1
|
Standoli S, Rapino C, Di Meo C, Rudowski A, Kämpfer-Kolb N, Volk LM, Thomas D, Trautmann S, Schreiber Y, Meyer zu Heringdorf D, Maccarrone M. Sphingosine Kinases at the Intersection of Pro-Inflammatory LPS and Anti-Inflammatory Endocannabinoid Signaling in BV2 Mouse Microglia Cells. Int J Mol Sci 2023; 24:8508. [PMID: 37239854 PMCID: PMC10217805 DOI: 10.3390/ijms24108508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Microglia, the resident immune cells of the central nervous system, play important roles in brain homeostasis as well as in neuroinflammation, neurodegeneration, neurovascular diseases, and traumatic brain injury. In this context, components of the endocannabinoid (eCB) system have been shown to shift microglia towards an anti-inflammatory activation state. Instead, much less is known about the functional role of the sphingosine kinase (SphK)/sphingosine-1-phosphate (S1P) system in microglia biology. In the present study, we addressed potential crosstalk of the eCB and the S1P systems in BV2 mouse microglia cells challenged with lipopolysaccharide (LPS). We show that URB597, the selective inhibitor of fatty acid amide hydrolase (FAAH)-the main degradative enzyme of the eCB anandamide-prevented LPS-induced production of tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β), and caused the accumulation of anandamide itself and eCB-like molecules such as oleic acid and cis-vaccenic acid ethanolamide, palmitoylethanolamide, and docosahexaenoyl ethanolamide. Furthermore, treatment with JWH133, a selective agonist of the eCB-binding cannabinoid 2 (CB2) receptor, mimicked the anti-inflammatory effects of URB597. Interestingly, LPS induced transcription of both SphK1 and SphK2, and the selective inhibitors of SphK1 (SLP7111228) and SphK2 (SLM6031434) strongly reduced LPS-induced TNFα and IL-1β production. Thus, the two SphKs were pro-inflammatory in BV2 cells in a non-redundant manner. Most importantly, the inhibition of FAAH by URB597, as well as the activation of CB2 by JWH133, prevented LPS-stimulated transcription of SphK1 and SphK2. These results present SphK1 and SphK2 at the intersection of pro-inflammatory LPS and anti-inflammatory eCB signaling, and suggest the further development of inhibitors of FAAH or SphKs for the treatment of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Sara Standoli
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (S.S.)
| | - Cinzia Rapino
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy;
| | - Camilla Di Meo
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (S.S.)
| | - Agnes Rudowski
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (A.R.); (N.K.-K.); (L.M.V.)
| | - Nicole Kämpfer-Kolb
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (A.R.); (N.K.-K.); (L.M.V.)
| | - Luisa Michelle Volk
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (A.R.); (N.K.-K.); (L.M.V.)
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (D.T.); (S.T.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596 Frankfurt am Main, Germany;
| | - Sandra Trautmann
- Institute of Clinical Pharmacology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (D.T.); (S.T.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596 Frankfurt am Main, Germany;
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596 Frankfurt am Main, Germany;
| | - Dagmar Meyer zu Heringdorf
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (A.R.); (N.K.-K.); (L.M.V.)
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- European Center for Brain Research (CERC), Santa Lucia Foundation, Scientific Institute for Research, Hospitalization and Healthcare, 00143 Rome, Italy
| |
Collapse
|
2
|
A Novel Sphingosine Kinase Inhibitor Suppresses Chikungunya Virus Infection. Viruses 2022; 14:v14061123. [PMID: 35746595 PMCID: PMC9229564 DOI: 10.3390/v14061123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
Chikungunya virus (CHIKV) is a re-emerging arbovirus in the alphavirus genus. Upon infection, it can cause severe joint pain that can last years in some patients, significantly affecting their quality of life. Currently, there are no vaccines or anti-viral therapies available against CHIKV. Its spread to the Americas from the eastern continents has substantially increased the count of the infected by millions. Thus, there is an urgent need to identify therapeutic targets for CHIKV treatment. A potential point of intervention is the sphingosine-1-phosphate (S1P) pathway. Conversion of sphingosine to S1P is catalyzed by Sphingosine kinases (SKs), which we previously showed to be crucial pro-viral host factor during CHIKV infection. In this study, we screened inhibitors of SKs and identified a novel potent inhibitor of CHIKV infection—SLL3071511. We showed that the pre-treatment of cells with SLL3071511 in vitro effectively inhibited CHIKV infection with an EC50 value of 2.91 µM under both prophylactic and therapeutic modes, significantly decreasing the viral gene expression and release of viral particles. Our studies suggest that targeting SKs is a viable approach for controlling CHIKV replication.
Collapse
|
3
|
Valentine Y, Cowart LA. Sphingolipids in Adipose: Kin or Foe? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:15-29. [PMID: 35503171 DOI: 10.1007/978-981-19-0394-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Obesity research has shifted in recent years to address not only the total amount of adipose tissue present in an individual but also to include adipose tissue functions such as endocrine function and thermogenesis. Data suggest that sphingolipids are critical regulators of metabolic homeostasis, and that disruption of their levels is associated with metabolic disease. Abundant data from mouse models has revealed both beneficial and deleterious roles for sphingolipids in adipose function, and numerous human studies have shown that obesity alters circulating sphingolipid profiles. Sphingolipids comprise a large family of interrelated metabolites, and pinpointing specific functions for specific lipids will be required to fully exploit the therapeutic potential of targeting sphingolipids to treat obesity and related disorders.
Collapse
Affiliation(s)
- Yolander Valentine
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA.
