1
|
Pathak P, Thampy R, Schat R, Bellin M, Beilman G, Hosseini N, Spilseth B. Transplantation for type 1 diabetes: radiologist's primer on islet, pancreas and pancreas-kidney transplantation imaging. Abdom Radiol (NY) 2024; 49:3637-3665. [PMID: 38806704 DOI: 10.1007/s00261-024-04368-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024]
Abstract
Whole-organ pancreas, pancreatic-kidney and islet transplantation are surgical therapeutic options for the treatment of type 1 diabetes. They can enable effective glycemic control, improve quality of life and delay/reduce the secondary complications of type 1 diabetes mellitus. Radiologists are integral members of the multidisciplinary transplantation team involved in these procedures, with multimodality imaging serving as the mainstay for early recognition and management of transplant related complications. This review highlights the transplantation procedures available for patients with type 1 Diabetes Mellitus with a focus on the imaging appearance of transplantation-related complications.
Collapse
Affiliation(s)
- Priya Pathak
- Department of Radiology, Body Imaging Division, University of Minnesota Medical School, 420 Delaware St SE, Minneapolis, MN, 55455, USA.
| | - Rajesh Thampy
- Department of Radiology, Body Imaging Division, University of Minnesota Medical School, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| | - Robben Schat
- Department of Radiology, Body Imaging Division, University of Minnesota Medical School, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| | - Melena Bellin
- Department of Pediatric Endocrinology, and Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Greg Beilman
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | - Benjamin Spilseth
- Department of Radiology, Body Imaging Division, University of Minnesota Medical School, 420 Delaware St SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
2
|
Establishment of a Long-Term Survival Swine Model for the Observation of Transplanted Islets: a Preliminary Step in an Allogeneic Transplant Experiment. Transplant Proc 2022; 54:507-512. [PMID: 35065829 DOI: 10.1016/j.transproceed.2021.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
|
3
|
Matar AJ, Crepeau RL, Duran-Struuck R. Non-invasive imaging for the diagnosis of acute rejection in transplantation: The next frontier. Transpl Immunol 2021; 68:101431. [PMID: 34157374 DOI: 10.1016/j.trim.2021.101431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
Acute rejection is a leading cause of organ transplant failure and the most common indication for re-transplantation. Clinically, suspicion of acute rejection is often dependent upon serum laboratory values which may only manifest after organ injury. The gold standard for diagnosis requires an invasive biopsy which can carry serious clinical risks including bleeding and graft loss as well as the possibility of sampling error. The use of noninvasive imaging modalities to monitor transplanted organs is of great clinical value, particularly as a tool for early detection of graft dysfunction or acute rejection. Herein, we provide an overview of the existing literature evaluating noninvasive imaging modalities of solid organ and cellular allografts after transplantation, including both preclinical and clinical studies.
Collapse
Affiliation(s)
- Abraham J Matar
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Rebecca L Crepeau
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Raimon Duran-Struuck
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Kim GS, Lee JH, Shin DY, Lee HS, Park H, Lee KW, Yang HM, Kim SJ, Park JB. Integrated whole liver histologic analysis of the allogeneic islet distribution and characteristics in a nonhuman primate model. Sci Rep 2020; 10:793. [PMID: 31964980 PMCID: PMC6972963 DOI: 10.1038/s41598-020-57701-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022] Open
Abstract
The most obvious method to observe transplanted islets in the liver is direct biopsy, but the distribution and location of the best biopsy site in the recipient's liver are poorly understood. Islets transplanted into the whole liver of five diabetic cynomolgus monkeys that underwent insulin-independent survival for an extended period of time after allo-islet transplantation were analyzed for characteristics and distribution tendency. The liver was divided into segments (S1-S8), and immunohistochemistry analysis was performed to estimate the diameter, beta cell area, and islet location. Islets were more distributed in S2 depending on tissue size; however, the number of islets per tissue size was high in S1 and S8. Statistical analysis revealed that the characteristics of islets in S1 and S8 were relatively similar to other segments despite various transplanted islet dosages and survival times. In conclusion, S1, which exhibited high islet density and reflected the overall characteristics of transplanted islets, can be considered to be a reasonable candidate for a liver biopsy site in this monkey model. The findings obtained from the five monkey livers with similar anatomical features to human liver can be used as a reference for monitoring transplanted islets after clinical islet transplantation.
