1
|
Redureau D, Amorim FG, Crasset T, Berger I, Schaffitzel C, Menzies SK, Casewell NR, Quinton L. Dual Proteomics Strategies to Dissect and Quantify the Components of Nine Medically Important African Snake Venoms. Toxins (Basel) 2025; 17:243. [PMID: 40423326 PMCID: PMC12116074 DOI: 10.3390/toxins17050243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/28/2025] Open
Abstract
Snakebite envenoming constitutes a significant global health issue, particularly in Africa, where venomous species such as Echis vipers and Dendroaspis mambas pose substantial risks to human health. This study employs a standardized venomics workflow to comprehensively characterize and comparatively quantify the venom composition of nine medically relevant snake species chosen from among the deadliest in Africa. Utilizing shotgun venom proteomics and venom gland transcriptomics, we report detailed profiles of venom complexity, highlighting the relative abundance of dominant toxin families such as three-finger toxins and Kunitz-type proteins in Dendroaspis, and metalloproteinases and phospholipases A2 in Echis. We delineate here the relative abundance and structural diversity of venom components. Key to our proteomic approach is the implementation of Multi-Enzymatic Limited Digestion (MELD), which improved protein sequence coverage and enabled the identification of rare toxin families such as hyaluronidases and renin-like proteases, by multiplying the overlap of generated peptides and enhancing the characterization of both toxin and non-toxin components within the venoms. The culmination of these efforts resulted in the construction of a detailed toxin database, providing insights into the biological roles and potential therapeutic targets of venom proteins and peptides. The findings here compellingly validate the MELD technique, reinforcing its reproducibility as a valuable characterization approach applied to venomics. This research significantly advances our understanding of venom complexity in African snake species, including representatives of both Viperidae and Elapidae families. By elucidating venom composition and toxin profiles, our study paves the way for the development of targeted therapies aimed at mitigating the morbidity and mortality associated with snakebite envenoming globally.
Collapse
Affiliation(s)
- Damien Redureau
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, B4000 Liège, Belgium; (D.R.); (T.C.)
| | - Fernanda Gobbi Amorim
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, B4000 Liège, Belgium; (D.R.); (T.C.)
| | - Thomas Crasset
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, B4000 Liège, Belgium; (D.R.); (T.C.)
| | - Imre Berger
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK; (I.B.); (C.S.)
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, 1 Tankard’s Close, Bristol BS8 1TD, UK; (I.B.); (C.S.)
| | - Stefanie Kate Menzies
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK (N.R.C.)
- Department of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, UK
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK (N.R.C.)
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, B4000 Liège, Belgium; (D.R.); (T.C.)
| |
Collapse
|
2
|
Osipov AV, Starkov VG, Tsetlin VI, Utkin YN. Cobra Three-Finger Toxins Interact with RNA and DNA: Nucleic Acids as Their Putative Biological Targets. Int J Mol Sci 2025; 26:4291. [PMID: 40362528 PMCID: PMC12072136 DOI: 10.3390/ijms26094291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/20/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Three-finger toxins (TFTs), including neurotoxins and cytotoxins, form one of the largest families of snake venom proteins and interact with various biological targets. Neurotoxins target proteinaceous receptors while cytotoxins interact mainly with the lipids of cell membranes and to a lesser extent with carbohydrates. However, no data about the interaction of TFTs with nucleic acids can be found. To detect this interaction, we applied spectrophotometry, ion-paired HPLC and electrophoretic mobility shift assay (EMSA). Using spectrophotometry, we found that TFTs from cobra venom increased the optical density of an RNA solution in a time-dependent manner indicating toxin interaction with RNA. A decrease in the net negative charge of the RNA molecule upon interaction with neurotoxin II from cobra venom was revealed by ion-pair HPLC. EMSA showed decreased electrophoretic mobility of both RNA and DNA upon addition of different TFTs including the non-conventional cobra toxin WTX and water-soluble recombinant human three-finger protein lynx1. We suggest that the interaction with nucleic acids may be a common property of TFTs, and some biological effects of TFTs, for example, cytotoxin-induced apoptosis in cancer cell lines, may be mediated by interaction with nucleic acids.
Collapse
Affiliation(s)
| | | | | | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (A.V.O.); (V.G.S.); (V.I.T.)
| |
Collapse
|
3
|
Vázquez Torres S, Benard Valle M, Mackessy SP, Menzies SK, Casewell NR, Ahmadi S, Burlet NJ, Muratspahić E, Sappington I, Overath MD, Rivera-de-Torre E, Ledergerber J, Laustsen AH, Boddum K, Bera AK, Kang A, Brackenbrough E, Cardoso IA, Crittenden EP, Edge RJ, Decarreau J, Ragotte RJ, Pillai AS, Abedi M, Han HL, Gerben SR, Murray A, Skotheim R, Stuart L, Stewart L, Fryer TJA, Jenkins TP, Baker D. De novo designed proteins neutralize lethal snake venom toxins. Nature 2025; 639:225-231. [PMID: 39814879 PMCID: PMC11882462 DOI: 10.1038/s41586-024-08393-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025]
Abstract
Snakebite envenoming remains a devastating and neglected tropical disease, claiming over 100,000 lives annually and causing severe complications and long-lasting disabilities for many more1,2. Three-finger toxins (3FTx) are highly toxic components of elapid snake venoms that can cause diverse pathologies, including severe tissue damage3 and inhibition of nicotinic acetylcholine receptors, resulting in life-threatening neurotoxicity4. At present, the only available treatments for snakebites consist of polyclonal antibodies derived from the plasma of immunized animals, which have high cost and limited efficacy against 3FTxs5-7. Here we used deep learning methods to de novo design proteins to bind short-chain and long-chain α-neurotoxins and cytotoxins from the 3FTx family. With limited experimental screening, we obtained protein designs with remarkable thermal stability, high binding affinity and near-atomic-level agreement with the computational models. The designed proteins effectively neutralized all three 3FTx subfamilies in vitro and protected mice from a lethal neurotoxin challenge. Such potent, stable and readily manufacturable toxin-neutralizing proteins could provide the basis for safer, cost-effective and widely accessible next-generation antivenom therapeutics. Beyond snakebite, our results highlight how computational design could help democratize therapeutic discovery, particularly in resource-limited settings, by substantially reducing costs and resource requirements for the development of therapies for neglected tropical diseases.
Collapse
Affiliation(s)
- Susana Vázquez Torres
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Melisa Benard Valle
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stephen P Mackessy
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO, USA
| | - Stefanie K Menzies
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
- Biomedical & Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nick J Burlet
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Edin Muratspahić
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Isaac Sappington
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Max D Overath
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Esperanza Rivera-de-Torre
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jann Ledergerber
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Evans Brackenbrough
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Iara A Cardoso
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Edouard P Crittenden
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Rebecca J Edge
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Justin Decarreau
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Robert J Ragotte
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Arvind S Pillai
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Mohamad Abedi
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Hannah L Han
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Stacey R Gerben
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Analisa Murray
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Rebecca Skotheim
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lynda Stuart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lance Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Thomas J A Fryer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Timothy P Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Osmakov DI, Khasanov TA, Maleeva EE, Pavlov VM, Palikov VA, Belozerova OA, Koshelev SG, Korolkova YV, Dyachenko IA, Kozlov SA, Andreev YA. Two Amino Acid Substitutions Improve the Pharmacological Profile of the Snake Venom Peptide Mambalgin. Toxins (Basel) 2025; 17:101. [PMID: 40137874 PMCID: PMC11946789 DOI: 10.3390/toxins17030101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Mambalgins are peptide inhibitors of acid-sensing ion channels type 1 (ASIC1) with potent analgesic effects in models of inflammatory and neuropathic pain. To optimize recombinant peptide production and enhance pharmacological properties, we developed a mutant analog of mambalgin-1 (Mamb) through molecular modeling and site-directed mutagenesis. The resulting peptide, Mamb-AL, features methionine-to-alanine and methionine-to-leucine substitutions, allowing for a more efficient recombinant production protocol in E. coli. Electrophysiological experiments demonstrated that Mamb-AL exhibits three-fold and five-fold greater inhibition of homomeric ASIC1a and ASIC1b channels, respectively, and a two-fold increase in inhibition of heteromeric ASIC1a/3 channels compared with Mamb. In a mouse model of acetic acid-induced writhing pain, Mamb-AL showed a trend toward stronger analgesic efficacy than the wild-type peptide. These improvements in both production efficiency and pharmacological properties make Mamb-AL a valuable tool for studying ASIC channels and a promising candidate for analgesic drug development.
Collapse
Affiliation(s)
- Dmitry I. Osmakov
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (O.A.B.); (S.G.K.); (Y.V.K.); (S.A.K.); (Y.A.A.)
| | - Timur A. Khasanov
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (O.A.B.); (S.G.K.); (Y.V.K.); (S.A.K.); (Y.A.A.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Ekaterina E. Maleeva
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (O.A.B.); (S.G.K.); (Y.V.K.); (S.A.K.); (Y.A.A.)
| | - Vladimir M. Pavlov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Russia; (V.M.P.); (V.A.P.); (I.A.D.)
| | - Victor A. Palikov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Russia; (V.M.P.); (V.A.P.); (I.A.D.)
| | - Olga A. Belozerova
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (O.A.B.); (S.G.K.); (Y.V.K.); (S.A.K.); (Y.A.A.)
| | - Sergey G. Koshelev
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (O.A.B.); (S.G.K.); (Y.V.K.); (S.A.K.); (Y.A.A.)
| | - Yuliya V. Korolkova
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (O.A.B.); (S.G.K.); (Y.V.K.); (S.A.K.); (Y.A.A.)
| | - Igor A. Dyachenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Russia; (V.M.P.); (V.A.P.); (I.A.D.)
| | - Sergey A. Kozlov
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (O.A.B.); (S.G.K.); (Y.V.K.); (S.A.K.); (Y.A.A.)
| | - Yaroslav A. Andreev
- Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (T.A.K.); (E.E.M.); (O.A.B.); (S.G.K.); (Y.V.K.); (S.A.K.); (Y.A.A.)
| |
Collapse
|
5
|
Espín-Angulo J, Vela D. Exploring the Venom Gland Transcriptome of Bothrops asper and Bothrops jararaca: De Novo Assembly and Analysis of Novel Toxic Proteins. Toxins (Basel) 2024; 16:511. [PMID: 39728769 PMCID: PMC11728684 DOI: 10.3390/toxins16120511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/26/2024] [Accepted: 11/02/2024] [Indexed: 12/28/2024] Open
Abstract
Previous proteomic studies of viperid venom revealed that it is mainly composed of metalloproteinases (SVMPs), serine proteinases (SVSPs), phospholipase A2 (PLA2), and C-type lectins (CTLs). However, other proteins appear in minor amounts that affect prey and need to be identified. This study aimed to identify novel toxic proteins in the venom gland transcriptome of Bothrops asper and Bothrops jararaca, using data from NCBI. Bioinformatics tools were used to assemble, identify, and compare potentially novel proteins in both species, and we performed functional annotation with BLASTX against the NR database. While previous assemblies have been performed for B. jararaca, this is the first assembly of the B. asper venom gland transcriptome. Proteins with potentially novel functions were identified, including arylsulfatase and dihydroorotate dehydrogenase, among others, that could have implications for venom toxicity. These results suggest that the identified proteins may contribute to venom toxic variation and provide new opportunities for antivenom research. The study improves the understanding of the protein composition of Bothrops venom and suggests new possibilities for the development of treatments and antivenoms.