- Hunter Holmes McGuire Veterans' Affairs Medical Center, Richmond, VA, USA.
| |
Collapse
|
4
|
Gutner UA, Shupik MA. The Role of Sphingosine-1-Phosphate in Neurodegenerative Diseases. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021050277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Shabbir MA, Mehak F, Khan ZM, Ahmad W, Khan MR, Zia S, Rahaman A, Aadil RM. Interplay between ceramides and phytonutrients: New insights in metabolic syndrome. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
6
|
Targeting S1PRs as a Therapeutic Strategy for Inflammatory Bone Loss Diseases-Beyond Regulating S1P Signaling. Int J Mol Sci 2021; 22:ijms22094411. [PMID: 33922596 PMCID: PMC8122917 DOI: 10.3390/ijms22094411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/02/2023] Open
Abstract
As G protein coupled receptors, sphingosine-1-phosphate receptors (S1PRs) have recently gained attention for their role in modulating inflammatory bone loss diseases. Notably, in murine studies inhibiting S1PR2 by its specific inhibitor, JTE013, alleviated osteoporosis induced by RANKL and attenuated periodontal alveolar bone loss induced by oral bacterial inflammation. Treatment with a multiple S1PRs modulator, FTY720, also suppressed ovariectomy-induced osteoporosis, collagen or adjuvant-induced arthritis, and apical periodontitis in mice. However, most previous studies and reviews have focused mainly on how S1PRs manipulate S1P signaling pathways, subsequently affecting various diseases. In this review, we summarize the underlying mechanisms associated with JTE013 and FTY720 in modulating inflammatory cytokine release, cell chemotaxis, and osteoclastogenesis, subsequently influencing inflammatory bone loss diseases. Studies from our group and from other labs indicate that S1PRs not only control S1P signaling, they also regulate signaling pathways induced by other stimuli, including bacteria, lipopolysaccharide (LPS), bile acid, receptor activator of nuclear factor κB ligand (RANKL), IL-6, and vitamin D. JTE013 and FTY720 alleviate inflammatory bone loss by decreasing the production of inflammatory cytokines and chemokines, reducing chemotaxis of inflammatory cells from blood circulation to bone and soft tissues, and suppressing RANKL-induced osteoclast formation.
Collapse
|
7
|
Harlé G, Kowalski C, Dubrot J, Brighouse D, Clavel G, Pick R, Bessis N, Niven J, Scheiermann C, Gannagé M, Hugues S. Macroautophagy in lymphatic endothelial cells inhibits T cell-mediated autoimmunity. J Exp Med 2021; 218:212000. [PMID: 33861848 PMCID: PMC8056750 DOI: 10.1084/jem.20201776] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/21/2020] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Lymphatic endothelial cells (LECs) present peripheral tissue antigens to induce T cell tolerance. In addition, LECs are the main source of sphingosine-1-phosphate (S1P), promoting naive T cell survival and effector T cell exit from lymph nodes (LNs). Autophagy is a physiological process essential for cellular homeostasis. We investigated whether autophagy in LECs modulates T cell activation in experimental arthritis. Whereas genetic abrogation of autophagy in LECs does not alter immune homeostasis, it induces alterations of the regulatory T cell (T reg cell) population in LNs from arthritic mice, which might be linked to MHCII-mediated antigen presentation by LECs. Furthermore, inflammation-induced autophagy in LECs promotes the degradation of Sphingosine kinase 1 (SphK1), resulting in decreased S1P production. Consequently, in arthritic mice lacking autophagy in LECs, pathogenic Th17 cell migration toward LEC-derived S1P gradients and egress from LNs are enhanced, as well as infiltration of inflamed joints, resulting in exacerbated arthritis. Our results highlight the autophagy pathway as an important regulator of LEC immunomodulatory functions in inflammatory conditions.
Collapse
Affiliation(s)
- Guillaume Harlé
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Camille Kowalski
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Juan Dubrot
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Dale Brighouse
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Gaëlle Clavel
- Institut National de la Santé et de la Recherche Médicale, UMR 1125, Université Sorbonne Paris Cité, Université Paris, Paris, France
| | - Robert Pick
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Natacha Bessis
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Jennifer Niven
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Christoph Scheiermann
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| | - Monique Gannagé
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Stéphanie Hugues
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Shin SH, Kim HY, Yoon HS, Park WJ, Adams DR, Pyne NJ, Pyne S, Park JW. A Novel Selective Sphingosine Kinase 2 Inhibitor, HWG-35D, Ameliorates the Severity of Imiquimod-Induced Psoriasis Model by Blocking Th17 Differentiation of Naïve CD4 T Lymphocytes. Int J Mol Sci 2020; 21:ijms21218371. [PMID: 33171607 PMCID: PMC7664669 DOI: 10.3390/ijms21218371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Sphingosine kinases (SK) catalyze the phosphorylation of sphingosine to generate sphingosine-1-phosphate. Two isoforms of SK (SK1 and SK2) exist in mammals. Previously, we showed the beneficial effects of SK2 inhibition, using ABC294640, in a psoriasis mouse model. However, ABC294640 also induces the degradation of SK1 and dihydroceramide desaturase 1 (DES1). Considering these additional effects of ABC294640, we re-examined the efficacy of SK2 inhibition in an IMQ-induced psoriasis mouse model using a novel SK2 inhibitor, HWG-35D, which exhibits nM potency and 100-fold selectivity for SK2 over SK1. Topical application of HWG-35D ameliorated IMQ-induced skin lesions and normalized the serum interleukin-17A levels elevated by IMQ. Application of HWG-35D also decreased skin mRNA levels of interleukin-17A, K6 and K16 genes induced by IMQ. Consistent with the previous data using ABC294640, HWG-35D also blocked T helper type 17 differentiation of naïve CD4+ T cells with concomitant reduction of SOCS1. Importantly, HWG-35D did not affect SK1 or DES1 expression levels. These results reaffirm an important role of SK2 in the T helper type 17 response and suggest that highly selective and potent SK2 inhibitors such as HWG-35D might be of therapeutic use for the treatment of psoriasis.
