide and the corresponding meta-(m-) and para (p-) fluorinated analogs (methyl esters and carboxylic acids) were synthesized. Replacing iodine with fluorine in PSs did not make any significant difference in fluorescence and singlet oxygen (a key cytotoxic agent) production. The nature of the delivery vehicle and tumor types showed a significant difference in uptake and long-term cure by photodynamic therapy (PDT), especially in the iodinated PS. An unexpected difference in the pharmacokinetic profiles of fluorinated vs. iodinated PSs was observed. At the same imaging parameters, the fluorinated PSs showed maximal tumor uptake at 2 h post injection of the PS, whereas the iodinated PS gave the highest uptake at 24 h post injection. Among all isomers, the m-fluoro PS showed the best in vivo anti-cancer activity in mice bearing U87 (brain) or bladder (UMUC3) tumors. A direct correlation between the tumor uptake and PDT efficacy was observed. The higher tumor uptake of m-fluoro PS at two hours post injection provides a solid rationale for developing the corresponding 18F-agent (half-life 110 min only) for positron imaging tomography (PET) of those cancers (e.g., bladder, prostate, kidney, pancreas, and brain) where 18F-FDG-PET shows limitations.
Collapse
Affiliation(s)
- Taur Prakash Pandurang
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India
| | - Joseph Cacaccio
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Farukh A Durrani
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mykhaylo Dukh
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Ajyal Z Alsaleh
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| | - Munawwar Sajjad
- Department of Nuclear Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14221, USA
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India
| | - Ravindra K Pandey
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
11
|
Holcman K, Rubiś P, Ząbek A, Boczar K, Podolec P, Kostkiewicz M. Advances in Molecular Imaging in Infective Endocarditis. Vaccines (Basel) 2023; 11:420. [PMID: 36851297 PMCID: PMC9967666 DOI: 10.3390/vaccines11020420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Infective endocarditis (IE) is a growing epidemiological challenge. Appropriate diagnosis remains difficult due to heterogenous etiopathogenesis and clinical presentation. The disease may be followed by increased mortality and numerous diverse complications. Developing molecular imaging modalities may provide additional insights into ongoing infection and support an accurate diagnosis. We present the current evidence for the diagnostic performance and indications for utilization in current guidelines of the hybrid modalities: single photon emission tomography with technetium99m-hexamethylpropyleneamine oxime-labeled autologous leukocytes (99mTc-HMPAO-SPECT/CT) along with positron emission tomography with fluorodeoxyglucose (18F-FDG PET/CT). The role of molecular imaging in IE diagnostic work-up has been constantly growing due to technical improvements and the increasing evidence supporting its added diagnostic and prognostic value. The various underlying molecular processes of 99mTc-HMPAO-SPECT/CT as well as 18F-FDG PET/CT translate to different imaging properties, which should be considered in clinical practice. Both techniques provide additional diagnostic value in the assessment of patients at risk of IE. Nuclear imaging should be considered in the IE diagnostic algorithm, not only for the insights gained into ongoing infection at a molecular level, but also for the determination of the optimal clinical therapeutic strategies.
Collapse
Affiliation(s)
- Katarzyna Holcman
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, 31-202 Krakow, Poland
- Department of Nuclear Medicine, John Paul II Hospital, 31-202 Krakow, Poland
| | - Paweł Rubiś
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, 31-202 Krakow, Poland
| | - Andrzej Ząbek
- Department of Electrocardiology, Jagiellonian University Medical College, John Paul II Hospital, 31-202 Krakow, Poland
| | - Krzysztof Boczar
- Department of Electrocardiology, Jagiellonian University Medical College, John Paul II Hospital, 31-202 Krakow, Poland
| | - Piotr Podolec
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, 31-202 Krakow, Poland
| | - Magdalena Kostkiewicz
- Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, 31-202 Krakow, Poland
- Department of Nuclear Medicine, John Paul II Hospital, 31-202 Krakow, Poland
| |
Collapse
|
12
|
Usefulness of pyruvate dehydrogenase-E1α expression to determine SUVmax cut-off value of [ 18F]FDG-PET for predicting lymph node metastasis in lung cancer. Sci Rep 2023; 13:1565. [PMID: 36709375 PMCID: PMC9884208 DOI: 10.1038/s41598-023-28805-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
A more accurate cut-off value of maximum standardized uptake value (SUVmax) in [18F]fluorodeoxyglucose positron emission tomography/computed tomography ([18F]FDG-PET/CT) is necessary to improve preoperative nodal staging in patients with lung cancer. Overall, 223 patients with lung cancer who had undergone [18F]FDG-PET/CT within 2 months before surgery were enrolled. The expression of glucose transporter-1, pyruvate kinase-M2, pyruvate dehydrogenase-E1α (PDH-E1α), and carbonic anhydrase-9 was evaluated by immunohistochemistry. Clinicopathological background was retrospectively investigated. According to PDH-E1α expression in primary lesion, a significant difference (p = 0.021) in SUVmax of metastatic lymph nodes (3.0 with PDH-positive vs 4.5 with PDH-negative) was found, but not of other enzymes. When the cut-off value of SUVmax was set to 2.5, the sensitivity and specificity were 0.529 and 0.562, respectively, and the positive and negative predictive values were 0.505 and 0.586, respectively. However, when the cut-off value of SUVmax was set according to PDH-E1α expression (2.7 with PDH-positive and 3.2 with PDH-negative), the sensitivity and specificity were 0.441 and 0.868, respectively, and the positive and negative predictive values were 0.738 and 0.648, respectively. The SUVmax cut-off value for metastatic lymph nodes depends on PDH-E1α expression in primary lung cancer. The new SUVmax cut-off value according to PDH-E1α expression showed higher specificity for [18F]FDG-PET in the diagnosis of lymph node metastasis.