Collapse
Affiliation(s)
- Joseph Espín-Angulo
- Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Genética Evolutiva, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | - Doris Vela
- Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Genética Evolutiva, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| |
Collapse
|
6
|
Ding SM, Yap MKK. Deciphering toxico-proteomics of Asiatic medically significant venomous snake species: A systematic review and interactive data dashboard. Toxicon 2024; 250:108120. [PMID: 39393539 DOI: 10.1016/j.toxicon.2024.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
Snakebite envenomation (SBE) is a neglected tropical disease (NTD) with an approximate 1.8 million cases annually. The tremendous figure is concerning, and the currently available treatment for snakebite envenomation is antivenom. However, the current antivenom has limited cross-neutralisation activity due to the variations in snake venom composition across species and geographical locations. The proteomics of medically important venomous species is essential as they study the venom compositions within and among different species. The advancement of sophisticated proteomic approaches allows intensive investigation of snake venoms. Nevertheless, there is a need to consolidate the venom proteomics profiles and distribution analysis to examine their variability patterns. This review systematically analysed the proteomics and toxicity profiles of medically important venomous species from Asia across different geographical locations. An interactive dashboard - Asiatic Proteomics Interactive Datasets was curated to consolidate the distribution patterns of the venom compositions, serve as a comprehensive directory for large-scale comparative meta-analyses. The population proteomics demonstrate higher diversities in the predominant venom toxins. Besides, inter-regional differences were also observed in Bungarus sp., Naja sp., Calliophis sp., and Ophiophagus hannah venoms. The elapid venoms are predominated with three-finger toxins (3FTXs) and phospholipase A2 (PLA2). Intra-regional variation is only significantly observed in Naja naja venoms. Proteomics diversity is more prominent in viper venoms, with widespread dominance observed in snake venom metalloproteinase (SVMP) and snake venom serine protease (SVSP). Correlations exist between the proteomics profiles and the toxicity (LD50) of the medically important venomous species. Additionally, the predominant toxins, alongside their pathophysiological effects, were highlighted and discussed as well. The insights of interactive toxico-proteomics datasets provide comprehensive frameworks of venom dynamics and contribute to developing antivenoms for snakebite envenomation. This could reduce misdiagnosis of SBE and accelerate the researchers' data mining process.
Collapse
Affiliation(s)
- Sher Min Ding
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | | |
Collapse
|
7
|
Freuville L, Matthys C, Quinton L, Gillet JP. Venom-derived peptides for breaking through the glass ceiling of drug development. Front Chem 2024; 12:1465459. [PMID: 39398192 PMCID: PMC11468230 DOI: 10.3389/fchem.2024.1465459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 10/15/2024] Open
Abstract
Venoms are complex mixtures produced by animals and consist of hundreds of components including small molecules, peptides, and enzymes selected for effectiveness and efficacy over millions of years of evolution. With the development of venomics, which combines genomics, transcriptomics, and proteomics to study animal venoms and their effects deeply, researchers have identified molecules that selectively and effectively act against membrane targets, such as ion channels and G protein-coupled receptors. Due to their remarkable physico-chemical properties, these molecules represent a credible source of new lead compounds. Today, not less than 11 approved venom-derived drugs are on the market. In this review, we aimed to highlight the advances in the use of venom peptides in the treatment of diseases such as neurological disorders, cardiovascular diseases, or cancer. We report on the origin and activity of the peptides already approved and provide a comprehensive overview of those still in development.
Collapse
Affiliation(s)
- Lou Freuville
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Chloé Matthys
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| |
Collapse
|
8
|
Bittenbinder MA, Bonanini F, Kurek D, Vulto P, Kool J, Vonk FJ. Using organ-on-a-chip technology to study haemorrhagic activities of snake venoms on endothelial tubules. Sci Rep 2024; 14:11157. [PMID: 38834598 PMCID: PMC11150252 DOI: 10.1038/s41598-024-60282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/21/2024] [Indexed: 06/06/2024] Open
Abstract
Snakebite envenomation is a major public health issue which causes severe morbidity and mortality, affecting millions of people annually. Of a diverse range of clinical manifestations, local and systemic haemorrhage are of particular relevance, as this may result in ischemia, organ failure and even cardiovascular shock. Thus far, in vitro studies have failed to recapitulate the haemorrhagic effects observed in vivo. Here, we present an organ-on-a-chip approach to investigate the effects of four different snake venoms on a perfused microfluidic blood vessel model. We assess the effect of the venoms of four snake species on epithelial barrier function, cell viability, and contraction/delamination. Our findings reveal two different mechanisms by which the microvasculature is being affected, either by disruption of the endothelial cell membrane or by delamination of the endothelial cell monolayer from its matrix. The use of our blood vessel model may shed light on the key mechanisms by which tissue-damaging venoms exert their effects on the capillary vessels, which could be helpful for the development of effective treatments against snakebites.
Collapse
Affiliation(s)
- Mátyás A Bittenbinder
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | | | | | | | - Jeroen Kool
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands.
| | - Freek J Vonk
- Naturalis Biodiversity Center, 2333 CR, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Torres SV, Valle MB, Mackessy SP, Menzies SK, Casewell NR, Ahmadi S, Burlet NJ, Muratspahić E, Sappington I, Overath MD, Rivera-de-Torre E, Ledergerber J, Laustsen AH, Boddum K, Bera AK, Kang A, Brackenbrough E, Cardoso IA, Crittenden EP, Edge RJ, Decarreau J, Ragotte RJ, Pillai AS, Abedi M, Han HL, Gerben SR, Murray A, Skotheim R, Stuart L, Stewart L, Fryer TJA, Jenkins TP, Baker D. De novo designed proteins neutralize lethal snake venom toxins. RESEARCH SQUARE 2024:rs.3.rs-4402792. [PMID: 38798548 PMCID: PMC11118692 DOI: 10.21203/rs.3.rs-4402792/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Snakebite envenoming remains a devastating and neglected tropical disease, claiming over 100,000 lives annually and causing severe complications and long-lasting disabilities for many more1,2. Three-finger toxins (3FTx) are highly toxic components of elapid snake venoms that can cause diverse pathologies, including severe tissue damage3 and inhibition of nicotinic acetylcholine receptors (nAChRs) resulting in life-threatening neurotoxicity4. Currently, the only available treatments for snakebite consist of polyclonal antibodies derived from the plasma of immunized animals, which have high cost and limited efficacy against 3FTxs5,6,7. Here, we use deep learning methods to de novo design proteins to bind short- and long-chain α-neurotoxins and cytotoxins from the 3FTx family. With limited experimental screening, we obtain protein designs with remarkable thermal stability, high binding affinity, and near-atomic level agreement with the computational models. The designed proteins effectively neutralize all three 3FTx sub-families in vitro and protect mice from a lethal neurotoxin challenge. Such potent, stable, and readily manufacturable toxin-neutralizing proteins could provide the basis for safer, cost-effective, and widely accessible next-generation antivenom therapeutics. Beyond snakebite, our computational design methodology should help democratize therapeutic discovery, particularly in resource-limited settings, by substantially reducing costs and resource requirements for development of therapies to neglected tropical diseases.
Collapse
Affiliation(s)
- Susana Vázquez Torres
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA 98105, USA
| | - Melisa Benard Valle
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stephen P. Mackessy
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO, 80639, USA
| | - Stefanie K. Menzies
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Biomedical & Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom LA1 4YG8
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nick J. Burlet
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Edin Muratspahić
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Isaac Sappington
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA 98105, USA
| | - Max D. Overath
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Esperanza Rivera-de-Torre
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jann Ledergerber
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kim Boddum
- Sophion Bioscience, DK-2750 Ballerup, Denmark
| | - Asim K. Bera
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Evans Brackenbrough
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Iara A. Cardoso
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Edouard P. Crittenden
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Rebecca J. Edge
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, United Kingdom
| | - Justin Decarreau
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Robert J. Ragotte
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Arvind S. Pillai
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Mohamad Abedi
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Hannah L. Han
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Stacey R. Gerben
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Analisa Murray
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Rebecca Skotheim
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lynda Stuart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lance Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Thomas J. A. Fryer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, MA, USA
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105,USA
| |
Collapse
|
10
|
Roman-Ramos H, Prieto-da-Silva ÁRB, Dellê H, Floriano RS, Dias L, Hyslop S, Schezaro-Ramos R, Servent D, Mourier G, de Oliveira JL, Lemes DE, Costa-Lotufo LV, Oliveira JS, Menezes MC, Markus RP, Ho PL. The Cloning and Characterization of a Three-Finger Toxin Homolog (NXH8) from the Coralsnake Micrurus corallinus That Interacts with Skeletal Muscle Nicotinic Acetylcholine Receptors. Toxins (Basel) 2024; 16:164. [PMID: 38668589 PMCID: PMC11054780 DOI: 10.3390/toxins16040164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/29/2024] Open
Abstract
Coralsnakes (Micrurus spp.) are the only elapids found throughout the Americas. They are recognized for their highly neurotoxic venom, which is comprised of a wide variety of toxins, including the stable, low-mass toxins known as three-finger toxins (3FTx). Due to difficulties in venom extraction and availability, research on coralsnake venoms is still very limited when compared to that of other Elapidae snakes like cobras, kraits, and mambas. In this study, two previously described 3FTx from the venom of M. corallinus, NXH1 (3SOC1_MICCO), and NXH8 (3NO48_MICCO) were characterized. Using in silico, in vitro, and ex vivo experiments, the biological activities of these toxins were predicted and evaluated. The results showed that only NXH8 was capable of binding to skeletal muscle cells and modulating the activity of nAChRs in nerve-diaphragm preparations. These effects were antagonized by anti-rNXH8 or antielapidic sera. Sequence analysis revealed that the NXH1 toxin possesses eight cysteine residues and four disulfide bonds, while the NXH8 toxin has a primary structure similar to that of non-conventional 3FTx, with an additional disulfide bond on the first loop. These findings add more information related to the structural diversity present within the 3FTx class, while expanding our understanding of the mechanisms of the toxicity of this coralsnake venom and opening new perspectives for developing more effective therapeutic interventions.
Collapse
Affiliation(s)
- Henrique Roman-Ramos
- Laboratório de Biotecnologia, Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01504-001, SP, Brazil; (H.D.); (J.L.d.O.); (D.E.L.)
| | | | - Humberto Dellê
- Laboratório de Biotecnologia, Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01504-001, SP, Brazil; (H.D.); (J.L.d.O.); (D.E.L.)
| | - Rafael S. Floriano
- Laboratório de Toxinologia e Estudos Cardiovasculares, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente 19067-175, SP, Brazil;
| | - Lourdes Dias
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-887, SP, Brazil; (L.D.); (S.H.); (R.S.-R.)
| | - Stephen Hyslop
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-887, SP, Brazil; (L.D.); (S.H.); (R.S.-R.)
| | - Raphael Schezaro-Ramos
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-887, SP, Brazil; (L.D.); (S.H.); (R.S.-R.)
| | - Denis Servent
- Service d’Ingénierie Moléculaire pour la Santé (SIMoS), Département Médicaments et Technologies pour la Santé, Université Paris Saclay, Commissariat à l’énergie Atomique et aux Énergies Alternatives (CEA), F-91191 Gif sur Yvette, France; (D.S.); (G.M.)
| | - Gilles Mourier
- Service d’Ingénierie Moléculaire pour la Santé (SIMoS), Département Médicaments et Technologies pour la Santé, Université Paris Saclay, Commissariat à l’énergie Atomique et aux Énergies Alternatives (CEA), F-91191 Gif sur Yvette, France; (D.S.); (G.M.)
| | - Jéssica Lopes de Oliveira
- Laboratório de Biotecnologia, Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01504-001, SP, Brazil; (H.D.); (J.L.d.O.); (D.E.L.)
| | - Douglas Edgard Lemes
- Laboratório de Biotecnologia, Programa de Pós-Graduação em Medicina, Universidade Nove de Julho (UNINOVE), São Paulo 01504-001, SP, Brazil; (H.D.); (J.L.d.O.); (D.E.L.)
| | - Letícia V. Costa-Lotufo
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo 05508-000, SP, Brazil;
| | - Jane S. Oliveira
- Centro de Biotecnologia, Instituto Butantan, São Paulo 05503-900, SP, Brazil;
| | | | - Regina P. Markus
- Laboratório de Cronofarmacologia, Instituto de Biociências, Universidade de São Paulo (USP), São Paulo 05508-090, SP, Brazil;
| | - Paulo Lee Ho
- Centro Bioindustrial, Instituto Butantan, São Paulo 05503-900, SP, Brazil;
| |
Collapse
|
11
|
Damsbo A, Rimbault C, Burlet NJ, Vlamynck A, Bisbo I, Belfakir SB, Laustsen AH, Rivera-de-Torre E. A comparative study of the performance of E. coli and K. phaffii for expressing α-cobratoxin. Toxicon 2024; 239:107613. [PMID: 38218383 DOI: 10.1016/j.toxicon.2024.107613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Three-finger toxins (3FTxs) have traditionally been obtained via venom fractionation of whole venoms from snakes. This method often yields functional toxins, but it can be difficult to obtain pure isoforms, as it is challenging to separate the many different toxins with similar physicochemical properties that generally exist in many venoms. This issue can be circumvented via the use of recombinant expression. However, achieving the correct disulfide bond formation in recombinant toxins is challenging and requires extensive optimization of expression and purification methods to enhance stability and functionality. In this study, we investigated the expression of α-cobratoxin, a well-characterized 3FTx from the monocled cobra (Naja kaouthia), in three different expression systems, namely Escherichia coli BL21 (DE3) cells with the csCyDisCo plasmid, Escherichia coli SHuffle cells, and Komagataella phaffii (formerly known as Pichia pastoris). While none of the tested systems yielded α-cobratoxin identical to the variant isolated from whole venom, the His6-tagged α-cobratoxin expressed in K. phaffii exhibited a comparable secondary structure according to circular dichroism spectra and similar binding properties to the α7 subunit of the nicotinic acetylcholine receptor. The findings presented here illustrate the advantages and limitations of the different expression systems and can help guide researchers who wish to express 3FTxs.