Collapse
Affiliation(s)
- Geun Soo Kim
- Samsung Advanced Institute for Health Sciences & Technology, Graduate School, Department of Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea.,Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | | | - Du Yeon Shin
- Samsung Advanced Institute for Health Sciences & Technology, Graduate School, Department of Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea.,Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Han Sin Lee
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea.,Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyojun Park
- Department of Medicine, Sungkyunkwan University School of Medicine, Gyeonggi, Republic of Korea.,GenNBio Inc, Seoul, Republic of Korea
| | - Kyo Won Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Medicine, Sungkyunkwan University School of Medicine, Gyeonggi, Republic of Korea
| | - Heung-Mo Yang
- Department of Medicine, Sungkyunkwan University School of Medicine, Gyeonggi, Republic of Korea.,GenNBio Inc, Seoul, Republic of Korea
| | - Sung Joo Kim
- Department of Medicine, Sungkyunkwan University School of Medicine, Gyeonggi, Republic of Korea.,GenNBio Inc, Seoul, Republic of Korea
| | - Jae Berm Park
- Samsung Advanced Institute for Health Sciences & Technology, Graduate School, Department of Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea. .,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea. .,Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea. .,Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea. .,Department of Medicine, Sungkyunkwan University School of Medicine, Gyeonggi, Republic of Korea.
| |
Collapse
|
5
|
Evaluation of [ 68Ga]DO3A-VS-Cys 40-Exendin-4 as a PET Probe for Imaging Human Transplanted Islets in the Liver. Sci Rep 2019; 9:5705. [PMID: 30952975 PMCID: PMC6450933 DOI: 10.1038/s41598-019-42172-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 03/22/2019] [Indexed: 11/15/2022] Open
Abstract
[68Ga]DO3A-VS-Cys40-Exendin-4, a glucagon-like peptide 1 receptor agonist, was evaluated as a potential PET tracer for the quantitation of human islets transplanted to the liver. The short-lived PET radionuclide 68Ga, available on a regular basis from a 68Ge/68Ga generator, is an attractive choice. Human C-peptide was measured to evaluate human islet function post-transplantation and prior to microPET imaging. [68Ga]DO3A-VS-Cys40-Exendin-4 was radiosynthesized and evaluated for PET imaging of transplanted human islets in the liver of healthy NOD/SCID mice. The biodistribution of the tracer was evaluated to determine the uptake into various organs, and qPCR of liver samples was conducted to confirm engrafted islet numbers after PET imaging. Measurement of human C-peptide indicated that higher engrafted islet mass resulted in higher human C-peptide levels in post-transplantation. The microPET imaging yielded high resolution images of liver-engrafted islets and also showed significant retention in mouse livers at 8 weeks post-transplantation. Biodistribution studies in mice revealed that liver uptake of [68Ga]DO3A-VS-Cys40-Exendin-4 was approximately 6-fold higher in mice that received 1000 islet equivalent (IEQ) than in non-transplanted mice. qPCR analysis of insulin expression suggested that islet engraftment numbers were close to 1000 IEQ transplanted. In conclusion, human islets transplanted into the livers of mice exhibited significant uptake of [68Ga]DO3A-VS-Cys40-Exendin-4 compared to the livers of untreated mice; and imaging of the mice using PET showed the human islets clearly with high contrast against liver tissue, enabling accurate quantitation of islet mass. Further validation of [68Ga]DO3A-VS-Cys40-Exendin-4 as an islet imaging probe for future clinical application is ongoing.