Collapse
|
13
|
Yang H, Wu J, Zhen S, Hu Y, Li D, Xie M, Zhu H. Proteomic analysis of spinal cord tissue in a rat model of cancer-induced bone pain. Front Mol Neurosci 2022; 15:1009615. [PMID: 36545122 PMCID: PMC9760935 DOI: 10.3389/fnmol.2022.1009615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Background Cancer-induced bone pain (CIBP) is a moderate to severe pain and seriously affects patients' quality of life. Spinal cord plays critical roles in pain generation and maintenance. Identifying differentially expressed proteins (DEPs) in spinal cord is essential to elucidate the mechanisms of cancer pain. Methods CIBP rat model was established by the intratibial inoculation of MRMT-1 cells. Positron emission tomography (PET) scan and transmission electron microscopy (TEM) were used to measure the stats of spinal cord in rats. Label free Liquid Chromatography with tandem mass spectrometry (LC-MS-MS) were used to analyze the whole proteins from the lumbar spinal cord. Differentially expressed proteins (DEPs) were performed using Gene Ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis, and verified using Western blot and immunofluorescence assay. Results In the current study, CIBP rats exhibited bone damage, spontaneous pain, mechanical hyperalgesia, and impaired motor ability. In spinal cord, an hypermetabolism and functional abnormality were revealed on CIBP rats. An increase of synaptic vesicles density in active zone and a disruption of mitochondrial structure in spinal cord of CIBP rats were observed. Meanwhile, 422 DEPs, consisting of 167 up-regulated and 255 down-regulated proteins, were identified among total 1539 proteins. GO enrichment analysis indicated that the DEPs were mainly involved in catabolic process, synaptic function, and enzymic activity. KEGG pathway enrichment analysis indicated a series of pathways, including nervous system disease, hormonal signaling pathways and amino acid metabolism, were involved. Expression change of synaptic and mitochondrial related protein, such as complexin 1 (CPLX1), synaptosomal-associated protein 25 (SNAP25), synaptotagmin 1 (SYT1), aldehyde dehydrogenase isoform 1B1 (ALDH1B1), Glycine amidinotransferase (GATM) and NADH:ubiquinone oxidoreductase subunit A11 (NDUFA11), were further validated using immunofluorescence and Western blot analysis. Conclusion This study provides valuable information for understanding the mechanisms of CIBP, and supplies potential therapeutic targets for cancer pain.
Collapse
Affiliation(s)
- Heyu Yang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Ji Wu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Shuqing Zhen
- Matang Hospital of Traditional Chinese Medicine, Xianning, China
| | - Yindi Hu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Dai Li
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Min Xie
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Haili Zhu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China,*Correspondence: Haili Zhu,
| |
Collapse
|
14
|
Kilicoglu O, Sepay N, Ozgenc E, Gundogdu E, Kara U, Alomairy S, Al-Buriahi M. Evaluation of F-18 FDG radiopharmaceuticals through Molecular Docking and radiation effects. Appl Radiat Isot 2022; 191:110553. [DOI: 10.1016/j.apradiso.2022.110553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
|
15
|
Park HS, Hong N, Jeong JJ, Yun M, Rhee Y. Update on Preoperative Parathyroid Localization in Primary Hyperparathyroidism. Endocrinol Metab (Seoul) 2022; 37:744-755. [PMID: 36327985 PMCID: PMC9633222 DOI: 10.3803/enm.2022.1589] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/04/2022] [Indexed: 12/30/2022] Open
Abstract
Parathyroidectomy is the treatment of choice for primary hyperparathyroidism when the clinical criteria are met. Although bilateral neck exploration is traditionally the standard method for surgery, minimally invasive parathyroidectomy (MIP), or focused parathyroidectomy, has been widely accepted with comparable curative outcomes. For successful MIP, accurate preoperative localization of parathyroid lesions is essential. However, no consensus exists on the optimal approach for localization. Currently, ultrasonography and technetium-99m-sestamibi-single photon emission computed tomography/computed tomography are widely accepted in most cases. However, exact localization cannot always be achieved, especially in cases with multiglandular disease, ectopic glands, recurrent disease, and normocalcemic primary hyperparathyroidism. Therefore, new modalities for preoperative localization have been developed and evaluated. Positron emission tomography/computed tomography and parathyroid venous sampling have demonstrated improvements in sensitivity and accuracy. Both anatomical and functional information can be obtained by combining these methods. As each approach has its advantages and disadvantages, the localization study should be deliberately chosen based on each patient's clinical profile, costs, radiation exposure, and the availability of experienced experts. In this review, we summarize various methods for the localization of hyperfunctioning parathyroid tissues in primary hyperparathyroidism.