Collapse
Affiliation(s)
- Anna Damsbo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Charlotte Rimbault
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Nick J Burlet
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Anneline Vlamynck
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Ida Bisbo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Selma B Belfakir
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; VenomAid Diagnostics ApS, DK-2800 Kongens Lyngby, Denmark
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | - Esperanza Rivera-de-Torre
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
12
|
Werner RM, Soffa AN. Considerations for the development of a field-based medical device for the administration of adjunctive therapies for snakebite envenoming. Toxicon X 2023; 20:100169. [PMID: 37661997 PMCID: PMC10474190 DOI: 10.1016/j.toxcx.2023.100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/05/2023] Open
Abstract
The timely administration of antivenom is the most effective method currently available to reduce the burden of snakebite envenoming (SBE), a neglected tropical disease that most often affects rural agricultural global populations. There is increasing interest in the development of adjunctive small molecule and biologic therapeutics that target the most problematic venom components to bridge the time-gap between initial SBE and the administration antivenom. Unique combinations of these therapeutics could provide relief from the toxic effects of regional groupings of medically relevant snake species. The application a PRISMA/PICO literature search methodology demonstrated an increasing interest in the rapid administration of therapies to improve patient symptoms and outcomes after SBE. Advice from expert interviews and considerations regarding the potential routes of therapy administration, anatomical bite location, and species-specific venom delivery have provided a framework to identify ideal metrics and potential hurdles for the development of a field-based medical device that could be used immediately after SBE to deliver adjunctive therapies. The use of subcutaneous (SC) or intramuscular (IM) injection were identified as potential routes of administration of both small molecule and biologic therapies. The development of a field-based medical device for the delivery of adjunctive SBE therapies presents unique challenges that will require a collaborative and transdisciplinary approach to be successful.
Collapse
|
13
|
Palermo G, Schouten WM, Alonso LL, Ulens C, Kool J, Slagboom J. Acetylcholine-Binding Protein Affinity Profiling of Neurotoxins in Snake Venoms with Parallel Toxin Identification. Int J Mol Sci 2023; 24:16769. [PMID: 38069093 PMCID: PMC10706727 DOI: 10.3390/ijms242316769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Snakebite is considered a concerning issue and a neglected tropical disease. Three-finger toxins (3FTxs) in snake venoms primarily cause neurotoxic effects since they have high affinity for nicotinic acetylcholine receptors (nAChRs). Their small molecular size makes 3FTxs weakly immunogenic and therefore not appropriately targeted by current antivenoms. This study aims at presenting and applying an analytical method for investigating the therapeutic potential of the acetylcholine-binding protein (AChBP), an efficient nAChR mimic that can capture 3FTxs, for alternative treatment of elapid snakebites. In this analytical methodology, snake venom toxins were separated and characterised using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) and high-throughput venomics. By subsequent nanofractionation analytics, binding profiling of toxins to the AChBP was achieved with a post-column plate reader-based fluorescence-enhancement ligand displacement bioassay. The integrated method was established and applied to profiling venoms of six elapid snakes (Naja mossambica, Ophiophagus hannah, Dendroaspis polylepis, Naja kaouthia, Naja haje and Bungarus multicinctus). The methodology demonstrated that the AChBP is able to effectively bind long-chain 3FTxs with relatively high affinity, but has low or no binding affinity towards short-chain 3FTxs, and as such provides an efficient analytical platform to investigate binding affinity of 3FTxs to the AChBP and mutants thereof and to rapidly identify bound toxins.
Collapse
Affiliation(s)
- Giulia Palermo
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands; (G.P.); (W.M.S.); (L.L.A.)
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Wietse M. Schouten
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands; (G.P.); (W.M.S.); (L.L.A.)
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Luis Lago Alonso
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands; (G.P.); (W.M.S.); (L.L.A.)
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Chris Ulens
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium;
| | - Jeroen Kool
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands; (G.P.); (W.M.S.); (L.L.A.)
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Julien Slagboom
- Centre for Analytical Sciences Amsterdam (CASA), 1012 WX Amsterdam, The Netherlands; (G.P.); (W.M.S.); (L.L.A.)
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
14
|
Srodawa K, Cerda PA, Davis Rabosky AR, Crowe-Riddell JM. Evolution of Three-Finger Toxin Genes in Neotropical Colubrine Snakes (Colubridae). Toxins (Basel) 2023; 15:523. [PMID: 37755949 PMCID: PMC10534312 DOI: 10.3390/toxins15090523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
Snake venom research has historically focused on front-fanged species (Viperidae and Elapidae), limiting our knowledge of venom evolution in rear-fanged snakes across their ecologically diverse phylogeny. Three-finger toxins (3FTxs) are a known neurotoxic component in the venoms of some rear-fanged snakes (Colubridae: Colubrinae), but it is unclear how prevalent 3FTxs are both in expression within venom glands and more broadly among colubrine species. Here, we used a transcriptomic approach to characterize the venom expression profiles of four species of colubrine snakes from the Neotropics that were dominated by 3FTx expression (in the genera Chironius, Oxybelis, Rhinobothryum, and Spilotes). By reconstructing the gene trees of 3FTxs, we found evidence of putative novel heterodimers in the sequences of Chironius multiventris and Oxybelis aeneus, revealing an instance of parallel evolution of this structural change in 3FTxs among rear-fanged colubrine snakes. We also found positive selection at sites within structural loops or "fingers" of 3FTxs, indicating these areas may be key binding sites that interact with prey target molecules. Overall, our results highlight the importance of exploring the venoms of understudied species in reconstructing the full evolutionary history of toxins across the tree of life.
Collapse
Affiliation(s)
- Kristy Srodawa
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA; (K.S.); (A.R.D.R.); (J.M.C.-R.)
- Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter A. Cerda
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA; (K.S.); (A.R.D.R.); (J.M.C.-R.)
- Museum of Zoology, University of Michigan, Ann Arbor, MI 48108, USA
| | - Alison R. Davis Rabosky
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA; (K.S.); (A.R.D.R.); (J.M.C.-R.)
- Museum of Zoology, University of Michigan, Ann Arbor, MI 48108, USA
| | - Jenna M. Crowe-Riddell
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA; (K.S.); (A.R.D.R.); (J.M.C.-R.)
- Museum of Zoology, University of Michigan, Ann Arbor, MI 48108, USA
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| |
Collapse
|
15
|
Koludarov I, Senoner T, Jackson TNW, Dashevsky D, Heinzinger M, Aird SD, Rost B. Domain loss enabled evolution of novel functions in the snake three-finger toxin gene superfamily. Nat Commun 2023; 14:4861. [PMID: 37567881 PMCID: PMC10421932 DOI: 10.1038/s41467-023-40550-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Three-finger toxins (3FTXs) are a functionally diverse family of toxins, apparently unique to venoms of caenophidian snakes. Although the ancestral function of 3FTXs is antagonism of nicotinic acetylcholine receptors, redundancy conferred by the accumulation of duplicate genes has facilitated extensive neofunctionalization, such that derived members of the family interact with a range of targets. 3FTXs are members of the LY6/UPAR family, but their non-toxin ancestor remains unknown. Combining traditional phylogenetic approaches, manual synteny analysis, and machine learning techniques (including AlphaFold2 and ProtT5), we have reconstructed a detailed evolutionary history of 3FTXs. We identify their immediate ancestor as a non-secretory LY6, unique to squamate reptiles, and propose that changes in molecular ecology resulting from loss of a membrane-anchoring domain and changes in gene expression, paved the way for the evolution of one of the most important families of snake toxins.
Collapse
Affiliation(s)
- Ivan Koludarov
- TUM (Technical University of Munich) Department of Informatics, Bioinformatics & Computational Biology-i12, Boltzmannstr. 3, 85748, Garching/Munich, Germany.
| | - Tobias Senoner
- TUM (Technical University of Munich) Department of Informatics, Bioinformatics & Computational Biology-i12, Boltzmannstr. 3, 85748, Garching/Munich, Germany
| | - Timothy N W Jackson
- Australian Venom Research Unit, Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, Australia
| | - Daniel Dashevsky
- Australian National Insect Collection, Commonwealth Scientific & Industrial Research Organisation, Canberra, ACT, Australia
| | - Michael Heinzinger
- TUM (Technical University of Munich) Department of Informatics, Bioinformatics & Computational Biology-i12, Boltzmannstr. 3, 85748, Garching/Munich, Germany
| | - Steven D Aird
- 7744-23 Hotaka Ariake, 399-8301, Azumino-shi, Nagano-ken, Japan
| | - Burkhard Rost
- TUM (Technical University of Munich) Department of Informatics, Bioinformatics & Computational Biology-i12, Boltzmannstr. 3, 85748, Garching/Munich, Germany
- Institute for Advanced Study (TUM-IAS), Lichtenbergstr. 2a, 85748, Garching/Munich, Germany
- TUM School of Life Sciences Weihenstephan (WZW), Alte Akademie 8, Freising, Germany
| |
Collapse
|
16
|
Bittenbinder MA, Capinha L, Da Costa Pereira D, Slagboom J, van de Velde B, Casewell NR, Jennings P, Kool J, Vonk FJ. Development of a high-throughput in vitro screening method for the assessment of cell-damaging activities of snake venoms. PLoS Negl Trop Dis 2023; 17:e0011564. [PMID: 37590328 PMCID: PMC10465002 DOI: 10.1371/journal.pntd.0011564] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 08/29/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
Snakebite envenoming is a globally important public health issue that has devastating consequences on human health and well-being, with annual mortality rates between 81,000 and 138,000. Snake venoms may cause different pathological effects by altering normal physiological processes such as nervous transfer and blood coagulation. In addition, snake venoms can cause severe (local) tissue damage that may result in life-long morbidities, with current estimates pointing towards an additional 450,000 individuals that suffer from permanent disabilities such as amputations, contractions and blindness. Despite such high morbidity rates, research to date has been mainly focusing on neurotoxic and haemotoxic effects of snake venoms and considerably less on venom-induced tissue damage. The molecular mechanisms underlaying this pathology include membrane disruption and extracellular matrix degradation. This research describes methods used to study the (molecular) mechanisms underlaying venom-induced cell- and tissue damage. A selection of cellular bioassays and fluorescent microscopy were used to study cell-damaging activities of snake venoms in multi-well plates, using both crude and fractionated venoms. A panel of 10 representative medically relevant snake species was used, which cover a large part of the geographical regions most heavily affected by snakebite. The study comprises both morphological data as well as quantitative data on cell metabolism and viability, which were measured over time. Based on this data, a distinction could be made in the ways by which viper and elapid venoms exert their effects on cells. We further made an effort to characterise the bioactive compounds causing these effects, using a combination of liquid chromatography methods followed by bioassaying and protein identification using proteomics. The outcomes of this study might prove valuable for better understanding venom-induced cell- and tissue-damaging pathologies and could be used in the process of developing and improving snakebite treatments.