Collapse
Affiliation(s)
- Sun-Hye Shin
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (S.-H.S.); (H.-Y.K.); (H.-S.Y.)
| | - Hee-Yeon Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (S.-H.S.); (H.-Y.K.); (H.-S.Y.)
| | - Hee-Soo Yoon
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (S.-H.S.); (H.-Y.K.); (H.-S.Y.)
| | - Woo-Jae Park
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Korea;
| | - David R. Adams
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK;
| | - Nigel J. Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (N.J.P.); (S.P.)
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (N.J.P.); (S.P.)
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (S.-H.S.); (H.-Y.K.); (H.-S.Y.)
- Correspondence: e-mail (J.W.P.); Tel.: +82-2-6986-6201
| |
Collapse
|
9
|
Ishay Y, Nachman D, Khoury T, Ilan Y. The role of the sphingolipid pathway in liver fibrosis: an emerging new potential target for novel therapies. Am J Physiol Cell Physiol 2020; 318:C1055-C1064. [PMID: 32130072 DOI: 10.1152/ajpcell.00003.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sphingolipids (SL) are a family of bioactive lipids and a major cellular membrane structural component. SLs include three main compounds: ceramide (Cer), sphingosine (Sp), and sphingosine-1-phosphate (S-1P), all of which have emerging roles in biological functions in cells, especially in the liver. They are under investigation in various liver diseases, including cirrhosis and end-stage liver disease. In this review, we provide an overview on the role of SLs in liver pathobiology and focus on their potential role in the development of hepatic fibrosis. We describe recent evidence and suggest SLs are a promising potential therapeutic target for the treatment of liver disease and fibrosis.
Collapse
Affiliation(s)
- Yuval Ishay
- Department of Internal Medicine A, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dean Nachman
- Department of Internal Medicine A, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tawfik Khoury
- Gastroenterology and Liver Units, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Gastroenterology and Liver Units, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
10
|
Ceramide Domains in Health and Disease: A Biophysical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1159:79-108. [DOI: 10.1007/978-3-030-21162-2_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Lambert JM, Anderson AK, Cowart LA. Sphingolipids in adipose tissue: What's tipping the scale? Adv Biol Regul 2018; 70:19-30. [PMID: 30473005 PMCID: PMC11129658 DOI: 10.1016/j.jbior.2018.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/13/2018] [Accepted: 10/14/2018] [Indexed: 01/06/2023]
Abstract
Adipose tissue lies at the heart of obesity, mediating its many effects upon the rest of the body, with its unique capacity to expand and regenerate, throughout the lifespan of the organism. Adipose is appreciated as an endocrine organ, with its myriad adipokines that elicit both physiological and pathological outcomes. Sphingolipids, bioactive signaling molecules, affect many aspects of obesity and the metabolic syndrome. While sphingolipids are appreciated in the context of these diseases in other tissues, there are many discoveries yet to be uncovered in the adipose tissue. This review focuses on the effects of sphingolipids on various aspects of adipose function and dysfunction. The processes of adipogenesis, metabolism and thermogenesis, in addition to inflammation and insulin resistance are intimately linked to sphingolipids as discussed below.
Collapse
Affiliation(s)
- Johana M Lambert
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Andrea K Anderson
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; Hunter Holmes McGuire Veteran's Affairs Medical Center, Richmond, VA, USA.
| |
Collapse
|
12
|
Theoretical models to predict the inhibitory effect of ligands of sphingosine kinase 1 using QTAIM calculations and hydrogen bond dynamic propensity analysis. J Comput Aided Mol Des 2018; 32:781-791. [DOI: 10.1007/s10822-018-0129-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/02/2018] [Indexed: 11/27/2022]
|
13
|
Cannavo A, Liccardo D, Komici K, Corbi G, de Lucia C, Femminella GD, Elia A, Bencivenga L, Ferrara N, Koch WJ, Paolocci N, Rengo G. Sphingosine Kinases and Sphingosine 1-Phosphate Receptors: Signaling and Actions in the Cardiovascular System. Front Pharmacol 2017; 8:556. [PMID: 28878674 PMCID: PMC5572949 DOI: 10.3389/fphar.2017.00556] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
The sphingosine kinases 1 and 2 (SphK1 and 2) catalyze the phosphorylation of the lipid, sphingosine, generating the signal transmitter, sphingosine 1-phosphate (S1P). The activation of such kinases and the subsequent S1P generation and secretion in the blood serum of mammals represent a major checkpoint in many cellular signaling cascades. In fact, activating the SphK/S1P system is critical for cell motility and proliferation, cytoskeletal organization, cell growth, survival, and response to stress. In the cardiovascular system, the physiological effects of S1P intervene through the binding and activation of a family of five highly selective G protein-coupled receptors, called S1PR1-5. Importantly, SphK/S1P signal is present on both vascular and myocardial cells. S1P is a well-recognized survival factor in many tissues. Therefore, it is not surprising that the last two decades have seen a flourishing of interest and investigative efforts directed to obtain additional mechanistic insights into the signaling, as well as the biological activity of this phospholipid, and of its receptors, especially in the cardiovascular system. Here, we will provide an up-to-date account on the structure and function of sphingosine kinases, discussing the generation, release, and function of S1P. Keeping the bull's eye on the cardiovascular system, we will review the structure and signaling cascades and biological actions emanating from the stimulation of different S1P receptors. We will end this article with a summary of the most recent, experimental and clinical observations targeting S1PRs and SphKs as possible new therapeutic avenues for cardiovascular disorders, such as heart failure.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States.,Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Daniela Liccardo