Collapse
Affiliation(s)
- Hye-Sun Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Namki Hong
- Department of Internal Medicine, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Ju Jeong
- Department of Surgery, Thyroid Cancer Clinic, Seoul, Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yumie Rhee
- Department of Internal Medicine, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Corresponding author: Yumie Rhee. Department of Internal Medicine, Endocrine Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea Tel: +82-2-2228-1973, Fax: +82-2-393-6884, E-mail:
| |
Collapse
|
16
|
Nelson AT, Trotti D. Altered Bioenergetics and Metabolic Homeostasis in Amyotrophic Lateral Sclerosis. Neurotherapeutics 2022; 19:1102-1118. [PMID: 35773551 PMCID: PMC9587161 DOI: 10.1007/s13311-022-01262-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 01/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that primarily affects motor neurons and causes muscle atrophy, paralysis, and death. While a great deal of progress has been made in deciphering the underlying pathogenic mechanisms, no effective treatments for the disease are currently available. This is mainly due to the high degree of complexity and heterogeneity that characterizes the disease. Over the last few decades of research, alterations to bioenergetic and metabolic homeostasis have emerged as a common denominator across many different forms of ALS. These alterations are found at the cellular level (e.g., mitochondrial dysfunction and impaired expression of monocarboxylate transporters) and at the systemic level (e.g., low BMI and hypermetabolism) and tend to be associated with survival or disease outcomes in patients. Furthermore, an increasing amount of preclinical evidence and some promising clinical evidence suggests that targeting energy metabolism could be an effective therapeutic strategy. This review examines the evidence both for and against these ALS-associated metabolic alterations and highlights potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Andrew T Nelson
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, JHN Bldg., 4th floor, room 416, Philadelphia, PA, 19107, USA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, 900 Walnut Street, JHN Bldg., 4th floor, room 416, Philadelphia, PA, 19107, USA.
| |
Collapse
|
17
|
Mbakaza O, Vangu MDTW. 18F-FDG PET/CT Imaging: Normal Variants, Pitfalls, and Artifacts Musculoskeletal, Infection, and Inflammation. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:847810. [PMID: 39354979 PMCID: PMC11440872 DOI: 10.3389/fnume.2022.847810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/02/2022] [Indexed: 10/03/2024]
Abstract
18F-FDG PET/CT is an integral part of modern-day practice, especially in the management of individuals presenting with malignant processes. The use of this novel imaging modality in oncology has been rapidly evolving. However, due to its detection of cellular metabolism, it is not truly tumor specific. 18F-FDG is also used in the detection of infective and inflammatory disorders. One of the challenges experienced with 18F-FDG PET/CT imaging is the correct differentiation of abnormal uptake that is potentially pathologic, from physiological uptake. Imaging readers, particularly the nuclear physicians, therefore need to be aware of normal physiological variants of uptake, as well as potential pitfalls and artifacts when imaging with 18F-FDG. This is true for musculoskeletal uptake, where more than often, infective and inflammatory processes should not be mistaken for malignancy. This article aims to provide a pictorial review and analysis of cases that depict musculoskeletal, infective, and inflammatory uptake as normal variants, pitfalls, and artifacts on 18F-FDG PET/CT imaging. The impact of this article is to help in the minimizing of poor imaging quality, erroneous interpretations and diminishes misdiagnoses that may impact on the adequate management of patients with undesirable consequences.