Collapse
Affiliation(s)
- Matyas A. Bittenbinder
- Naturalis Biodiversity Center, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Liliana Capinha
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Daniel Da Costa Pereira
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Julien Slagboom
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Bas van de Velde
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jeroen Kool
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| | - Freek J. Vonk
- Naturalis Biodiversity Center, Leiden, The Netherlands
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), Amsterdam, The Netherlands
| |
Collapse
|
17
|
Palumbo TB, Miwa JM. Lynx1 and the family of endogenous mammalian neurotoxin-like proteins and their roles in modulating nAChR function. Pharmacol Res 2023; 194:106845. [PMID: 37437646 DOI: 10.1016/j.phrs.2023.106845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
The promise of nicotinic receptors as a therapeutic target has yet to be fully realized, despite solid data supporting their involvement in neurological and neuropsychiatric diseases. The reasons for this are likely complex and manifold, having to do with the widespread action of the cholinergic system and the biophysical mechanism of action of nicotinic receptors leading to fast desensitization and down-regulation. Conventional drug development strategies tend to focus on receptor subtype-specific action of candidate therapeutics, although the broad agonist, nicotine, is being explored in the clinic. The potential negative effects of nicotine make the search for alternate strategies warranted. Prototoxins are a promising yet little-explored avenue of nicotinic receptor drug development. Nicotinic receptors in the brain belong to a complex of proteins, including those that bind to the extracellular face of the receptor, as well as chaperones that bind the intracellular domain, etc. Lynx prototoxins have allosteric modularity effects on receptor function and number and have been implicated in complex in vivo processes such as neuroplasticity, learning, and memory. Their mechanism of action and binding specificity on sets of nAChR subtypes present intriguing possibilities for more efficacious and nuanced therapeutic targeting than nicotinic receptor subtypes alone. An allosteric drug may restrict its actions to physiologically relevant time points, which tend to be correlated with salient events which would be encoded into long-term memory storage. Rather than blanketing the brain with a steady and prolonged elevation of agonist, an allosteric nAChR compound could avoid side effects and loss of efficacy over time. This review details the potential strengths and challenges of prototoxin proteins as therapeutic targets, and some of the utility of such therapeutics based on the emerging understanding of cholinergic signaling in a growing number of complex neural processes.
Collapse
Affiliation(s)
- Talulla B Palumbo
- Department of Biological Sciences, Lehigh University, 111 Research Dr., Iacocca Hall, B-217, Bethlehem PA, USA.
| | - Julie M Miwa
- Department of Biological Sciences, Lehigh University, 111 Research Dr., Iacocca Hall, B-217, Bethlehem PA, USA.
| |
Collapse
|
18
|
Osipov A, Utkin Y. What Are the Neurotoxins in Hemotoxic Snake Venoms? Int J Mol Sci 2023; 24:ijms24032919. [PMID: 36769242 PMCID: PMC9917609 DOI: 10.3390/ijms24032919] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Snake venoms as tools for hunting are primarily aimed at the most vital systems of the prey, especially the nervous and circulatory systems. In general, snakes of the Elapidae family produce neurotoxic venoms comprising of toxins targeting the nervous system, while snakes of the Viperidae family and most rear-fanged snakes produce hemotoxic venoms directed mainly on blood coagulation. However, it is not all so clear. Some bites by viperids results in neurotoxic signs and it is now known that hemotoxic venoms do contain neurotoxic components. For example, viperid phospholipases A2 may manifest pre- or/and postsynaptic activity and be involved in pain and analgesia. There are other neurotoxins belonging to diverse families ranging from large multi-subunit proteins (e.g., C-type lectin-like proteins) to short peptide neurotoxins (e.g., waglerins and azemiopsin), which are found in hemotoxic venoms. Other neurotoxins from hemotoxic venoms include baptides, crotamine, cysteine-rich secretory proteins, Kunitz-type protease inhibitors, sarafotoxins and three-finger toxins. Some of these toxins exhibit postsynaptic activity, while others affect the functioning of voltage-dependent ion channels. This review represents the first attempt to systematize data on the neurotoxins from "non-neurotoxic" snake venom. The structural and functional characteristic of these neurotoxins affecting diverse targets in the nervous system are considered.
Collapse
|
19
|
Orientational Preferences of GPI-Anchored Ly6/uPAR Proteins. Int J Mol Sci 2022; 24:ijms24010011. [PMID: 36613456 PMCID: PMC9819746 DOI: 10.3390/ijms24010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Ly6/uPAR proteins regulate many essential functions in the nervous and immune systems and epithelium. Most of these proteins contain single β-structural LU domains with three protruding loops and are glycosylphosphatidylinositol (GPI)-anchored to a membrane. The GPI-anchor role is currently poorly studied. Here, we investigated the positional and orientational preferences of six GPI-anchored proteins in the receptor-unbound state by molecular dynamics simulations. Regardless of the linker length between the LU domain and GPI-anchor, the proteins interacted with the membrane by polypeptide parts and N-/O-glycans. Lynx1, Lynx2, Lypd6B, and Ly6H contacted the membrane by the loop regions responsible for interactions with nicotinic acetylcholine receptors, while Lypd6 and CD59 demonstrated unique orientations with accessible receptor-binding sites. Thus, GPI-anchoring does not guarantee an optimal 'pre-orientation' of the LU domain for the receptor interaction.
Collapse
|
20
|
Kalita B, Utkin YN, Mukherjee AK. Current Insights in the Mechanisms of Cobra Venom Cytotoxins and Their Complexes in Inducing Toxicity: Implications in Antivenom Therapy. Toxins (Basel) 2022; 14:toxins14120839. [PMID: 36548736 PMCID: PMC9780984 DOI: 10.3390/toxins14120839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Cytotoxins (CTXs), an essential class of the non-enzymatic three-finger toxin family, are ubiquitously present in cobra venoms. These low-molecular-mass toxins, contributing to about 40 to 60% of the cobra venom proteome, play a significant role in cobra venom-induced toxicity, more prominently in dermonecrosis. Structurally, CTXs contain the conserved three-finger hydrophobic loops; however, they also exhibit a certain degree of structural diversity that dictates their biological activities. In their mechanism, CTXs mediate toxicity by affecting cell membrane structures and membrane-bound proteins and activating apoptotic and necrotic cell death pathways. Notably, some CTXs are also responsible for depolarizing neurons and heart muscle membranes, thereby contributing to the cardiac failure frequently observed in cobra-envenomed victims. Consequently, they are also known as cardiotoxins (CdTx). Studies have shown that cobra venom CTXs form cognate complexes with other components that potentiate the toxic effects of the venom's individual component. This review focuses on the pharmacological mechanism of cobra venom CTXs and their complexes, highlighting their significance in cobra venom-induced pathophysiology and toxicity. Furthermore, the potency of commercial antivenoms in reversing the adverse effects of cobra venom CTXs and their complexes in envenomed victims has also been discussed.
Collapse
Affiliation(s)
- Bhargab Kalita
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Ashis K. Mukherjee
- Institute of Advanced Study in Science and Technology, Guwahati 781035, India
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, India
- Correspondence:
| |
Collapse
|
21
|
Senthilkumaran S, Miller SW, Williams HF, Thirumalaikolundusubramanian P, Patel K, Vaiyapuri S. Bilateral Simultaneous Optic Neuritis Following Envenomations by Indian Cobra and Common Krait. Toxins (Basel) 2022; 14:805. [PMID: 36422979 PMCID: PMC9697512 DOI: 10.3390/toxins14110805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
In India, most snakebite envenomation (SBE) incidents are caused by the "Big Four" snakes which include Russell's viper, common krait, Indian cobra, and saw-scaled viper. Their common envenomation effects include neurotoxicity, myotoxicity, and coagulopathy. However, they also induce rare complications such as priapism, pseudoaneurysm, and sialolithiasis. Ocular manifestations such as optic neuritis develop rarely following envenomations by non-spitting snakes and they may cause temporary vision changes and blindness if untreated. While optic neuritis following Indian cobra envenomation has been reported previously, this was not encountered in victims of common kraits. Hence, for the first time, we report optic neuritis developed in a victim following envenomation by a common krait and compare its clinical features and diagnostic and therapeutic methods used with another case of optic neuritis in a victim of an Indian cobra bite. Both patients received antivenom treatment and made an initial recovery; however, optic neuritis developed several days later. The condition was diagnosed using ophthalmic examination together with computed tomography and/or magnetic resonance imaging methods. Due to very similar clinical features, both patients received intravenous corticosteroids which restored their vision and successfully treated optic neuritis. This case report suggests that the optic neuritis developed in a common krait envenomation is comparable to the one developed following a cobra bite, and therefore, the same diagnostic and therapeutic approaches can be used. This study also raises awareness of this rare complication and provides guidance for the diagnosis and treatment of SBE-induced optic neuritis.
Collapse
Affiliation(s)
| | - Stephen W. Miller
- The Poison Control Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Harry F. Williams
- Toxiven Biotech Private Limited, Coimbatore 641042, Tamil Nadu, India
| | | | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK
| | | |
Collapse
|
22
|
Nys M, Zarkadas E, Brams M, Mehregan A, Kambara K, Kool J, Casewell NR, Bertrand D, Baenziger JE, Nury H, Ulens C. The molecular mechanism of snake short-chain α-neurotoxin binding to muscle-type nicotinic acetylcholine receptors. Nat Commun 2022; 13:4543. [PMID: 35927270 PMCID: PMC9352773 DOI: 10.1038/s41467-022-32174-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/20/2022] [Indexed: 11/11/2022] Open
Abstract
Bites by elapid snakes (e.g. cobras) can result in life-threatening paralysis caused by venom neurotoxins blocking neuromuscular nicotinic acetylcholine receptors. Here, we determine the cryo-EM structure of the muscle-type Torpedo receptor in complex with ScNtx, a recombinant short-chain α-neurotoxin. ScNtx is pinched between loop C on the principal subunit and a unique hairpin in loop F on the complementary subunit, thereby blocking access to the neurotransmitter binding site. ScNtx adopts a binding mode that is tilted toward the complementary subunit, forming a wider network of interactions than those seen in the long-chain α-Bungarotoxin complex. Certain mutations in ScNtx at the toxin-receptor interface eliminate inhibition of neuronal α7 nAChRs, but not of human muscle-type receptors. These observations explain why ScNtx binds more tightly to muscle-type receptors than neuronal receptors. Together, these data offer a framework for understanding subtype-specific actions of short-chain α-neurotoxins and inspire strategies for design of new snake antivenoms.
Collapse
Affiliation(s)
- Mieke Nys
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, 3000, Leuven, Belgium.
| | - Eleftherios Zarkadas
- University Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
- University Grenoble Alpes, CNRS, CEA, EMBL, ISBG, F-38000, Grenoble, France
| | - Marijke Brams
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, 3000, Leuven, Belgium
| | - Aujan Mehregan
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, 3000, Leuven, Belgium
| | | | - Jeroen Kool
- AIMMS Division of BioMolecular Analysis, Vrije Universiteit Amsterdam, 1081, HV, Amsterdam, Netherlands
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, UK
| | | | - John E Baenziger
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Hugues Nury
- University Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - Chris Ulens
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
23
|
Pharmacological Screening of Venoms from Five Brazilian Micrurus Species on Different Ion Channels. Int J Mol Sci 2022; 23:ijms23147714. [PMID: 35887062 PMCID: PMC9318628 DOI: 10.3390/ijms23147714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 12/05/2022] Open
Abstract
Coral snake venoms from the Micrurus genus are a natural library of components with multiple targets, yet are poorly explored. In Brazil, 34 Micrurus species are currently described, and just a few have been investigated for their venom activities. Micrurus venoms are composed mainly of phospholipases A2 and three-finger toxins, which are responsible for neuromuscular blockade—the main envenomation outcome in humans. Beyond these two major toxin families, minor components are also important for the global venom activity, including Kunitz-peptides, serine proteases, 5′ nucleotidases, among others. In the present study, we used the two-microelectrode voltage clamp technique to explore the crude venom activities of five different Micrurus species from the south and southeast of Brazil: M. altirostris, M. corallinus, M. frontalis, M. carvalhoi and M. decoratus. All five venoms induced full inhibition of the muscle-type α1β1δε nAChR with different levels of reversibility. We found M. altirostris and M. frontalis venoms acting as partial inhibitors of the neuronal-type α7 nAChR with an interesting subsequent potentiation after one washout. We discovered that M. altirostris and M. corallinus venoms modulate the α1β2 GABAAR. Interestingly, the screening on KV1.3 showed that all five Micrurus venoms act as inhibitors, being totally reversible after the washout. Since this activity seems to be conserved among different species, we hypothesized that the Micrurus venoms may rely on potassium channel inhibitory activity as an important feature of their envenomation strategy. Finally, tests on NaV1.2 and NaV1.4 showed that these channels do not seem to be targeted by Micrurus venoms. In summary, the venoms tested are multifunctional, each of them acting on at least two different types of targets.