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States.,Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Klara Komici
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Science, University of MoliseCampobasso, Italy
| | - Claudio de Lucia
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
| | | | - Andrea Elia
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy.,Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| | - Walter J Koch
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University Medical Institutions, BaltimoreMD, United States.,Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy.,Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| |
Collapse
|
14
|
Zhu W, Jarman KE, Lokman NA, Neubauer HA, Davies LT, Gliddon BL, Taing H, Moretti PAB, Oehler MK, Pitman MR, Pitson SM. CIB2 Negatively Regulates Oncogenic Signaling in Ovarian Cancer via Sphingosine Kinase 1. Cancer Res 2017; 77:4823-4834. [PMID: 28729416 DOI: 10.1158/0008-5472.can-17-0025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/02/2017] [Accepted: 07/12/2017] [Indexed: 11/16/2022]
Abstract
Sphingosine kinase 1 (SK1) is a key regulator of the cellular balance between proapoptotic and prosurvival sphingolipids. Oncogenic signaling by SK1 relies on its localization to the plasma membrane, which is mediated by the calcium and integrin binding protein CIB1 via its Ca2+-myristoyl switch function. Here we show that another member of the CIB family, CIB2, plays a surprisingly opposite role to CIB1 in the regulation of SK1 signaling. CIB2 bound SK1 on the same site as CIB1, yet it lacks the Ca2+-myristoyl switch function. As a result, CIB2 blocked translocation of SK1 to the plasma membrane and inhibited its subsequent signaling, which included sensitization to TNFα-induced apoptosis and inhibition of Ras-induced neoplastic transformation. CIB2 was significantly downregulated in ovarian cancer and low CIB2 expression was associated with poor prognosis in ovarian cancer patients. Notably, reintroduction of CIB2 in ovarian cancer cells blocked plasma membrane localization of endogenous SK1, reduced in vitro neoplastic growth and tumor growth in mice, and suppressed cell motility and invasiveness both in vitro and in vivo Consistent with the in vitro synergistic effects between the SK1-specific inhibitor SK1-I and standard chemotherapeutics, expression of CIB2 also sensitized ovarian cancer cells to carboplatin. Together, these findings identify CIB2 as a novel endogenous suppressor of SK1 signaling and potential prognostic marker and demonstrate the therapeutic potential of SK1 in this gynecologic malignancy. Cancer Res; 77(18); 4823-34. ©2017 AACR.
Collapse
Affiliation(s)
- Wenying Zhu
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, South Australia, Australia
| | - Kate E Jarman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, South Australia, Australia
| | - Noor A Lokman
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, South Australia, Australia
| | - Heidi A Neubauer
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Lorena T Davies
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Briony L Gliddon
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Houng Taing
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Paul A B Moretti
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Martin K Oehler
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, South Australia, Australia.,Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Melissa R Pitman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia. .,School of Biological Sciences, University of Adelaide, South Australia, Australia
| |
Collapse
|
15
|
Abstract
The sphingolipid family of lipids modulate several cellular processes, including proliferation, cell cycle regulation, inflammatory signaling pathways, and cell death. Several members of the sphingolipid pathway have opposing functions and thus imbalances in sphingolipid metabolism result in deregulated cellular processes, which cause or contribute to diseases and disorders in humans. A key cellular process regulated by sphingolipids is apoptosis, or programmed cell death. Sphingolipids play an important role in both extrinsic and intrinsic apoptotic pathways depending on the stimuli, cell type and cellular response to the stress. During mitochondrial-mediated apoptosis, multiple pathways converge on mitochondria and induce mitochondrial outer membrane permeabilization (MOMP). MOMP results in the release of intermembrane space proteins such as cytochrome c and Apaf1 into the cytosol where they activate the caspases and DNases that execute cell death. The precise molecular components of the pore(s) responsible for MOMP are unknown, but sphingolipids are thought to play a role. Here, we review evidence for a role of sphingolipids in the induction of mitochondrial-mediated apoptosis with a focus on potential underlying molecular mechanisms by which altered sphingolipid metabolism indirectly or directly induce MOMP. Data available on these mechanisms is reviewed, and the focus and limitations of previous and current studies are discussed to present important unanswered questions and potential future directions.
Collapse
Affiliation(s)
- Gauri A Patwardhan
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Levi J Beverly
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.,Department of Medicine, University of Louisville, Louisville, KY, 40202, USA.,James Graham Brown Cancer Center, University of Louisville, 505 South Hancock Street, Clinical and Translational Research Building, Room 203, Louisville, KY, 40202, USA
| | - Leah J Siskind
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA. .,James Graham Brown Cancer Center, University of Louisville, 505 South Hancock Street, Clinical and Translational Research Building, Room 203, Louisville, KY, 40202, USA.