Collapse
|
6
|
Wei W, Ehlerding EB, Lan X, Luo QY, Cai W. Molecular imaging of β-cells: diabetes and beyond. Adv Drug Deliv Rev 2019; 139:16-31. [PMID: 31378283 DOI: 10.1016/j.addr.2018.06.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/27/2018] [Accepted: 06/26/2018] [Indexed: 02/09/2023]
Abstract
Since diabetes is becoming a global epidemic, there is a great need to develop early β-cell specific diagnostic techniques for this disorder. There are two types of diabetes (i.e., type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM)). In T1DM, the destruction of pancreatic β-cells leads to reduced insulin production or even absolute insulin deficiency, which consequently results in hyperglycemia. Actually, a central issue in the pathophysiology of all types of diabetes is the relative reduction of β-cell mass (BCM) and/or impairment of the function of individual β-cells. In the past two decades, scientists have been trying to develop imaging techniques for noninvasive measurement of the viability and mass of pancreatic β-cells. Despite intense scientific efforts, only two tracers for positron emission tomography (PET) and one contrast agent for magnetic resonance (MR) imaging are currently under clinical evaluation. β-cell specific imaging probes may also allow us to precisely and specifically visualize transplanted β-cells and to improve transplantation outcomes, as transplantation of pancreatic islets has shown promise in treating T1DM. In addition, some of these probes can be applied to the preoperative detection of hidden insulinomas as well. In the present review, we primarily summarize potential tracers under development for imaging β-cells with a focus on tracers for PET, SPECT, MRI, and optical imaging. We will discuss the advantages and limitations of the various imaging probes and extend an outlook on future developments in the field.
Collapse
|
7
|
Templin AT, Meier DT, Willard JR, Wolden-Hanson T, Conway K, Lin YG, Gillespie PJ, Bokvist KB, Attardo G, Kahn SE, Scheuner D, Hull RL. Use of the PET ligand florbetapir for in vivo imaging of pancreatic islet amyloid deposits in hIAPP transgenic mice. Diabetologia 2018; 61:2215-2224. [PMID: 30046852 PMCID: PMC6119478 DOI: 10.1007/s00125-018-4695-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/19/2018] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Islet amyloid deposits contribute to beta cell dysfunction and death in most individuals with type 2 diabetes but non-invasive methods to determine the presence of these pathological protein aggregates are currently not available. Therefore, we examined whether florbetapir, a radiopharmaceutical agent used for detection of amyloid-β deposits in the brain, also allows identification of islet amyloid in the pancreas. METHODS Saturation binding assays were used to determine the affinity of florbetapir for human islet amyloid polypeptide (hIAPP) aggregates in vitro. Islet amyloid-prone transgenic mice that express hIAPP in their beta cells and amyloid-free non-transgenic control mice were used to examine the ability of florbetapir to detect islet amyloid deposits in vitro, in vivo and ex vivo. Mice or mouse pancreases were subjected to autoradiographic, histochemical and/or positron emission tomography (PET) analyses to assess the utility of florbetapir in identifying islet amyloid. RESULTS In vitro, florbetapir bound synthetic hIAPP fibrils with a dissociation constant of 7.9 nmol/l. Additionally, florbetapir bound preferentially to amyloid-containing hIAPP transgenic vs amyloid-free non-transgenic mouse pancreas sections in vitro, as determined by autoradiography (16,475 ± 5581 vs 5762 ± 575 density/unit area, p < 0.05). In hIAPP transgenic and non-transgenic mice fed a high-fat diet for 1 year, intravenous administration of florbetapir followed by PET scanning showed that the florbetapir signal was significantly higher in amyloid-laden hIAPP transgenic vs amyloid-free non-transgenic pancreases in vivo during the first 5 min of the scan (36.83 ± 2.22 vs 29.34 ± 2.03 standardised uptake value × min, p < 0.05). Following PET, pancreases were excised and florbetapir uptake was determined ex vivo by γ counting. Pancreatic uptake of florbetapir was significantly correlated with the degree of islet amyloid deposition, the latter assessed by histochemistry (r = 0.74, p < 0.001). CONCLUSIONS/INTERPRETATION Florbetapir binds to islet amyloid deposits in a specific and quantitative manner. In the future, florbetapir may be useful as a non-invasive tool to identify islet amyloid deposits in humans.