Collapse
Affiliation(s)
- Olwethu Mbakaza
- Department of Nuclear Medicine and Molecular Imaging, Charlotte Maxeke Johannesburg Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | - Mboyo-Di-Tamba Willy Vangu
- Department of Nuclear Medicine and Molecular Imaging, Charlotte Maxeke Johannesburg Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
18
|
The Anticancer Ruthenium Compound BOLD-100 Targets Glycolysis and Generates a Metabolic Vulnerability towards Glucose Deprivation. Pharmaceutics 2022; 14:pharmaceutics14020238. [PMID: 35213972 PMCID: PMC8875291 DOI: 10.3390/pharmaceutics14020238] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Cellular energy metabolism is reprogrammed in cancer to fuel proliferation. In oncological therapy, treatment resistance remains an obstacle and is frequently linked to metabolic perturbations. Identifying metabolic changes as vulnerabilities opens up novel approaches for the prevention or targeting of acquired therapy resistance. Insights into metabolic alterations underlying ruthenium-based chemotherapy resistance remain widely elusive. In this study, colon cancer HCT116 and pancreatic cancer Capan-1 cells were selected for resistance against the clinically evaluated ruthenium complex sodium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (BOLD-100). Gene expression profiling identified transcriptional deregulation of carbohydrate metabolism as a response to BOLD-100 and in resistance against the drug. Mechanistically, acquired BOLD-100 resistance is linked to elevated glucose uptake and an increased lysosomal compartment, based on a defect in downstream autophagy execution. Congruently, metabolomics suggested stronger glycolytic activity, in agreement with the distinct hypersensitivity of BOLD-100-resistant cells to 2-deoxy-d-glucose (2-DG). In resistant cells, 2-DG induced stronger metabolic perturbations associated with ER stress induction and cytoplasmic lysosome deregulation. The combination with 2-DG enhanced BOLD-100 activity against HCT116 and Capan-1 cells and reverted acquired BOLD-100 resistance by synergistic cell death induction and autophagy disturbance. This newly identified enhanced glycolytic activity as a metabolic vulnerability in BOLD-100 resistance suggests the targeting of glycolysis as a promising strategy to support BOLD-100 anticancer activity.
Collapse
|
19
|
Choksey A, Timm KN. Cancer Therapy-Induced Cardiotoxicity-A Metabolic Perspective on Pathogenesis, Diagnosis and Therapy. Int J Mol Sci 2021; 23:441. [PMID: 35008867 PMCID: PMC8745714 DOI: 10.3390/ijms23010441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Long-term cardiovascular complications of cancer therapy are becoming ever more prevalent due to increased numbers of cancer survivors. Cancer therapy-induced cardiotoxicity (CTIC) is an incompletely understood consequence of various chemotherapies, targeted anti-cancer agents and radiation therapy. It is typically detected clinically by a reduction in cardiac left ventricular ejection fraction, assessed by echocardiography. However, once cardiac functional decline is apparent, this indicates irreversible cardiac damage, highlighting a need for the development of diagnostics which can detect CTIC prior to the onset of functional decline. There is increasing evidence to suggest that pathological alterations to cardiac metabolism play a crucial role in the development of CTIC. This review discusses the metabolic alterations and mechanisms which occur in the development of CTIC, with a focus on doxorubicin, trastuzumab, imatinib, ponatinib, sunitinib and radiotherapy. Potential methods to diagnose and predict CTIC prior to functional cardiac decline in the clinic are evaluated, with a view to both biomarker and imaging-based approaches. Finally, the therapeutic potential of therapies which manipulate cardiac metabolism in the context of adjuvant cardioprotection against CTIC is examined. Together, an integrated view of the role of metabolism in pathogenesis, diagnosis and treatment is presented.
Collapse
Affiliation(s)
- Anurag Choksey
- Somerville College, University of Oxford, Woodstock Road, Oxford OX2 6HD, UK;
| | - Kerstin N. Timm
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
20
|
Holcman K, Rubiś P, Stępień A, Graczyk K, Podolec P, Kostkiewicz M. The Diagnostic Value of 99mTc-HMPAO-Labelled White Blood Cell Scintigraphy and 18F-FDG PET/CT in Cardiac Device-Related Infective Endocarditis-A Systematic Review. J Pers Med 2021; 11:jpm11101016. [PMID: 34683157 PMCID: PMC8540535 DOI: 10.3390/jpm11101016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/19/2022] Open
Abstract
(1) Background: Treatment of cardiac arrhythmias and conduction disorders with the implantation of a cardiac implantable electronic device (CIED) may lead to complications. Cardiac device-related infective endocarditis (CDRIE) stands out as being one of the most challenging in terms of its diagnosis and management. Developing molecular imaging modalities may provide additional insights into CDRIE diagnosis. (2) Methods: We performed a systematic literature review to critically appraise the evidence for the diagnostic performance of the following hybrid techniques: single photon emission tomography with technetium99m-hexamethylpropyleneamine oxime–labeled autologous leukocytes (99mTc-HMPAO-SPECT/CT) and positron emission tomography with fluorodeoxyglucose (18F-FDG PET/CT). An analysis was performed in accordance with PRISMA and GRADE criteria and included articles from PubMed, Embase and Cochrane databases. (3) Results: Initially, there were 2131 records identified which had been published between 1971–2021. Finally, 18 studies were included presenting original data on the diagnostic value of 99mTc-HMPAO-SPECT/CT or 18F-FDG PET/CT in CDRIE. Analysis showed that these molecular imaging modalities provide high diagnostic accuracy and their inclusion in diagnostic criteria improves CDRIE work-up. (4) Conclusions: 99mTc-HMPAO-SPECT/CT and 18F-FDG PET/CT provide high diagnostic value in the identification of patients at risk of CDRIE and should be considered for inclusion in the CDRIE diagnostic process.