| |
Collapse
|
16
|
Cannavo A, Liccardo D, Komici K, Corbi G, de Lucia C, Femminella GD, Elia A, Bencivenga L, Ferrara N, Koch WJ, Paolocci N, Rengo G. Sphingosine Kinases and Sphingosine 1-Phosphate Receptors: Signaling and Actions in the Cardiovascular System. Front Pharmacol 2017. [PMID: 28878674 DOI: 10.3389/fphar.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
The sphingosine kinases 1 and 2 (SphK1 and 2) catalyze the phosphorylation of the lipid, sphingosine, generating the signal transmitter, sphingosine 1-phosphate (S1P). The activation of such kinases and the subsequent S1P generation and secretion in the blood serum of mammals represent a major checkpoint in many cellular signaling cascades. In fact, activating the SphK/S1P system is critical for cell motility and proliferation, cytoskeletal organization, cell growth, survival, and response to stress. In the cardiovascular system, the physiological effects of S1P intervene through the binding and activation of a family of five highly selective G protein-coupled receptors, called S1PR1-5. Importantly, SphK/S1P signal is present on both vascular and myocardial cells. S1P is a well-recognized survival factor in many tissues. Therefore, it is not surprising that the last two decades have seen a flourishing of interest and investigative efforts directed to obtain additional mechanistic insights into the signaling, as well as the biological activity of this phospholipid, and of its receptors, especially in the cardiovascular system. Here, we will provide an up-to-date account on the structure and function of sphingosine kinases, discussing the generation, release, and function of S1P. Keeping the bull's eye on the cardiovascular system, we will review the structure and signaling cascades and biological actions emanating from the stimulation of different S1P receptors. We will end this article with a summary of the most recent, experimental and clinical observations targeting S1PRs and SphKs as possible new therapeutic avenues for cardiovascular disorders, such as heart failure.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Daniela Liccardo
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Klara Komici
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Science, University of MoliseCampobasso, Italy
| | - Claudio de Lucia
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
| | | | - Andrea Elia
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| | - Walter J Koch
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University Medical Institutions, BaltimoreMD, United States
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| |
Collapse
|
17
|
Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells. Stem Cells Int 2016; 2016:1947157. [PMID: 27579043 PMCID: PMC4989088 DOI: 10.1155/2016/1947157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/03/2016] [Indexed: 12/14/2022] Open
Abstract
The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC) compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein “spots” were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population.
Collapse
|
18
|
Sphingosine Kinases: Emerging Structure-Function Insights. Trends Biochem Sci 2016; 41:395-409. [PMID: 27021309 DOI: 10.1016/j.tibs.2016.02.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/08/2016] [Accepted: 02/17/2016] [Indexed: 12/15/2022]
Abstract
Sphingosine kinases (SK1 and SK2) catalyse the conversion of sphingosine into sphingosine 1-phosphate and control fundamental cellular processes, including cell survival, proliferation, differentiation, migration, and immune function. In this review, we highlight recent breakthroughs in the structural and functional characterisation of SK1 and these are contextualised by analysis of crystal structures for closely related prokaryotic lipid kinases. We identify a putative dimerisation interface and propose novel regulatory mechanisms governing structural plasticity induced by phosphorylation and interaction with phospholipids and proteins. Our analysis suggests that the catalytic function and regulation of the enzymes might be dependent on conformational mobility and it provides a roadmap for future interrogation of SK1 function and its role in physiology and disease.
Collapse
|
19
|
Yu H, Sun C, Argraves KM. Periodontal inflammation and alveolar bone loss induced by Aggregatibacter actinomycetemcomitans is attenuated in sphingosine kinase 1-deficient mice. J Periodontal Res 2015; 51:38-49. [PMID: 25900155 DOI: 10.1111/jre.12276] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND OBJECTIVE Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid, which is generated by activation of sphingosine kinase (SK) 1 and/or 2 in most mammalian cells with various stimuli, including the oral pathogen Aggregatibacter actinomycetemcomitans. S1P signaling has been shown to regulate the migration of monocytes and macrophages (osteoclast precursors) from the circulation to bone tissues and affect bone homeostasis. We aimed to determine the effects of SK1 deficiency on S1P generation, proinflammatory cytokine production, chemotaxis of monocytes and macrophages, and periodontitis induced by A. actinomycetemcomitans. MATERIAL AND METHODS Murine bone marrow-derived monocytes and macrophages (BMMs) from SK1 knockout (KO) mice or wild-type (WT) mice were either untreated or exposed to A. actinomycetemcomitans. The mRNA levels of SK1, SK2 and intracellular sphingolipid levels were quantified. In addition, murine WT BMMs were treated with vehicle, S1P, with or without A. actinomycetemcomitans and the mRNA levels of cyclooxygenase 2 (COX-2), interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF) were quantified. The protein levels of prostaglandin E2, IL-1β, IL-6 and TNF-α were quantified in the cell media of SK1 KO BMMs or WT BMMs with or without bacterial stimulation. Furthermore, a transwell migration assay was performed and the number of migrated WT BMMs in the presence of vehicle, bacteria-stimulated media, with or without S1P was quantified. Finally, in vivo studies were performed on SK1 KO and WT mice by injecting either phosphate-buffered saline or A. actinomycetemcomitans in the periodontal tissues. The mice maxillae were scanned by micro-computed tomography, and alveolar bone volume was analyzed. The number of periodontal leukocytes and osteoclasts were quantified in maxillary tissue sections. RESULTS SK1 mRNA levels significantly increased after A. actinomycetemcomitans stimulation in murine WT BMMs, but were undetectable in SK1 KO BMMs. Deficiency of SK1 in murine BMMs resulted in decreased S1P generation induced by A. actinomycetemcomitans as compared with WT BMMs. Additionally, low levels of S1P (≤ 1 μM) did not have a significant impact on the mRNA production of COX-2, IL-1β, IL-6 and TNF in murine BMMs with or without the presence of A. actinomycetemcomitans. There were no significant differences in prostaglandin E2 , IL-1β, IL-6 and TNF-α protein levels in the media between SK1 KO BMMs and WT BMMs with or without bacterial stimulation. Importantly, low levels of S1P (≤ 1 μM) dose-dependently promoted the chemotaxis of BMMs. The bacteria-stimulated media derived from SK1 BMMs significantly reduced the chemotaxis response compared with WT control. Finally, SK1 KO mice showed significantly attenuated alveolar bone loss stimulated by A. actinomycetemcomitans compared with WT mice treated with A. actinomycetemcomitans. Histological analysis of periodontal tissue sections revealed that SK1 KO mice treated with A. actinomycetemcomitans significantly reduced the number of infiltrated periodontal leukocytes and mature osteoclasts attached on the alveolar bone compared with WT mice. CONCLUSION Our studies support that SK1 and S1P play an important role in the inflammatory bone loss response induced by the oral pathogen A. actinomycetemcomitans. Reducing S1P generation by inhibiting SK1 has the potential as a novel therapeutic strategy for periodontitis and other inflammatory bone loss diseases.