Collapse
|
24
|
Bhargava S, Kumari K, Sarin RK, Singh R. Comparative Snake Venom Analysis for Facilitating Wildlife Forensics: A Pilot Study. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:8644993. [PMID: 35694612 PMCID: PMC9187493 DOI: 10.1155/2022/8644993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Confirm and authentic identification of species is required for the implementation of wildlife laws in cases of illegal trafficking of snake venoms. Illegally trafficked snake venom might be misidentified with other drugs of abuse, and sometimes, the species of venom-yielding snake cannot be verified. Snake venoms from medically important snake species, Naja naja and Daboia russelii, were procured from Irula Snake Catcher's Society, Tamil Nadu, India. Comparative analyses of both venoms were carried out using SDS-PAGE, LC-MS/MS, ICP-MS, and mtDNA analysis. The protein concentration of Naja naja and Daboia russelii venoms was 76.1% and 83.9%, respectively. SDS analysis showed a distinct banding pattern of both venoms. LC-MS/MS results showed proteins and toxins from 12 to 14 protein families in Naja naja and Daboia russelii venoms. Elemental analysis using ICP-MS showed a different profile of some elements in both venoms. mtDNA analysis of venoms using universal primers against Cyt b gene showed homology with sequence of Naja naja and Daboia russelii genes. The study proposed a template of various conventional and advanced molecular and instrumental techniques with their pros and cons. The template can be used by forensic science laboratories for detection, screening, and confirmatory analysis of suspected venoms of snakes. Clubbing of various techniques can be used to confirm the identification of species of snake from which the alleged venom was milked. The results can be helpful in framing charge-sheets against accused of illegal venom trafficking and can also be used to verify the purity and quality of commercially available snake venoms.
Collapse
Affiliation(s)
- Saurabh Bhargava
- Department of Forensic Science, Maharshi Dayanand University, Rohtak 124001, Haryana, India
- School of Advanced Sciences & Languages, VIT Bhopal University, Bhopal, Madhya Pradesh, India
| | - Kiran Kumari
- Department of Forensic Science, Maharshi Dayanand University, Rohtak 124001, Haryana, India
- Forensic Science Department, Lovely Professional University, Phagwara (144001), Punjab, India
| | | | - Rajvinder Singh
- Department of Forensic Science, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| |
Collapse
|
25
|
Vanuopadath M, Raveendran D, Nair BG, Nair SS. Venomics and antivenomics of Indian spectacled cobra (Naja naja) from the Western Ghats. Acta Trop 2022; 228:106324. [PMID: 35093326 DOI: 10.1016/j.actatropica.2022.106324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 01/03/2023]
Abstract
Venom proteome profiling of Naja naja from the Western Ghats region in Kerala was achieved through SDS-PAGE and RP-HPLC followed by Q-TOF LC-MS/MS analysis, incorporating PEAKS and Novor assisted de novo sequencing methodologies. A total of 115 proteins distributed across 17 different enzymatic and non-enzymatic venom protein families were identified through conventional and 39 peptides through homology-driven proteomics approaches. Fourteen peptides derived through de novo complements the Mascot data indicating the importance of homology-driven approaches in improving protein sequence information. Among the protein families identified, glutathione peroxidase and endonuclease were reported for the first time in the Indian cobra venom. Immunological cross-reactivity assessed using Indian polyvalent antivenoms suggested that VINS showed better EC50 (2.48 µg/mL) value than that of PSAV (6.04 µg/mL) and Virchow (6.03 µg/mL) antivenoms. Western blotting experiments indicated that all the antivenoms elicited poor binding specificities, especially towards low molecular mass proteins. Second-generation antivenomics studies revealed that VINS antivenom was less efficient to detect many low molecular mass proteins such as three-finger toxins and Kunitz-type serine protease Inhibitors. Taken together, the present study enabled a large-scale characterization of the venom proteome of Naja naja from the Western Ghats and emphasized the need for developing more efficient antivenoms.
Collapse
Affiliation(s)
| | - Dileepkumar Raveendran
- Indriyam Biologics Pvt. Ltd., SCTIMST-TIMed, BMT Wing-Poojappura, Thiruvananthapuram 695 012, Kerala, India
| | | | | |
Collapse
|
26
|
Huynh TM, Silva A, Isbister GK, Hodgson WC. Isolation and Pharmacological Characterization of α-Elapitoxin-Oh3a, a Long-Chain Post-Synaptic Neurotoxin From King Cobra ( Ophiophagus hannah) Venom. Front Pharmacol 2022; 13:815069. [PMID: 35341214 PMCID: PMC8942764 DOI: 10.3389/fphar.2022.815069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The King Cobra (Ophiophagus hannah) is the world's largest venomous snake and has a widespread geographical distribution throughout Southeast Asia. Despite proteomic studies indicating the presence of postsynaptic neurotoxins in O. hannah venom, there are few pharmacological investigations of these toxins. We isolated and characterized α-elapitoxin-Oh3a (α-EPTX-Oh3a; 7,938 Da), a long-chain postsynaptic neurotoxin, which constitutes 5% of O. hannah venom. α-EPTX-Oh3a (100-300 nM) caused concentration-dependent inhibition of indirect twitches and inhibited contractile responses of tissues to exogenous acetylcholine and carbachol, in the chick biventer cervicis nerve-muscle preparation. The prior incubation of tissues with Thai Red Cross Society King Cobra antivenom (1 ml/0.8 mg) prevented the in vitro neurotoxic effects of α-EPTX-Oh3a (100 nM). The addition of Thai Red Cross Society King Cobra antivenom (1 ml/0.8 mg), at the t90 time point partially reversed the in vitro neurotoxicity of α-EPTX-Oh3a (100 nM). Repeatedly washing the tissue did not allow significant recovery from the in vitro neurotoxic effects of α-EPTX-Oh3a (100 nM). α-EPTX-Oh3a demonstrated pseudo-irreversible antagonism of concentration-response curves to carbachol, with a pA2 of 8.99. De novo sequencing of α-EPTX-Oh3a showed a long-chain postsynaptic neurotoxin with 72 amino acids, sharing 100% sequence identity with Long neurotoxin OH-55. In conclusion, the antivenom is useful for reversing the clinically important long-chain α-neurotoxin-mediated neuromuscular paralysis.
Collapse
Affiliation(s)
- Tam M Huynh
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Anjana Silva
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Parasitology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Anuradhapura, Sri Lanka
| | - Geoffrey K Isbister
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia.,Clinical Toxicology Research Group, University of Newcastle, Newcastle, NSW, Australia
| | - Wayne C Hodgson
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
27
|
Dubovskii PV, Dubova KM, Bourenkov G, Starkov VG, Konshina AG, Efremov RG, Utkin YN, Samygina VR. Variability in the Spatial Structure of the Central Loop in Cobra Cytotoxins Revealed by X-ray Analysis and Molecular Modeling. Toxins (Basel) 2022; 14:toxins14020149. [PMID: 35202176 PMCID: PMC8880459 DOI: 10.3390/toxins14020149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/05/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Cobra cytotoxins (CTs) belong to the three-fingered protein family and possess membrane activity. Here, we studied cytotoxin 13 from Naja naja cobra venom (CT13Nn). For the first time, a spatial model of CT13Nn with both “water” and “membrane” conformations of the central loop (loop-2) were determined by X-ray crystallography. The “water” conformation of the loop was frequently observed. It was similar to the structure of loop-2 of numerous CTs, determined by either NMR spectroscopy in aqueous solution, or the X-ray method. The “membrane” conformation is rare one and, to date has only been observed by NMR for a single cytotoxin 1 from N. oxiana (CT1No) in detergent micelle. Both CT13Nn and CT1No are S-type CTs. Membrane-binding of these CTs probably involves an additional step—the conformational transformation of the loop-2. To confirm this suggestion, we conducted molecular dynamics simulations of both CT1No and CT13Nn in the Highly Mimetic Membrane Model of palmitoiloleoylphosphatidylglycerol, starting with their “water” NMR models. We found that the both toxins transform their “water” conformation of loop-2 into the “membrane” one during the insertion process. This supports the hypothesis that the S-type CTs, unlike their P-type counterparts, require conformational adaptation of loop-2 during interaction with lipid membranes.
Collapse
Affiliation(s)
- Peter V. Dubovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., 117997 Moscow, Russia; (V.G.S.); (A.G.K.); (R.G.E.); (Y.N.U.)
- Correspondence: or
| | - Kira M. Dubova
- FSRC “Crystallography and Photonics”, Russian Academy of Sciences, 111933 Moscow, Russia; (K.M.D.); (V.R.S.)
- NRC “Kurchatov Institute”, 123182 Moscow, Russia
| | - Gleb Bourenkov
- European Molecular Biology Laboratory, Hamburg Unit, c/o DESY, 22607 Hamburg, Germany;
| | - Vladislav G. Starkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., 117997 Moscow, Russia; (V.G.S.); (A.G.K.); (R.G.E.); (Y.N.U.)
| | - Anastasia G. Konshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., 117997 Moscow, Russia; (V.G.S.); (A.G.K.); (R.G.E.); (Y.N.U.)
| | - Roman G. Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., 117997 Moscow, Russia; (V.G.S.); (A.G.K.); (R.G.E.); (Y.N.U.)
- Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., 141700 Dolgoprudny, Russia
- Higher School of Economics, National Research University, 20 Myasnitskaya str., 101000 Moscow, Russia
| | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., 117997 Moscow, Russia; (V.G.S.); (A.G.K.); (R.G.E.); (Y.N.U.)
| | - Valeriya R. Samygina
- FSRC “Crystallography and Photonics”, Russian Academy of Sciences, 111933 Moscow, Russia; (K.M.D.); (V.R.S.)
- NRC “Kurchatov Institute”, 123182 Moscow, Russia
| |
Collapse
|
28
|
Stingray Venom Proteins: Mechanisms of Action Revealed Using a Novel Network Pharmacology Approach. Mar Drugs 2021; 20:md20010027. [PMID: 35049882 PMCID: PMC8781517 DOI: 10.3390/md20010027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 01/02/2023] Open
Abstract
Animal venoms offer a valuable source of potent new drug leads, but their mechanisms of action are largely unknown. We therefore developed a novel network pharmacology approach based on multi-omics functional data integration to predict how stingray venom disrupts the physiological systems of target animals. We integrated 10 million transcripts from five stingray venom transcriptomes and 848,640 records from three high-content venom bioactivity datasets into a large functional data network. The network featured 216 signaling pathways, 29 of which were shared and targeted by 70 transcripts and 70 bioactivity hits. The network revealed clusters for single envenomation outcomes, such as pain, cardiotoxicity and hemorrhage. We carried out a detailed analysis of the pain cluster representing a primary envenomation symptom, revealing bibrotoxin and cholecystotoxin-like transcripts encoding pain-inducing candidate proteins in stingray venom. The cluster also suggested that such pain-inducing toxins primarily activate the inositol-3-phosphate receptor cascade, inducing intracellular calcium release. We also found strong evidence for synergistic activity among these candidates, with nerve growth factors cooperating with the most abundant translationally-controlled tumor proteins to activate pain signaling pathways. Our network pharmacology approach, here applied to stingray venom, can be used as a template for drug discovery in neglected venomous species.