Collapse
Affiliation(s)
- Katarzyna Holcman
- Department of Nuclear Medicine, John Paul II Hospital, 31-202 Krakow, Poland;
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Jagiellonian University Medical College, 31-202 Krakow, Poland; (P.R.); (A.S.); (K.G.); (P.P.)
- Correspondence:
| | - Paweł Rubiś
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Jagiellonian University Medical College, 31-202 Krakow, Poland; (P.R.); (A.S.); (K.G.); (P.P.)
| | - Agnieszka Stępień
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Jagiellonian University Medical College, 31-202 Krakow, Poland; (P.R.); (A.S.); (K.G.); (P.P.)
| | - Katarzyna Graczyk
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Jagiellonian University Medical College, 31-202 Krakow, Poland; (P.R.); (A.S.); (K.G.); (P.P.)
| | - Piotr Podolec
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Jagiellonian University Medical College, 31-202 Krakow, Poland; (P.R.); (A.S.); (K.G.); (P.P.)
| | - Magdalena Kostkiewicz
- Department of Nuclear Medicine, John Paul II Hospital, 31-202 Krakow, Poland;
- Department of Cardiac and Vascular Diseases, John Paul II Hospital, Jagiellonian University Medical College, 31-202 Krakow, Poland; (P.R.); (A.S.); (K.G.); (P.P.)
| |
Collapse
|
21
|
Current status and future prospects of PET-imaging applications in patients with gastro-entero-pancreatic neuroendocrine tumors (GEP-NETs). Eur J Radiol 2021; 143:109932. [PMID: 34482177 DOI: 10.1016/j.ejrad.2021.109932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 12/23/2022]
Abstract
Gastro-entero-pancreatic neuroendocrine tumors (GEP-NETs) represent a heterogeneous group of rare neoplasms with increasing incidence over the last decades. Localization of GEP-NETs and their metastases is a vital component for the implementation of accurate and patient-tailored treatment strategies. Addressing this challenge requires the employment of multidisciplinary imaging approaches, with hybrid positron emission tomography/computed tomography (PET/CT) imaging techniques standing at the forefront of this effort. GEP-NETs exhibit several pathophysiologic characteristics, which can serve as highly specific molecular targets that can be effectively visualized and quantified by means of PET-radiopharmaceuticals, facilitating diagnosis, accurate staging and efficient monitoring of treatment response. Furthermore, the capability for whole-body, in-vivo, non-invasive characterization of the molecular heterogeneity of the disease, provides strong prognostic information, while enabling the selection of patients suitable for precision-based theranostic approaches. The dual tracer (18F-FDG & 68Ga-DOTA-peptides) PET/CT imaging approach is the current optimal diagnostic imaging strategy, since it enables tumor localization, accurate staging, non-invasive whole-body total tumor burden characterization of disease heterogeneity, while providing strong prognostic information and guidance towards treatment strategy. Moreover, 64Cu-DOTATATE has been recently approved by FDA for SSTRs positive NETs, promising substantial diagnostic and logistical benefits. Furthermore, 18F-DOPA offers diagnostic capabilities for serotonin-secreting GEP-NETs which are not characterized by cell-surface over-expression of somatostatin receptors (SSTRs) and cannot be seen on morphological imaging. In addition, PET/CT with agents targeting the expression of glucagon-like peptide-1 receptor (GLP-R1) should be considered in cases of clinical suspicion for insulinomas that cannot be detected by morphological imaging or STTRs PET/CT imaging.
Collapse
|
22
|
Genetic Mutations and Non-Coding RNA-Based Epigenetic Alterations Mediating the Warburg Effect in Colorectal Carcinogenesis. BIOLOGY 2021; 10:biology10090847. [PMID: 34571724 PMCID: PMC8472255 DOI: 10.3390/biology10090847] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) development is a gradual process defined by the accumulation of numerous genetic mutations and epigenetic alterations leading to the adenoma-carcinoma sequence. Despite significant advances in the diagnosis and treatment of CRC, it continues to be a leading cause of cancer-related deaths worldwide. Even in the presence of oxygen, CRC cells bypass oxidative phosphorylation to produce metabolites that enable them to proliferate and survive-a phenomenon known as the "Warburg effect". Understanding the complex glucose metabolism in CRC cells may support the development of new diagnostic and therapeutic approaches. Here we discuss the most recent findings on genetic mutations and epigenetic modulations that may positively or negatively regulate the Warburg effect in CRC cells. We focus on the non-coding RNA (ncRNA)-based epigenetics, and we present a perspective on the therapeutic relevance of critical molecules and ncRNAs mediating the Warburg effect in CRC cells. All the relevant studies were identified and assessed according to the genes and enzymes mediating the Warburg effect. The findings summarized in this review should provide a better understanding of the relevance of genetic mutations and the ncRNA-based epigenetic alterations to CRC pathogenesis to help overcome chemoresistance.