Collapse
Affiliation(s)
- H Yu
- Department of Oral Health Sciences and the Center for Oral Health Research, Medical University of South Carolina, Charleston, SC, USA
| | - C Sun
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - K M Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
20
|
Salama MF, Carroll B, Adada M, Pulkoski-Gross M, Hannun YA, Obeid LM. A novel role of sphingosine kinase-1 in the invasion and angiogenesis of VHL mutant clear cell renal cell carcinoma. FASEB J 2015; 29:2803-13. [PMID: 25805832 DOI: 10.1096/fj.15-270413] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/25/2015] [Indexed: 12/12/2022]
Abstract
Sphingosine kinase 1 (SK1), the enzyme responsible for sphingosine 1-phosphate (S1P) production, is overexpressed in many human solid tumors. However, its role in clear cell renal cell carcinoma (ccRCC) has not been described previously. ccRCC cases are usually associated with mutations in von Hippel-Lindau (VHL) and subsequent normoxic stabilization of hypoxia-inducible factor (HIF). We previously showed that HIF-2α up-regulates SK1 expression during hypoxia in glioma cells. Therefore, we hypothesized that the stabilized HIF in ccRCC cells will be associated with increased SK1 expression. Here, we demonstrate that SK1 is overexpressed in 786-0 renal carcinoma cells lacking functional VHL, with concomitant high S1P levels that appear to be HIF-2α mediated. Moreover, examining the TCGA RNA seq database shows that SK1 expression was ∼2.7-fold higher in solid tumor tissue from ccRCC patients, and this was associated with less survival. Knockdown of SK1 in 786-0 ccRCC cells had no effect on cell proliferation. On the other hand, this knockdown resulted in an ∼3.5-fold decrease in invasion, less phosphorylation of focal adhesion kinase (FAK), and an ∼2-fold decrease in angiogenesis. Moreover, S1P treatment of SK1 knockdown cells resulted in phosphorylation of FAK and invasion, and this was mediated by S1P receptor 2. These results suggest that higher SK1 and S1P levels in VHL-defective ccRCC could induce invasion in an autocrine manner and angiogenesis in a paracrine manner. Accordingly, targeting SK1 could reduce both the invasion and angiogenesis of ccRCC and therefore improve the survival rate of patients.
Collapse
Affiliation(s)
- Mohamed F Salama
- *Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, New York, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; and Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Brittany Carroll
- *Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, New York, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; and Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Mohamad Adada
- *Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, New York, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; and Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Michael Pulkoski-Gross
- *Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, New York, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; and Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Yusuf A Hannun
- *Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, New York, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; and Northport Veterans Affairs Medical Center, Northport, New York, USA
| | - Lina M Obeid
- *Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, New York, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; and Northport Veterans Affairs Medical Center, Northport, New York, USA
| |
Collapse
|
21
|
Sphingosine-1-Phosphate Receptor Subtype 2 Signaling in Endothelial Senescence-Associated Functional Impairments and Inflammation. Curr Atheroscler Rep 2015; 17:504. [DOI: 10.1007/s11883-015-0504-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Dahl LD, Corydon TJ, Ränkel L, Nielsen KM, Füchtbauer EM, Knudsen CR. An eEF1A1 truncation encoded by PTI-1 exerts its oncogenic effect inside the nucleus. Cancer Cell Int 2014; 14:17. [PMID: 24571548 PMCID: PMC3941776 DOI: 10.1186/1475-2867-14-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 02/20/2014] [Indexed: 11/19/2022] Open
Abstract
Background The oncogene PTI-1 was originally isolated from a prostate cancer cell line by its capability to transform rat fibroblasts. The PTI-1 mRNA has a very eccentric structure as the 5′UTR is similar to prokaryotic 23S rRNA, while the major open reading frame and the 3′UTR corresponds to a part of the mRNA encoding human translation elongation factor eEF1A1. Thus, the largest open reading frame encodes a truncated version of eEF1A1 lacking the first 67 amino acids, while having three unique N-terminal amino acids. Previously, the UTRs were shown to be a prerequisite for the transforming capacity of the PTI-1 transcript. In this study, we have investigated the possible role of the UTRs in regulating protein expression and localization. Methods The protein expression profiles of a number of PTI-1 mRNA variants were studied in vitro and in vivo. Furthermore, the oncogenic potentials of the same PTI-1 mRNAs were determined by monitoring the capacities of stably transfected cells expressing these mRNAs to induce tumors in nude mice and form foci in cell culture. Finally, the cellular localizations of PTI-1 proteins expressed from these mRNAs were determined by fluorescence microscopy. Results The PTI-1 mRNA was found to give rise to multiple protein products that potentially originate from translation initiation at downstream, inframe AUGs within the major open reading frame. At least one of the truncated protein variants was also found to be oncogenic. However, the UTRs did not appear to influence the amount and identities of these truncated protein products. In contrast, our localization studies showed that the UTRs of the transcript promote a nuclear localization of the encoded protein(s). Conclusions Translation of the PTI-1 mRNA results in multiple protein products of which (a) truncated variant(s) may play a predominant role during cellular transformation. The PTI-1 UTRs did not seem to play a role in translation regulation, but appeared to contribute to a nuclear localization of the PTI-1 protein(s). This indicates that the PTI-1 protein(s) exert(s) its/their oncogenic function inside the nucleus.