Collapse
Affiliation(s)
- Andrew T Templin
- Department of Medicine, VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA.
- University of Washington, Seattle, WA, USA.
| | - Daniel T Meier
- Department of Medicine, VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA
- University of Washington, Seattle, WA, USA
| | - Joshua R Willard
- Department of Medicine, VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA
- University of Washington, Seattle, WA, USA
| | - Tami Wolden-Hanson
- Department of Medicine, VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Kelly Conway
- Avid Radiopharmaceuticals, Inc., Philadelphia, PA, USA
| | - Yin-Guo Lin
- Avid Radiopharmaceuticals, Inc., Philadelphia, PA, USA
| | | | | | | | - Steven E Kahn
- Department of Medicine, VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA
- University of Washington, Seattle, WA, USA
| | | | - Rebecca L Hull
- Department of Medicine, VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA
- University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Venturini M, Sallemi C, Marra P, Palmisano A, Agostini G, Lanza C, Balzano G, Falconi M, Secchi A, Fiorina P, Piemonti L, Maffi P, Esposito A, De Cobelli F, Del Maschio A. Allo- and auto-percutaneous intra-portal pancreatic islet transplantation (PIPIT) for diabetes cure and prevention: the role of imaging and interventional radiology. Gland Surg 2018; 7:117-131. [PMID: 29770308 DOI: 10.21037/gs.2017.11.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although the life expectancy of patients with type 1 diabetes mellitus (T1DM) has improved since the introduction of insulin therapy, the acute life-threatening and long-term complications from diabetes mellitus are significant causes of both mortality and morbidity. Percutaneous intra-portal pancreatic islet transplantation (PIPIT) is a minimally invasive, repeatable procedure which allows a β-cell replacement therapy through a liver islet engraftment, leading to insulin release and glycaemic control restoration in patients with diabetes. Allo-PIPIT, in which isolated and purified islets from cadaveric donor are used, does not require major surgery, and is potentially less expensive for the recipient. In case of long-term T1DM, islet-after-kidney (IAK) transplantation can simultaneously cure diabetes and chronic renal failure, while islet-transplant-alone (ITA) is performed in brittle, short-term T1DM, based on the infusion of an adequate islet mass and on a steroid-free immunosuppressive regimen according to the Edmonton protocol. Results of the Collaborative Islet Transplant Registry (CITR) demonstrate that allo-PIPIT reduces episodes of hypoglycemia and diabetic complications, and improves quality of life of diabetic patients. Auto-PIPIT, in which the own patient's islets are used, has been investigated as a preventive treatment for pancreatogenic diabetes in patients who undergo extensive pancreatectomy for malignant and non-malignant disease. This Review outlines the role of imaging and interventional radiology in allo- and auto-PIPIT.
Collapse
Affiliation(s)
- Massimo Venturini
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Sallemi
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Marra
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Palmisano
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Agostini
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy
| | - Carolina Lanza
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy
| | - Gianpaolo Balzano
- Department of Pancreatic Surgery, San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Falconi
- Department of Pancreatic Surgery, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Secchi
- Vita-Salute San Raffaele University, Milan, Italy.,Department of Internal Medicine, Transplant Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lorenzo Piemonti
- Vita-Salute San Raffaele University, Milan, Italy.,Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
| | - Paola Maffi
- Department of Internal Medicine, Transplant Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Esposito
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco De Cobelli
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Del Maschio
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
9
|
Yang CT, Ghosh KK, Padmanabhan P, Langer O, Liu J, Halldin C, Gulyás BZ. PET probes for imaging pancreatic islet cells. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0251-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|