Collapse
|
23
|
Bhushan A, Gonsalves A, Menon JU. Current State of Breast Cancer Diagnosis, Treatment, and Theranostics. Pharmaceutics 2021; 13:723. [PMID: 34069059 PMCID: PMC8156889 DOI: 10.3390/pharmaceutics13050723] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is one of the leading causes of cancer-related morbidity and mortality in women worldwide. Early diagnosis and effective treatment of all types of cancers are crucial for a positive prognosis. Patients with small tumor sizes at the time of their diagnosis have a significantly higher survival rate and a significantly reduced probability of the cancer being fatal. Therefore, many novel technologies are being developed for early detection of primary tumors, as well as distant metastases and recurrent disease, for effective breast cancer management. Theranostics has emerged as a new paradigm for the simultaneous diagnosis, imaging, and treatment of cancers. It has the potential to provide timely and improved patient care via personalized therapy. In nanotheranostics, cell-specific targeting moieties, imaging agents, and therapeutic agents can be embedded within a single formulation for effective treatment. In this review, we will highlight the different diagnosis techniques and treatment strategies for breast cancer management and explore recent advances in breast cancer theranostics. Our main focus will be to summarize recent trends and technologies in breast cancer diagnosis and treatment as reported in recent research papers and patents and discuss future perspectives for effective breast cancer therapy.
Collapse
Affiliation(s)
- Arya Bhushan
- Ladue Horton Watkins High School, St. Louis, MO 63124, USA;
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA;
| | - Andrea Gonsalves
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA;
| | - Jyothi U. Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA;
| |
Collapse
|
24
|
Berland L, Kim L, Abousaway O, Mines A, Mishra S, Clark L, Hofman P, Rashidian M. Nanobodies for Medical Imaging: About Ready for Prime Time? Biomolecules 2021; 11:637. [PMID: 33925941 PMCID: PMC8146371 DOI: 10.3390/biom11050637] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
Recent advances in medical treatments have been revolutionary in shaping the management and treatment landscape of patients, notably cancer patients. Over the last decade, patients with diverse forms of locally advanced or metastatic cancer, such as melanoma, lung cancers, and many blood-borne malignancies, have seen their life expectancies increasing significantly. Notwithstanding these encouraging results, the present-day struggle with these treatments concerns patients who remain largely unresponsive, as well as those who experience severely toxic side effects. Gaining deeper insight into the cellular and molecular mechanisms underlying these variable responses will bring us closer to developing more effective therapeutics. To assess these mechanisms, non-invasive imaging techniques provide valuable whole-body information with precise targeting. An example of such is immuno-PET (Positron Emission Tomography), which employs radiolabeled antibodies to detect specific molecules of interest. Nanobodies, as the smallest derived antibody fragments, boast ideal characteristics for this purpose and have thus been used extensively in preclinical models and, more recently, in clinical early-stage studies as well. Their merit stems from their high affinity and specificity towards a target, among other factors. Furthermore, their small size (~14 kDa) allows them to easily disperse through the bloodstream and reach tissues in a reliable and uniform manner. In this review, we will discuss the powerful imaging potential of nanobodies, primarily through the lens of imaging malignant tumors but also touching upon their capability to image a broader variety of nonmalignant diseases.
Collapse
Affiliation(s)
- Léa Berland
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
- Université Côte d’Azur, CNRS, INSERM, IRCAN, 06100 Nice, France;
| | - Lauren Kim
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
- Department of Chemistry and Bioengineering, Harvard University, Cambridge, MA 02138, USA
| | - Omar Abousaway
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Andrea Mines
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Shruti Mishra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Louise Clark
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
| | - Paul Hofman
- Université Côte d’Azur, CNRS, INSERM, IRCAN, 06100 Nice, France;
- Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Nice Center Hospital, 06100 Nice, France
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (L.B.); (L.K.); (O.A.); (A.M.); (S.M.); (L.C.)
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
25
|
Puranik A, Dev I, Rangarajan V, Purandare N, Agrawal A, Shah S, Choudhury S. Rare presentation of radiation-induced sarcoma detected on F-18 FDG positron emission tomography/computed tomography in a treated case of giant cell tumor. Indian J Nucl Med 2021; 36:429-431. [PMID: 35125762 PMCID: PMC8771068 DOI: 10.4103/ijnm.ijnm_61_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/04/2021] [Accepted: 08/06/2021] [Indexed: 11/30/2022] Open
Abstract
Giant cell tumors (GCTs) are benign bone lesions which are treated with curettage and bone grafting. Infrequently, GCTs show local site recurrences which are then treated with either surgical excision or radiation therapy. Radiation-induced sarcoma is rarely seen as a late complication of radiation therapy which needs to be differentiated from recurrent GCT. We report one such rare case of radiation-induced sarcoma detected on Flourine-18 fluorodeoxyglucose (18F FDG) positron emission tomography/computed tomography in a 40-year-old male who was treated with radiation therapy for recurrent GCT 9 years ago.