Collapse
Affiliation(s)
| | | | | | | | | | - Charlotte R Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark.
| |
Collapse
|
23
|
Neubauer HA, Pitson SM. Roles, regulation and inhibitors of sphingosine kinase 2. FEBS J 2013; 280:5317-36. [PMID: 23638983 DOI: 10.1111/febs.12314] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/29/2013] [Accepted: 04/29/2013] [Indexed: 12/19/2022]
Abstract
The bioactive sphingolipids ceramide, sphingosine and sphingosine-1-phosphate (S1P) are important signalling molecules that regulate a diverse array of cellular processes. Most notably, the balance of the levels of these three sphingolipids in cells, termed the 'sphingolipid rheostat', can dictate cell fate, where ceramide and sphingosine enhance apoptosis and S1P promotes cell survival and proliferation. The sphingosine kinases (SKs) catalyse the production of S1P from sphingosine and are therefore central regulators of the sphingolipid rheostat and attractive targets for cancer therapy. Two SKs exist in humans: SK1 and SK2. SK1 has been extensively studied and there is a large body of evidence to demonstrate its role in promoting cell survival, proliferation and neoplastic transformation. SK1 is also elevated in many human cancers which appears to contribute to carcinogenesis, chemotherapeutic resistance and poor patient outcome. SK2, however, has not been as well characterized, and there are contradictions in the key physiological functions that have been proposed for this isoform. Despite this, many studies are now emerging that implicate SK2 in key roles in a variety of diseases, including the development of a range of solid tumours. Here, we review the literature examining SK2, its physiological and pathophysiological functions, the current knowledge of its regulation, and recent developments in targeting this complex enzyme.
Collapse
Affiliation(s)
- Heidi A Neubauer
- Centre for Cancer Biology, SA Pathology, Adelaide, Australia; School of Molecular and Biomedical Science, University of Adelaide, Australia
| | | |
Collapse
|
24
|
The control of the balance between ceramide and sphingosine-1-phosphate by sphingosine kinase: Oxidative stress and the seesaw of cell survival and death. Comp Biochem Physiol B Biochem Mol Biol 2012; 163:26-36. [DOI: 10.1016/j.cbpb.2012.05.006] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 05/09/2012] [Accepted: 05/12/2012] [Indexed: 12/19/2022]
|
25
|
Karliner JS. Sphingosine kinase and sphingosine 1-phosphate in the heart: a decade of progress. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:203-12. [PMID: 22735359 DOI: 10.1016/j.bbalip.2012.06.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/14/2012] [Accepted: 06/17/2012] [Indexed: 12/11/2022]
Abstract
Activation of sphingosine kinase/sphingosine 1-phosphate (SK/S1P)-mediated signaling has emerged as a critical cardioprotective pathway in response to acute ischemia/reperfusion injury. S1P is released in both ischemic pre- and post-conditioning. Application of exogenous S1P to cultured cardiac myocytes subjected to hypoxia or treatment of isolated hearts either before ischemia or at the onset of reperfusion exerts prosurvival effects. Synthetic congeners of S1P such as FTY720 mimic these responses. Gene targeted mice null for the SK1 isoform whose hearts are subjected to ischemia/reperfusion injury exhibit increased infarct size and respond poorly either to ischemic pre- or postconditioning. Measurements of cardiac SK activity and S1P parallel these observations. Experiments in SK2 knockout mice have revealed that this isoform is necessary for survival in the heart. High density lipoprotein (HDL) is a major carrier of S1P, and studies of hearts in which selected S1P receptors have been inhibited implicate the S1P cargo of HDL in cardioprotection. Inhibition of S1P lyase, an endogenous enzyme that degrades S1P, also leads to cardioprotection. These observations have considerable relevance for future therapeutic approaches to acute and chronic myocardial injury. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
|
26
|
Chakraborty G, Saito M, Shah R, Mao RF, Vadasz C, Saito M. Ethanol triggers sphingosine 1-phosphate elevation along with neuroapoptosis in the developing mouse brain. J Neurochem 2012; 121:806-17. [PMID: 22393932 DOI: 10.1111/j.1471-4159.2012.07723.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Our previous studies have indicated that de novo ceramide synthesis plays a critical role in ethanol-induced apoptotic neurodegeneration in the 7-day-old mouse brain. In this study, we examined whether the formation of sphingosine 1-phosphate (S1P), a ceramide metabolite, is associated with this apoptotic pathway. Analyses of basal levels of S1P-related compounds indicated that S1P, sphingosine, sphingosine kinase 2, and S1P receptor 1 increased significantly during postnatal brain development. In the 7-day-old mouse brain, sphingosine kinase 2 was localized mainly in neurons. Subcellular fractionation studies of the brain homogenates showed that sphingosine kinase 2 was enriched in the plasma membrane and the synaptic membrane/synaptic vesicle fractions, but not in the nuclear and mitochondrial/lysosomal fractions. Ethanol exposure in 7-day-old mice induced sphingosine kinase 2 activation and increased the brain level of S1P transiently 2-4 h after exposure, followed by caspase 3 activation that peaked around 8 h after exposure. Treatment with dimethylsphingosine, an inhibitor of sphingosine kinases, attenuated the ethanol-induced caspase 3 activation and the subsequent neurodegeneration. These results indicate that ethanol activates sphingosine kinase 2, leading to a transient increase in S1P, which may be involved in neuroapoptotic action of ethanol in the developing brain.