Collapse
|
29
|
Kasheverov IE, Kuzmenkov AI, Kudryavtsev DS, Chudetskiy IS, Shelukhina IV, Barykin EP, Ivanov IA, Siniavin AE, Ziganshin RH, Baranov MS, Tsetlin VI, Vassilevski AA, Utkin YN. Snake Toxins Labeled by Green Fluorescent Protein or Its Synthetic Chromophore are New Probes for Nicotinic acetylcholine Receptors. Front Mol Biosci 2021; 8:753283. [PMID: 34926576 PMCID: PMC8671107 DOI: 10.3389/fmolb.2021.753283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
Fluorescence can be exploited to monitor intermolecular interactions in real time and at a resolution up to a single molecule. It is a method of choice to study ligand-receptor interactions. However, at least one of the interacting molecules should possess good fluorescence characteristics, which can be achieved by the introduction of a fluorescent label. Gene constructs with green fluorescent protein (GFP) are widely used to follow the expression of the respective fusion proteins and monitor their function. Recently, a small synthetic analogue of GFP chromophore (p-HOBDI-BF2) was successfully used for tagging DNA molecules, so we decided to test its applicability as a potential fluorescent label for proteins and peptides. This was done on α-cobratoxin (α-CbTx), a three-finger protein used as a molecular marker of muscle-type, neuronal α7 and α9/α10 nicotinic acetylcholine receptors (nAChRs), as well as on azemiopsin, a linear peptide neurotoxin selectively inhibiting muscle-type nAChRs. An activated N-hydroxysuccinimide ester of p-HOBDI-BF2 was prepared and utilized for toxin labeling. For comparison we used a recombinant α-CbTx fused with a full-length GFP prepared by expression of a chimeric gene. The structure of modified toxins was confirmed by mass spectrometry and their activity was characterized by competition with iodinated α-bungarotoxin in radioligand assay with respective receptor preparations, as well as by thermophoresis. With the tested protein and peptide neurotoxins, introduction of the synthetic GFP chromophore induced considerably lower decrease in their affinity for the receptors as compared with full-length GFP attachment. The obtained fluorescent derivatives were used for nAChR visualization in tissue slices and cell cultures.
Collapse
Affiliation(s)
- Igor E Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexey I Kuzmenkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Denis S Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ivan S Chudetskiy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Irina V Shelukhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Evgeny P Barykin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Igor A Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrei E Siniavin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail S Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Moscow Region, Russia
| | - Yuri N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
30
|
Wei Y, Liu T, Zheng B, Song Y, Wang S, Zheng M, Xu Y, Chi Y, Zhao M, Duan JA, Han S, Liu R. A strategy for the enrichment and characterization of disulfide bond-contained proteins from Chinese cobra (Naja atra) venom. J Sep Sci 2021; 45:812-823. [PMID: 34898000 DOI: 10.1002/jssc.202100620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 11/11/2022]
Abstract
A new strategy combined gold-coated magnetic nanocomposites assisted enrichment with mass spectrometry was developed for the characterization of disulfide bond-contained proteins from Chinese cobra (Naja atra) venom. In this work, core-shell nanocomposites were synthesized by the seed-mediated growth method and used for the enrichment of snake venom proteins containing disulfide bonds. A total of 3545 tryptic digested peptides derived from 96 venom proteins in Naja atra venom were identified. The venom proteins comprised 14 toxin families including three-finger toxins, phospholipase A2 , snake venom metalloproteinase, cobra venom factor, and so forth. Extra 16 venom proteins were detected exclusively in the nanocomposites set, among which 11 venom proteins were from the three-finger toxins family. In the present study, the proposed simple and efficient protocol replaced the tedious and laborious technologies commonly used for pre-separating crude snake venom, suggesting widely implementation in low-abundance or trace disulfide bond-contained proteins or peptides characterization.
Collapse
Affiliation(s)
- Yuanqing Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, 210023, P. R. China.,Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Ting Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Binru Zheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Yilin Song
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Shengsong Wang
- Anhui Qimen Institute of Snakebite, Huangshan, 245000, P. R. China
| | - Mojuan Zheng
- Anhui Qimen Institute of Snakebite, Huangshan, 245000, P. R. China
| | - Yanling Xu
- Anhui Qimen Institute of Snakebite, Huangshan, 245000, P. R. China
| | - Yumei Chi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Ming Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, 210023, P. R. China
| | - Jin-Ao Duan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, 210023, P. R. China
| | - Shuying Han
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Rui Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, 210023, P. R. China.,Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| |
Collapse
|
31
|
Chérifi F, Laraba-Djebari F. Bioactive Molecules Derived from Snake Venoms with Therapeutic Potential for the Treatment of Thrombo-Cardiovascular Disorders Associated with COVID-19. Protein J 2021; 40:799-841. [PMID: 34499333 PMCID: PMC8427918 DOI: 10.1007/s10930-021-10019-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 01/08/2023]
Abstract
As expected, several new variants of Severe Acute Respiratory Syndrome-CoronaVirus-2 (SARS-CoV-2) emerged and have been detected around the world throughout this Coronavirus Disease of 2019 (COVID-19) pandemic. Currently, there is no specific developed drug against COVID-19 and the challenge of developing effective antiviral strategies based on natural agents with different mechanisms of action becomes an urgent need and requires identification of genetic differences among variants. Such data is used to improve therapeutics to combat SARS-CoV-2 variants. Nature is known to offer many biotherapeutics from animal venoms, algae and plant that have been historically used in traditional medicine. Among these bioresources, snake venom displays many bioactivities of interest such as antiviral, antiplatelet, antithrombotic, anti-inflammatory, antimicrobial and antitumoral. COVID-19 is a viral respiratory sickness due to SARS-CoV-2 which induces thrombotic disorders due to cytokine storm, platelet hyperactivation and endothelial dysfunction. This review aims to: (1) present an overview on the infection, the developed thrombo-inflammatory responses and mechanisms of induced thrombosis of COVID-19 compared to other similar pathogenesis; (2) underline the role of natural compounds such as anticoagulant, antiplatelet and thrombolytic agents; (3) investigate the management of coagulopathy related to COVID-19 and provide insight on therapeutic such as venom compounds. We also summarize the updated advances on antiviral proteins and peptides derived from snake venoms that could weaken coagulopathy characterizing COVID-19.
Collapse
Affiliation(s)
- Fatah Chérifi
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, USTHB, BP 32, El-Alia, Bab Ezzouar, Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, USTHB, BP 32, El-Alia, Bab Ezzouar, Algiers, Algeria.
| |
Collapse
|
32
|
Oh AMF, Tan KY, Tan NH, Tan CH. Proteomics and neutralization of Bungarus multicinctus (Many-banded Krait) venom: Intra-specific comparisons between specimens from China and Taiwan. Comp Biochem Physiol C Toxicol Pharmacol 2021; 247:109063. [PMID: 33910092 DOI: 10.1016/j.cbpc.2021.109063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022]
Abstract
The Many-banded Krait (Bungarus multicinctus) is a medically important venomous snake in East Asia. This study investigated the venom proteomes of B. multicinctus from Guangdong, southern China (BM-China) and insular Taiwan (BM-Taiwan), and the neutralization activities of two antivenom products (produced separately in China and Taiwan) against the lethal effect of the venoms. The venom proteomes of both specimens contained similar toxin families, notwithstanding small variations in the subtypes and abundances of minor components. More than 90% of the total venom proteins belong to three-finger toxins (3FTx, including alpha-neurotoxins) and phospholipases A2 (PLA2, including beta-bungarotoxins), supporting their key involvement in the pathophysiology of krait envenomation which manifests as pre- and post-synaptic neurotoxicity. The venoms exhibited potent neurotoxic and lethal effects with extremely low i.v. LD50 of 0.027 μg/g (Bm-China) and 0.087 μg/g (Bm-Taiwan), respectively, in mice. Bungarus multicinctus monovalent antivenom (BMMAV) produced in China and Neuro bivalent antivenom (NBAV) produced in Taiwan were immunoreactive toward both venoms and their toxin fractions. The antivenoms neutralized the venom lethality variably, with BMMAV being more efficacious than NBAV by approximately two-fold. Findings suggest that the monovalent antivenom has a higher potency presumably due to its species-specificity toward the krait venom.
Collapse
Affiliation(s)
- Angeline Mei Feng Oh
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
33
|
Naja atra Cardiotoxin 1 Induces the FasL/Fas Death Pathway in Human Leukemia Cells. Cells 2021; 10:cells10082073. [PMID: 34440842 PMCID: PMC8394927 DOI: 10.3390/cells10082073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/30/2022] Open
Abstract
This study aimed to investigate the mechanistic pathway of Naja atra (Taiwan cobra) cardiotoxin 1 (CTX1)-induced death of leukemia cell lines U937 and HL-60. CTX1 increased cytoplasmic Ca2+ and reactive oxygen species (ROS) production, leading to the death of U937 cells. It was found that Ca2+-induced NOX4 upregulation promoted ROS-mediated p38 MAPK phosphorylation, which consequently induced c-Jun and ATF-2 phosphorylation. Using siRNA knockdown, activated c-Jun and ATF-2 were demonstrated to regulate the expression of Fas and FasL, respectively. Suppression of Ca2+-mediated NOX4 expression or ROS-mediated p38 MAPK activation increased the survival of U937 cells exposed to CTX1. FADD depletion abolished CTX1-induced cell death, caspase-8 activation, and t-Bid production, supporting the correlation between the Fas death pathway and CTX1-mediated cytotoxicity. Among the tested N. atra CTX isotoxins, only CTX1 induced Fas and FasL expression. Chemical modification studies revealed that intact Met residues were essential for the activity of CTX1 to upregulate Fas and FasL expression. Taken together, the data in this study indicate that CTX1 induces c-Jun-mediated Fas and ATF-2-mediated FasL transcription by the Ca2+/NOX4/ROS/p38 MAPK axis, thereby activating the Fas death pathway in U937 cells. Furthermore, CTX1 activates Fas/FasL death signaling in the leukemia cell line HL-60.
Collapse
|
34
|
Wong KY, Tan KY, Tan NH, Gnanathasan CA, Tan CH. Elucidating the Venom Diversity in Sri Lankan Spectacled Cobra ( Naja naja) through De Novo Venom Gland Transcriptomics, Venom Proteomics and Toxicity Neutralization. Toxins (Basel) 2021; 13:558. [PMID: 34437429 PMCID: PMC8402536 DOI: 10.3390/toxins13080558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 01/18/2023] Open
Abstract
Inadequate effectiveness of Indian antivenoms in treating envenomation caused by the Spectacled Cobra/Indian Cobra (Naja naja) in Sri Lanka has been attributed to geographical variations in the venom composition. This study investigated the de novo venom-gland transcriptomics and venom proteomics of the Sri Lankan N. naja (NN-SL) to elucidate its toxin gene diversity and venom variability. The neutralization efficacy of a commonly used Indian antivenom product in Sri Lanka was examined against the lethality induced by NN-SL venom in mice. The transcriptomic study revealed high expression of 22 toxin genes families in NN-SL, constituting 46.55% of total transcript abundance. Three-finger toxins (3FTX) were the most diversely and abundantly expressed (87.54% of toxin gene expression), consistent with the dominance of 3FTX in the venom proteome (72.19% of total venom proteins). The 3FTX were predominantly S-type cytotoxins/cardiotoxins (CTX) and α-neurotoxins of long-chain or short-chain subtypes (α-NTX). CTX and α-NTX are implicated in local tissue necrosis and fatal neuromuscular paralysis, respectively, in envenomation caused by NN-SL. Intra-species variations in the toxin gene sequences and expression levels were apparent between NN-SL and other geographical specimens of N. naja, suggesting potential antigenic diversity that impacts antivenom effectiveness. This was demonstrated by limited potency (0.74 mg venom/ml antivenom) of the Indian polyvalent antivenom (VPAV) in neutralizing the NN-SL venom. A pan-regional antivenom with improved efficacy to treat N. naja envenomation is needed.
Collapse
Affiliation(s)
- Kin Ying Wong
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Nget Hong Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | | | - Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
35
|
Damm M, Hempel BF, Süssmuth RD. Old World Vipers-A Review about Snake Venom Proteomics of Viperinae and Their Variations. Toxins (Basel) 2021; 13:toxins13060427. [PMID: 34204565 PMCID: PMC8235416 DOI: 10.3390/toxins13060427] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Fine-tuned by millions of years of evolution, snake venoms have frightened but also fascinated humanity and nowadays they constitute potential resources for drug development, therapeutics and antivenoms. The continuous progress of mass spectrometry techniques and latest advances in proteomics workflows enabled toxinologists to decipher venoms by modern omics technologies, so-called ‘venomics’. A tremendous upsurge reporting on snake venom proteomes could be observed. Within this review we focus on the highly venomous and widely distributed subfamily of Viperinae (Serpentes: Viperidae). A detailed public literature database search was performed (2003–2020) and we extensively reviewed all compositional venom studies of the so-called Old-World Vipers. In total, 54 studies resulted in 89 venom proteomes. The Viperinae venoms are dominated by four major, four secondary, six minor and several rare toxin families and peptides, respectively. The multitude of different venomics approaches complicates the comparison of venom composition datasets and therefore we differentiated between non-quantitative and three groups of quantitative workflows. The resulting direct comparisons within these groups show remarkable differences on the intra- and interspecies level across genera with a focus on regional differences. In summary, the present compilation is the first comprehensive up-to-date database on Viperinae venom proteomes and differentiating between analytical methods and workflows.