Collapse
|
26
|
Sjöstrand S, Evertsson M, Jansson T. Magnetomotive Ultrasound Imaging Systems: Basic Principles and First Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2636-2650. [PMID: 32753288 DOI: 10.1016/j.ultrasmedbio.2020.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/29/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
This review discusses magnetomotive ultrasound, which is an emerging technique that uses superparamagnetic iron oxide nanoparticles as a contrast agent. The key advantage of using nanoparticle-based contrast agents is their ability to reach extravascular targets, whereas commercial contrast agents for ultrasound comprise microbubbles confined to the blood stream. This also extends possibilities for molecular imaging, where the contrast agent is labeled with specific targeting molecules (e.g., antibodies) so that pathologic tissue may be visualized directly. The principle of action is that an external time-varying magnetic field acts to displace the nanoparticles lodged in tissue and thereby their immediate surrounding. This movement is then detected with ultrasound using frequency- or time-domain analysis of echo data. As a contrast agent already approved for magnetic resonance imaging (MRI) by the US Food and Drug Administration, there is a shorter path to clinical translation, although safety studies of magnetomotion are necessary, especially if particle design is altered to affect biodistribution or signal strength. The external modulated magnetic field may be generated by electromagnets, permanent magnets, or a combination of the two. The induced nanoparticle motion may also reveal mechanical material properties of tissue, healthy or diseased, one of several interesting potential future aspects of the technique.
Collapse
Affiliation(s)
- Sandra Sjöstrand
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Maria Evertsson
- Department of Clinical Sciences Lund/Biomedical Engineering, Lund University, Lund, Sweden
| | - Tomas Jansson
- Department of Clinical Sciences Lund/Biomedical Engineering, Lund University, Lund, Sweden; Clinical Engineering Skåne, Digitalisering IT/MT, Region Skåne, Lund, Sweden.
| |
Collapse
|
27
|
Kavanal AJ, Bhadada SK, Sood A, Kaur G, Parwaiz A, Gulati A, Dahiya D, Mittal BR. Triple Tracer Positivity in Metastatic Lymph Nodes from Well-Differentiated Neuroendocrine Tumor in MEN-1 Syndrome. J Nucl Med Technol 2020; 48:287-289. [PMID: 32111661 DOI: 10.2967/jnmt.119.237339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/11/2019] [Indexed: 11/16/2022] Open
Abstract
Patients with multiple endocrine neoplasia type 1 usually have a combination of endocrine disorders due to lesions in the pancreas, parathyroid gland, and pituitary gland. Functional imaging using different tracers in addition to conventional imaging are applied in localizing the primary sites, determining the disease extent, and characterizing the lesions. We present a diagnosed case of multiple endocrine neoplasia type 1 with interesting incidental imaging findings showing 99mTc-sestamibi and 18F-fluorocholine uptake in addition to 68Ga-DOTANOC uptake in metastatic mediastinal and cervical lymph nodes arising from gastroenteropancreatic neuroendocrine tumor. This case shows the possibility of imaging the neuroendocrine tumors with 3 different tracers, namely 68Ga-DOTANOC, 99mTc-sestamibi, and 18F-fluorocholine.
Collapse
Affiliation(s)
- Anwin Joseph Kavanal
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjay K Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashwani Sood
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Gurjeet Kaur
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amber Parwaiz
- Department of Cytopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Gulati
- Department of Radiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India; and
| | - Divya Dahiya
- Department of General Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bhagwant Rai Mittal
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
28
|
Singh S, Singh S, Sharma RK, Kaul A, Mathur R, Tomar S, Varshney R, Mishra AK. Synthesis and preliminary evaluation of a 99mTc labelled deoxyglucose complex {[99mTc]DTPA-bis(DG)} as a potential SPECT based probe for tumor imaging. NEW J CHEM 2020. [DOI: 10.1039/c9nj04705k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[99mTc]DTPA-bis(DG): a potent tumor imaging probe.
Collapse
Affiliation(s)
- Shivani Singh
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organisation
- Delhi-110054
- India
| | - Sweta Singh
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organisation
- Delhi-110054
- India
| | | | - Ankur Kaul
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organisation
- Delhi-110054
- India
| | - Rashi Mathur
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organisation
- Delhi-110054
- India
| | - Sarika Tomar
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organisation
- Delhi-110054
- India
| | - Raunak Varshney
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organisation
- Delhi-110054
- India
| | - Anil K. Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences
- Institute of Nuclear Medicine and Allied Sciences
- Defence Research and Development Organisation
- Delhi-110054
- India
| |
Collapse
|
29
|
Abstract
BACKGROUND Hybrid imaging FDG PET/CT (18F‑fluordeoxyglucose positron emission tomography/computed tomography) has gained increasing importance in oncology in recent years. DIAGNOSIS A focal increase in FDG uptake in the gastrointestinal tract may be due to colorectal carcinoma. Such a finding requires further clarification. PRIMARY STAGING Staging of the primary and locoregional lymph nodes remains a domain of established imaging modalities as FDG PET/CT does not provide a clear additional benefit. Liver metastases can be detected with high sensitivity by FDG PET/CT, but MRI is superior in small lesions. RADIATION THERAPY PLANNING So far FDG PET/CT plays a subordinate role in the radiation therapy planning of rectal cancer. However, it can potentially contribute to the optimization of planning target volumes. THERAPY MONITORING FDG PET/CT is suitable for monitoring therapy because morphological and metabolic changes of the tumor can be detected in early stages. This enables early detection of nonresponders after beginning neoadjuvant chemoradiation therapy of rectal cancer. FDG PET/CT can also be used for therapy control of liver metastases, especially after local therapeutic procedures. DETECTION OF RECURRENCE With clinical suspicion of local recurrence and increased tumor markers, FDG PET/CT is a valuable tool as tumor recurrence can be detected with high sensitivity and specificity.