Collapse
Affiliation(s)
- Goutam Chakraborty
- Division of Neurochemisty, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | | | | | | | | | | |
Collapse
|
27
|
Mayeux PR, MacMillan-Crow LA. Pharmacological targets in the renal peritubular microenvironment: implications for therapy for sepsis-induced acute kidney injury. Pharmacol Ther 2012; 134:139-55. [PMID: 22274552 DOI: 10.1016/j.pharmthera.2012.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 12/19/2011] [Indexed: 01/15/2023]
Abstract
One of the most frequent and serious complications to develop in septic patients is acute kidney injury (AKI), a disorder characterized by a rapid failure of the kidneys to adequately filter the blood, regulate ion and water balance, and generate urine. AKI greatly worsens the already poor prognosis of sepsis and increases cost of care. To date, therapies have been mostly supportive; consequently there has been little change in the mortality rates over the last decade. This is due, at least in part, to the delay in establishing clinical evidence of an infection and the associated presence of the systemic inflammatory response syndrome and thus, a delay in initiating therapy. A second reason is a lack of understanding regarding the mechanisms leading to renal injury, which has hindered the development of more targeted therapies. In this review, we summarize recent studies, which have examined the development of renal injury during sepsis and propose how changes in the peritubular capillary microenvironment lead to and then perpetuate microcirculatory failure and tubular epithelial cell injury. We also discuss a number of potential therapeutic targets in the renal peritubular microenvironment, which may prevent or lessen injury and/or promote recovery.
Collapse
Affiliation(s)
- Philip R Mayeux
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | |
Collapse
|
28
|
Dontigny E, Patenaude C, Cyr M, Massicotte G. Sphingomyelinase selectively reduces M1 muscarinic receptors in rat hippocampal membranes. Hippocampus 2012; 22:1589-96. [PMID: 22228652 DOI: 10.1002/hipo.21001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2011] [Indexed: 01/20/2023]
Abstract
Although there is evidence that nicotinic acetylcholine (Ach) receptors are influenced by ceramides, we do not currently know whether or not these sphingolipids can also regulate the muscarinic subtypes of Ach receptors. Using the whole-cell patch technique, we demonstrated that the effectiveness of the muscarinic receptor agonist pilocarpine, in enhancing spontaneous inhibitory postsynaptic currents in CA1 pyramidal cells, was completely abolished in hippocampal slices pre-exposed to the ceramide-generating enzyme sphingomyelinase (SMase). Western blot experiments, performed with biotinylated hippocampal membranes, showed that this electrophysiological defect possibly relies on the loss of M1 muscarinic Ach receptors at the cell surface. However, the effect appears to be relatively specific as the cell-surface expression of M4 muscarinic receptors was not found to be impacted by SMase treatment. Interestingly, we observed that G protein-coupled receptor kinases 2 and β-arrestin1/2 interactions with M1-immunoprecipitated proteins were substantially augmented in SMase-treated slices and that the reduction of cell-surface M1 muscarinic receptor expression generated was completely suppressed by the muscarinic antagonist atropine. Collectively, our data suggest that selective internalization of M1 muscarinic receptors can be accentuated in neurons subjected to high ceramide levels. The potential physiopathological implications of this finding are presented.
Collapse
Affiliation(s)
- Eve Dontigny
- Groupe de recherche en Neuroscience, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | | | | | | |
Collapse
|
29
|
Liu J, Hsu A, Lee JF, Cramer DE, Lee MJ. To stay or to leave: Stem cells and progenitor cells navigating the S1P gradient. World J Biol Chem 2011; 2:1-13. [PMID: 21472036 PMCID: PMC3070303 DOI: 10.4331/wjbc.v2.i1.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/25/2010] [Accepted: 12/02/2010] [Indexed: 02/05/2023] Open
Abstract
Most hematopoietic stem progenitor cells (HSPCs) reside in bone marrow (BM), but a small amount of HSPCs have been found to circulate between BM and tissues through blood and lymph. Several lines of evidence suggest that sphingosine-1-phosphate (S1P) gradient triggers HSPC egression to blood circulation after mobilization from BM stem cell niches. Stem cells also visit certain tissues. After a temporary 36 h short stay in local tissues, HSPCs go to lymph in response to S1P gradient between lymph and tissue and eventually enter the blood circulation. S1P also has a role in the guidance of the primitive HSPCs homing to BM in vivo, as S1P analogue FTY720 treatment can improve HSPC BM homing and engraftment. In stress conditions, various stem cells or progenitor cells can be attracted to local injured tissues and participate in local tissue cell differentiation and tissue rebuilding through modulation the expression level of S1P1, S1P2 or S1P3 receptors. Hence, S1P is important for stem cells circulation in blood system to accomplish its role in body surveillance and injury recovery.
Collapse
Affiliation(s)
- Jingjing Liu
- Jingjing Liu, Andrew Hsu, Jen-Fu Lee, Menq-Jer Lee, Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, United States
| | | | | | | | | |
Collapse
|