Collapse
Affiliation(s)
- Maik Damm
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
| | - Benjamin-Florian Hempel
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, (BCRT), 10117 Berlin, Germany;
| | - Roderich D. Süssmuth
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
- Correspondence: ; Tel.: +49-(0)30-314-24205
| |
Collapse
|
36
|
Three-Finger Toxins from Brazilian Coral Snakes: From Molecular Framework to Insights in Biological Function. Toxins (Basel) 2021; 13:toxins13050328. [PMID: 33946590 PMCID: PMC8147190 DOI: 10.3390/toxins13050328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Studies on 3FTxs around the world are showing the amazing diversity in these proteins both in structure and function. In Brazil, we have not realized the broad variety of their amino acid sequences and probable diversified structures and targets. In this context, this work aims to conduct an in silico systematic study on available 3FTxs found in Micrurus species from Brazil. We elaborated a specific guideline for this toxin family. First, we grouped them according to their structural homologue predicted by HHPred server and further curated manually. For each group, we selected one sequence and constructed a representative structural model. By looking at conserved features and comparing with the information available in the literature for this toxin family, we managed to point to potential biological functions. In parallel, the phylogenetic relationship was estimated for our database by maximum likelihood analyses and a phylogenetic tree was constructed including the homologous 3FTx previously characterized. Our results highlighted an astonishing diversity inside this family of toxins, showing some groups with expected functional similarities to known 3FTxs, and pointing out others with potential novel roles and perhaps structures. Moreover, this classification guideline may be useful to aid future studies on these abundant toxins.
Collapse
|
37
|
Dashevsky D, Rokyta D, Frank N, Nouwens A, Fry BG. Electric Blue: Molecular Evolution of Three-Finger Toxins in the Long-Glanded Coral Snake Species Calliophis bivirgatus. Toxins (Basel) 2021; 13:124. [PMID: 33567660 PMCID: PMC7915963 DOI: 10.3390/toxins13020124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/17/2023] Open
Abstract
The genus Calliophis is the most basal branch of the family Elapidae and several species in it have developed highly elongated venom glands. Recent research has shown that C. bivirgatus has evolved a seemingly unique toxin (calliotoxin) that produces spastic paralysis in their prey by acting on the voltage-gated sodium (NaV) channels. We assembled a transcriptome from C. bivirgatus to investigate the molecular characteristics of these toxins and the venom as a whole. We find strong confirmation that this genus produces the classic elapid eight-cysteine three-finger toxins, that δδ-elapitoxins (toxins that resemble calliotoxin) are responsible for a substantial portion of the venom composition, and that these toxins form a distinct clade within a larger, more diverse clade of C. bivirgatus three-finger toxins. This broader clade of C. bivirgatus toxins also contains the previously named maticotoxins and is somewhat closely related to cytotoxins from other elapids. However, the toxins from this clade that have been characterized are not themselves cytotoxic. No other toxins show clear relationships to toxins of known function from other species.
Collapse
Affiliation(s)
- Daniel Dashevsky
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia;
- Australian National Insect Collection, Commonwealth Science and Industry Research Organization, Canberra, ACT 2601, Australia
| | - Darin Rokyta
- Department of Biological Sciences, Florida State University, Tallahassee, FL 24105, USA;
| | - Nathaniel Frank
- MToxins Venom Lab, 717 Oregon Street, Oshkosh, WI 54902, USA;
| | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia;
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia;
| |
Collapse
|
38
|
Cañas CA, Castaño-Valencia S, Castro-Herrera F, Cañas F, Tobón GJ. Biomedical applications of snake venom: from basic science to autoimmunity and rheumatology. J Transl Autoimmun 2020; 4:100076. [PMID: 33385156 PMCID: PMC7772571 DOI: 10.1016/j.jtauto.2020.100076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
Snake venoms have components with diverse biological actions that are extensively studied to identify elements that may be useful in biomedical sciences. In the field of autoimmunity and rheumatology, various findings useful for the study of diseases and potential drug development have been reported. The study of disintegrins, proteins that block the action of integrins, has been useful for the development of antiplatelet agents and principles for the development of immunosuppressants and antineoplastics. Several proteins in snake venoms act on the coagulation cascade, activating factors that have allowed the development of tests for the study of coagulation, including Russell's viper venom time, which is useful in the diagnosis of antiphospholipid syndrome. Neurotoxins with either pre- or postsynaptic effects have been used to study neurogenic synapses and neuromuscular plaques and the development of analgesics, muscle relaxants and drugs for neurodegenerative diseases. Various components act by inhibiting cells and proteins of the immune system, which will allow the development of anti-inflammatory and immunosuppressive drugs. This review summarizes the usefulness of the components of snake venoms in the fields of autoimmunity and rheumatology, which can serve as a basis for diverse translational research.
Collapse
Affiliation(s)
- Carlos A Cañas
- GIRAT: Grupo de Investigación en Reumatología, Autoimunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia.,Fundación Valle Del Lili, Rheumatology Unit, Cra 98 No. 18 - 49, Cali, 760032, Colombia
| | - Santiago Castaño-Valencia
- Department of Physiological Sciences, Department of Health Sciences, Universidad Del Valle, Cali, Colombia
| | - Fernando Castro-Herrera
- Department of Physiological Sciences, Department of Health Sciences, Universidad Del Valle, Cali, Colombia
| | - Felipe Cañas
- Department of Cardiology, Clínica Medellín, Medellín, Colombia
| | - Gabriel J Tobón
- GIRAT: Grupo de Investigación en Reumatología, Autoimunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia.,Fundación Valle Del Lili, Rheumatology Unit, Cra 98 No. 18 - 49, Cali, 760032, Colombia
| |
Collapse
|
39
|
Shi YJ, Chiou JT, Wang LJ, Huang CH, Lee YC, Chen YJ, Chang LS. Blocking of negative charged carboxyl groups converts Naja atra neurotoxin to cardiotoxin-like protein. Int J Biol Macromol 2020; 164:2953-2963. [PMID: 32846183 DOI: 10.1016/j.ijbiomac.2020.08.163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/20/2020] [Indexed: 11/28/2022]
Abstract
Naja atra cobrotoxin and cardiotoxin 3 (CTX3) exhibit neurotoxicity and cytotoxicity, respectively. In the present study, we aimed to investigate whether the carboxyl groups of cobrotoxin play a role in structural constraints, thereby preventing cobrotoxin from exhibiting cytotoxic activity. Six of the seven carboxyl groups in cobrotoxin were conjugated with semicarbazide. Measurement of circular dichroism spectra and Trp fluorescence quenching showed that the gross conformation of semicarbazide-modified cobrotoxin (SEM-cobrotoxin) and cobrotoxin differed. In sharp contrast to cobrotoxin, SEM-cobrotoxin demonstrated membrane-damaging activity and cytotoxicity, which are feature more characteristic of CTX3. Furthermore, both SEM-cobrotoxin and CTX3 induced cell death through AMPK activation. Analyses of the interaction between polydiacetylene/lipid vesicles and fluorescence-labeled lipids revealed that SEM-cobrotoxin and cobrotoxin adopted different membrane-bound states. The structural characteristics of SEM-cobrotoxin were similar to those of CTX3, including trifluoroethanol (TFE)-induced structural transformation and membrane binding-induced conformational change. Conversely, cobrotoxin was insensitive to the TFE-induced effect. Collectively, the data of this study indicate that blocking negatively charged residues confers cobrotoxin with membrane-damaging activity and cytotoxicity. The findings also suggest that the structural constraints imposed by carboxyl groups control the functional properties of snake venom α-neurotoxins during the divergent evolution of snake venom neurotoxins and cardiotoxins.
Collapse
Affiliation(s)
- Yi-Jun Shi
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Chia-Hui Huang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Ying-Jung Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
40
|
Cardon T, Fournier I, Salzet M. Shedding Light on the Ghost Proteome. Trends Biochem Sci 2020; 46:239-250. [PMID: 33246829 DOI: 10.1016/j.tibs.2020.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 01/19/2023]
Abstract
Conventionally, eukaryotic mRNAs were thought to be monocistronic, leading to the translation of a single protein. However, large-scale proteomics has led to the identification of proteins translated from alternative open reading frames (AltORFs) in mRNAs. AltORFs are found in addition to predicted reference ORFs and noncoding RNA. Alternative proteins are not represented in the conventional protein databases, and this 'Ghost proteome' was not considered until recently. Some of these proteins are functional, and there is growing evidence that they are involved in central functions in physiological and physiopathological contexts. Here, we review how this Ghost proteome fills the gap in our understanding of signaling pathways, establishes new markers of pathologies, and highlights therapeutic targets.
Collapse
Affiliation(s)
- Tristan Cardon
- Laboratoire Protéomique, Réponse Inflammatoire Spectrométrie de Masse (PRISM), Inserm U1192, University of Lille, CHU Lille, F-59000 Lille, France.
| | - Isabelle Fournier
- Laboratoire Protéomique, Réponse Inflammatoire Spectrométrie de Masse (PRISM), Inserm U1192, University of Lille, CHU Lille, F-59000 Lille, France; Institut Universitaire de France, Paris, France.
| | - Michel Salzet
- Laboratoire Protéomique, Réponse Inflammatoire Spectrométrie de Masse (PRISM), Inserm U1192, University of Lille, CHU Lille, F-59000 Lille, France; Institut Universitaire de France, Paris, France.
| |
Collapse
|
41
|
Tsetlin VI, Kasheverov IE, Utkin YN. Three-finger proteins from snakes and humans acting on nicotinic receptors: Old and new. J Neurochem 2020; 158:1223-1235. [PMID: 32648941 DOI: 10.1111/jnc.15123] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
The first toxin to give rise to the three-finger protein (TFP) family was α-bungarotoxin (α-Bgt) from Bungarus multicinctus krait venom. α-Bgt was crucial for research on nicotinic acetylcholine receptors (nAChRs), and in this Review article we focus on present data for snake venom TFPs and those of the Ly6/uPAR family from mammalians (membrane-bound Lynx1 and secreted SLURP-1) interacting with nAChRs. Recently isolated from Bungarus candidus venom, αδ-bungarotoxins differ from α-Bgt: they bind more reversibly and distinguish two binding sites in Torpedo californica nAChR. Naja kaouthia α-cobratoxin, classical blocker of nAChRs, was shown to inhibit certain GABA-A receptor subtypes, whereas α-cobratoxin dimer with 2 intermolecular disulfides has a novel type of 3D structure. Non-conventional toxin WTX has additional 5th disulfide not in the central loop, as α-Bgt, but in the N-terminal loop, like all Ly6/uPAR proteins, and inhibits α7 and Torpedo nAChRs. A water-soluble form of Lynx1, ws-Lynx1, was expressed in E. coli, its 1 H-NMR structure and binding to several nAChRs determined. For SLURP-1, similar information was obtained with its recombinant analogue rSLURP-1. A common feature of ws-Lynx1, rSLURP-1, and WTX is their activity against nAChRs and muscarinic acetylcholine receptors. Synthetic SLURP-1, identical to the natural protein, demonstrated some differences from rSLURP-1 in distinguishing nAChR subtypes. The loop II fragment of the Lynx1 was synthesized having the same µM affinity for the Torpedo nAChR as ws-Lynx1. This review illustrates the productivity of parallel research of nAChR interactions with the two TFP groups.