Collapse
|
30
|
Carideo L, Prosperi D, Panzuto F, Magi L, Pratesi MS, Rinzivillo M, Annibale B, Signore A. Role of Combined [ 68Ga]Ga-DOTA-SST Analogues and [ 18F]FDG PET/CT in the Management of GEP-NENs: A Systematic Review. J Clin Med 2019; 8:E1032. [PMID: 31337043 PMCID: PMC6678236 DOI: 10.3390/jcm8071032] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
Gastro-entero-pancreatic neuroendocrine neoplasia (GEP-NENs) are rare tumors, but their frequency is increasing. Neuroendocrine tumors normally express somatostatin (SST) receptors (SSTR) on cell surface, especially G1 and G2 stage tumors, but they can show a dedifferentiation in their clinical history as they become more aggressive. Somatostatin receptor imaging has previously been performed with a gamma camera using [111In]In or [99mTc]Tc-labelled compounds, while [68Ga]Ga-labelled compounds and PET/CT imaging has recently become the gold standard for the diagnosis and management of these tumors. Moreover, in the last few years 18F-fluorodeoxyglucose ([18F]FDG) PET/CT has emerged as an important tool to define tumor aggressiveness and give relevant prognostic information, particularly when coupled with [68Ga]Ga-labelled SST analogues PET/CT. This review focuses on the importance of combined imaging with [68Ga]Ga-labelled SST analogues and [18F]FDG for the management of GEP-NENs.
Collapse
Affiliation(s)
- Luciano Carideo
- Nuclear Medicine Unit, ENETS Center of Excellence, Sant'Andrea University Hospital, 00189 Rome, Italy
| | - Daniela Prosperi
- Nuclear Medicine Unit, ENETS Center of Excellence, Sant'Andrea University Hospital, 00189 Rome, Italy.
| | - Francesco Panzuto
- Digestive Disease Unit, ENETS Center of Excellence, Sant'Andrea University Hospital, 00189 Rome, Italy
| | - Ludovica Magi
- Digestive Disease Unit, ENETS Center of Excellence, Sant'Andrea University Hospital, 00189 Rome, Italy
| | - Maria Sole Pratesi
- Digestive Disease Unit, ENETS Center of Excellence, Sant'Andrea University Hospital, 00189 Rome, Italy
| | - Maria Rinzivillo
- Digestive Disease Unit, ENETS Center of Excellence, Sant'Andrea University Hospital, 00189 Rome, Italy
| | - Bruno Annibale
- Digestive Disease Unit, ENETS Center of Excellence, Sant'Andrea University Hospital, 00189 Rome, Italy
- Department of Medical-Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Alberto Signore
- Nuclear Medicine Unit, ENETS Center of Excellence, Sant'Andrea University Hospital, 00189 Rome, Italy
- Department of Medical-Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|
31
|
Abstract
Mutations of KRAS are found in a variety of human malignancies, including in pancreatic cancer, colorectal cancer, and non-small cell lung cancer at high frequency. To date, no effective treatments that target mutant variants of KRAS have been introduced into clinical practice. In recent years, a number of studies have shown that the oncogene KRAS plays a critical role in controlling cancer metabolism by orchestrating multiple metabolic changes. One of the metabolic hallmarks of malignant tumor cells is their dependency on aerobic glycolysis, known as the Warburg effect. The role of KRAS signaling in the regulation of aerobic glycolysis has been reported in several types of cancer. KRAS-driven cancers are characterized by altered metabolic pathways involving enhanced nutrients uptake, enhanced glycolysis, enhanced glutaminolysis, and elevated synthesis of fatty acids and nucleotides. However, Just how mutated KRAS can coordinate the metabolic shift to promote tumor growth and whether specific metabolic pathways are essential for the tumorigenesis of KRAS-driven cancers are questions which remain to be answered. In this context, the aim of this review is to summarize current data on KRAS-related metabolic alterations in cancer cells. Given that cancer cells rely on changes in metabolism to support their growth and survival, the targeting of metabolic processes may be a potential strategy for treating KRAS-driven cancers.
Collapse
Affiliation(s)
- Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Kosuke Toda
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|