Collapse
Affiliation(s)
- Victor I Tsetlin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.,PhysBio of MePhi, Moscow, Russian Federation
| | - Igor E Kasheverov
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, Russian Federation
| | - Yuri N Utkin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
42
|
Chanda A, Mukherjee AK. Mass spectrometric analysis to unravel the venom proteome composition of Indian snakes: opening new avenues in clinical research. Expert Rev Proteomics 2020; 17:411-423. [PMID: 32579411 DOI: 10.1080/14789450.2020.1778471] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Abhishek Chanda
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| | - Ashis K. Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, India
| |
Collapse
|
43
|
Kini RM, Koh CY. Snake venom three-finger toxins and their potential in drug development targeting cardiovascular diseases. Biochem Pharmacol 2020; 181:114105. [PMID: 32579959 DOI: 10.1016/j.bcp.2020.114105] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022]
Abstract
Cardiovascular diseases such as coronary and peripheral artery diseases, venous thrombosis, stroke, hypertension, and heart failure are enormous burden to health and economy globally. Snake venoms have been the sources of discovery of successful therapeutics targeting cardiovascular diseases. For example, the first-in-class angiotensin-converting enzyme inhibitor captopril was designed largely based on bradykinin-potentiating peptides from Bothrops jararaca venom. In the recent years, sensitive and high throughput approaches drive discovery and cataloging of new snake venom toxins. As one of the largest class of snake venom toxin, there are now>700 sequences of three-finger toxins (3FTxs) available, many of which are yet to be studied. While the function of 3FTxs are normally associated with neurotoxicity, increasingly more 3FTxs have been characterized to have pharmacological effects on cardiovascular systems. Here we focus on this family of snake venom toxins and their potential in developing therapeutics against cardiovascular diseases.
Collapse
Affiliation(s)
- R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117558, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Cho Yeow Koh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore.
| |
Collapse
|
44
|
Beyond the 'big four': Venom profiling of the medically important yet neglected Indian snakes reveals disturbing antivenom deficiencies. PLoS Negl Trop Dis 2019; 13:e0007899. [PMID: 31805055 PMCID: PMC6894822 DOI: 10.1371/journal.pntd.0007899] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/01/2019] [Indexed: 11/19/2022] Open
Abstract
Background Snakebite in India causes the highest annual rates of death (46,000) and disability (140,000) than any other country. Antivenom is the mainstay treatment of snakebite, whose manufacturing protocols, in essence, have remained unchanged for over a century. In India, a polyvalent antivenom is produced for the treatment of envenomations from the so called ‘big four’ snakes: the spectacled cobra (Naja naja), common krait (Bungarus caeruleus), Russell’s viper (Daboia russelii), and saw-scaled viper (Echis carinatus). In addition to the ‘big four’, India is abode to many other species of venomous snakes that have the potential to inflict severe clinical or, even, lethal envenomations in their human bite victims. Unfortunately, specific antivenoms are not produced against these species and, instead, the ‘big four’ antivenom is routinely used for the treatment. Methods We characterized the venom compositions, biochemical and pharmacological activities and toxicity profiles (mouse model) of the major neglected yet medically important Indian snakes (E. c. sochureki, B. sindanus, B. fasciatus, and two populations of N. kaouthia) and their closest ‘big four’ congeners. By performing WHO recommended in vitro and in vivo preclinical assays, we evaluated the efficiencies of the commercially marketed Indian antivenoms in recognizing venoms and neutralizing envenomations by these neglected species. Findings As a consequence of dissimilar ecologies and diet, the medically important snakes investigated exhibited dramatic inter- and intraspecific differences in their venom profiles. Currently marketed antivenoms were found to exhibit poor dose efficacy and venom recognition potential against the ‘neglected many’. Premium Serums antivenom failed to neutralise bites from many of the neglected species and one of the ‘big four’ snakes (North Indian population of B. caeruleus). Conclusions This study unravels disturbing deficiencies in dose efficacy and neutralisation capabilities of the currently marketed Indian antivenoms, and emphasises the pressing need to develop region-specific snakebite therapy for the ‘neglected many’. Snakebite is a ‘neglected tropical disease’ that majorly affects the rural populations in developing countries. India bears the brunt of snakebites with over 46,000 deaths and 140,000 disabilities, annually. A significant number of these bites are attributed to the widely distributed ‘big four’ snakes, namely spectacled cobra (Naja naja), common krait (Bungarus caeruleus), Russell’s viper (Daboia russelii), and saw-scaled viper (Echis carinatus). The commercial antivenoms marketed in India are only manufactured against these four species, while neglecting many other medically relevant snakes with restricted geographic distribution. Snakebite pathology is dependent on the venom composition of the population/species, which can, in turn, vary intra- and inter-specifically. Though this variation severely limits the cross-population/species antivenom efficacy, envenomations by the neglected snakes in India are treated with the ‘big four’ antivenom. Therefore, to unravel the underlying venom variability, we investigated venom proteomic, biochemical/pharmacological and toxicity profiles of the major neglected Indian snakes and their ‘big four’ relatives. To assess the effectiveness of the ‘big four’ antivenom in treating bites from these neglected snakes, we performed preclinical experiments, which revealed alarming inadequacies of the commercial antivenoms. Our findings accentuate the compelling necessity for the innovation of highly efficacious next-generation snakebite therapy in India.
Collapse
|
45
|
Rey-Suárez P, Saldarriaga-Córdoba M, Torres U, Marin-Villa M, Lomonte B, Núñez V. Novel three-finger toxins from Micrurus dumerilii and Micrurus mipartitus coral snake venoms: Phylogenetic relationships and characterization of Clarkitoxin-I-Mdum. Toxicon 2019; 170:85-93. [DOI: 10.1016/j.toxicon.2019.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 11/11/2022]
|
46
|
Ning J, Ren J, Xiong Y, Wu Y, Zhangsun M, Zhangsun D, Zhu X, Luo S. Identification of Crucial Residues in α-Conotoxin EI Inhibiting Muscle Nicotinic Acetylcholine Receptor. Toxins (Basel) 2019; 11:toxins11100603. [PMID: 31623211 PMCID: PMC6832962 DOI: 10.3390/toxins11100603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022] Open
Abstract
α-Conotoxins (α-CTxs) are small disulfide-rich peptides from venom of Conus species that target nicotinic acetylcholine receptors (nAChRs). The muscle-type nAChRs have been recognized as a potential target for several diseases, such as myogenic disorders, muscle dystrophies, and myasthenia gravis. EI, an α4/7-CTx, mainly blocks α1β1δε nAChRs and has an extra N-terminal extension of three amino acids. In this study, the alanine scanning (Ala-scan) mutagenesis was applied in order to identify key residues of EI for binding with mouse α1β1δε nAChR. The Ala-substituted analogues were tested for their abilities of modulating muscle and neuronal nAChRs in Xenopus laevis oocytes using two-electrode voltage clamp (TEVC) recordings. Electrophysiological results indicated that the vital residues for functional activity of EI were His-7, Pro-8, Met-12, and Pro-15. These changes exhibited a significant decrease in potency of EI against mouse α1β1δε nAChR. Interestingly, replacing the critical serine (Ser) at position 13 with an alanine (Ala) residue resulted in a 2-fold increase in potency at the α1β1δε nAChR, and showed loss of activity on α3β2 and α3β4 nAChRs. Selectivity and potency of [S13A] EI was improved compared with wild-type EI (WT EI). In addition, the structure–activity relationship (SAR) of EI revealed that the “Arg1–Asn2–Hyp3” residues at the N-terminus conferred potency at the muscle-type nAChRs, and the deletion analogue △1–3 EI caused a total loss of activity at the α1β1δε nAChR. Circular dichroism (CD) spectroscopy studies demonstrated that activity loss of truncated analogue △1–3 EI for α1β1δε nAChR is attributed to disturbance of the secondary structure. In this report, an Ala-scan mutagenesis strategy is presented to identify crucial residues that are significantly affecting potency of E1 for mouse α1β1δε nAChR. It may also be important in remodeling of some novel ligands for inhibiting muscle-type nAChRs.
Collapse
Affiliation(s)
- Jiong Ning
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| | - Jie Ren
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| | - Yang Xiong
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| | - Yong Wu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| | - Manqi Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| | - Xiaopeng Zhu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
| |
Collapse
|
47
|
Péterfi O, Boda F, Szabó Z, Ferencz E, Bába L. Hypotensive Snake Venom Components-A Mini-Review. Molecules 2019; 24:E2778. [PMID: 31370142 PMCID: PMC6695636 DOI: 10.3390/molecules24152778] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Hypertension is considered a major public health issue due to its high prevalence and subsequent risk of cardiovascular and kidney diseases. Thus, the search for new antihypertensive compounds remains of great interest. Snake venoms provide an abundant source of lead molecules that affect the cardiovascular system, which makes them prominent from a pharmaceutical perspective. Such snake venom components include bradykinin potentiating peptides (proline-rich oligopeptides), natriuretic peptides, phospholipases A2, serine-proteases and vascular endothelial growth factors. Some heparin binding hypotensive factors, three-finger toxins and 5' nucleotidases can also exert blood pressure lowering activity. Great advances have been made during the last decade regarding the understanding of the mechanism of action of these hypotensive proteins. Bradykinin potentiating peptides exert their action primarily by inhibiting the angiotensin-converting enzyme and increasing the effect of endogenous bradykinin. Snake venom phospholipases A2 are capable of reducing blood pressure through the production of arachidonic acid, a precursor of cyclooxygenase metabolites (prostaglandins or prostacyclin). Other snake venom proteins mimic the effects of endogenous kallikrein, natriuretic peptides or vascular endothelial growth factors. The aim of this work was to review the current state of knowledge regarding snake venom components with potential antihypertensive activity and their mechanisms of action.
Collapse
Affiliation(s)
- Orsolya Péterfi
- Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540139 Tirgu Mures, Romania
| | - Francisc Boda
- Department of Fundamental Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540139 Tirgu Mures, Romania.
| | - Zoltán Szabó
- Department of Specialty Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540139 Tirgu Mures, Romania
| | - Elek Ferencz
- Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540139 Tirgu Mures, Romania
| | - László Bába
- Department of Specialty Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540139 Tirgu Mures, Romania
| |
Collapse
|
48
|
Kasheverov IE, Oparin PB, Zhmak MN, Egorova NS, Ivanov IA, Gigolaev AM, Nekrasova OV, Serebryakova MV, Kudryavtsev DS, Prokopev NA, Hoang AN, Tsetlin VI, Vassilevski AA, Utkin YN. Scorpion toxins interact with nicotinic acetylcholine receptors. FEBS Lett 2019; 593:2779-2789. [PMID: 31276191 DOI: 10.1002/1873-3468.13530] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022]
Abstract
Neurotoxins are among the main components of scorpion and snake venoms. Scorpion neurotoxins affect voltage-gated ion channels, while most snake neurotoxins target ligand-gated ion channels, mainly nicotinic acetylcholine receptors (nAChRs). We report that scorpion venoms inhibit α-bungarotoxin binding to both muscle-type nAChR from Torpedo californica and neuronal human α7 nAChR. Toxins inhibiting nAChRs were identified as OSK-1 (α-KTx family) from Orthochirus scrobiculosus and HelaTx1 (κ-KTx family) from Heterometrus laoticus, both being blockers of voltage-gated potassium channels. With an IC50 of 1.6 μm, OSK1 inhibits acetylcholine-induced current through mouse muscle-type nAChR heterologously expressed in Xenopus oocytes. Other well-characterized scorpion toxins from these families also bind to Torpedo nAChR with micromolar affinities. Our results indicate that scorpion neurotoxins present target promiscuity.
Collapse
Affiliation(s)
- Igor E Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Peter B Oparin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maxim N Zhmak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Natalya S Egorova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Igor A Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrei M Gigolaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oksana V Nekrasova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia
| | - Denis S Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikita A Prokopev
- Department of Bioorganic Chemistry, Faculty of Biology, Lomonosov Moscow State University, Russia
| | - Anh N Hoang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Oblast, Russia
| | - Yuri N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
49
|
Ferraz CR, Arrahman A, Xie C, Casewell NR, Lewis RJ, Kool J, Cardoso FC. Multifunctional Toxins in Snake Venoms and Therapeutic Implications: From Pain to Hemorrhage and Necrosis. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00218] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
50
|
Kalita B, Mukherjee AK. Recent advances in snake venom proteomics research in India: a new horizon to decipher the geographical variation in venom proteome composition and exploration of candidate drug prototypes. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42485-019-00014-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|