1
|
Farhi J, Emenike B, Lee RS, Sad K, Fawwal DV, Beusch CM, Jones RB, Verma AK, Jones CY, Foroozani M, Reeves M, Parwani KK, Bagchi P, Deal RB, Katz DJ, Corbett AH, Gordon DE, Raj M, Spangle JM. Dynamic In Vivo Mapping of the Methylproteome Using a Chemoenzymatic Approach. J Am Chem Soc 2025; 147:7214-7230. [PMID: 39996454 PMCID: PMC11887452 DOI: 10.1021/jacs.4c08175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
Dynamic protein post-translational methylation is essential for cellular function, highlighted by the essential role of methylation in transcriptional regulation and its aberrant dysregulation in diseases, including cancer. This underscores the importance of cataloging the cellular methylproteome. However, comprehensive analysis of the methylproteome remains elusive due to limitations in current enrichment and analysis pipelines. Here, we employ an l-methionine analogue, ProSeMet, that is chemoenzymatically converted to the SAM analogue ProSeAM in cells and in vivo to tag proteins with a biorthogonal alkyne that can be directly detected via liquid chromatography and tandem mass spectrometry (LC-MS/MS), or functionalized for subsequent selective enrichment and LC-MS/MS identification. Without enrichment, we identify known and novel lysine mono-, di-, and tripargylation, histidine propargylation, and arginine propargylation with site-specific resolution on proteins including heat shock protein HSPA8, the translational elongation factor eEF1A1, and the metabolic enzyme phosphoglycerate mutase 1, or PGAM1, for which methylation has been implicated in human disease. With enrichment, we identify 486 proteins known to be methylated and 221 proteins with novel propargylation sites encompassing diverse cellular functions. Systemic ProSeMet delivery in mice propargylates proteins across organ systems with blood-brain barrier penetrance and identifies site-specific propargylation in vivo with LC-MS/MS. Leveraging these pipelines to define the cellular methylproteome may have broad applications for understanding the methylproteome in the context of disease.
Collapse
Affiliation(s)
- Jonathan Farhi
- Department
of Radiation Oncology, Winship Cancer Institute
of Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Cancer
Biology Program, Emory University, Atlanta, Georgia 30322, United States
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Benjamin Emenike
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Richard S. Lee
- Department
of Radiation Oncology, Winship Cancer Institute
of Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Kirti Sad
- Department
of Radiation Oncology, Winship Cancer Institute
of Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Dorelle V. Fawwal
- Biochemistry,
Cell, and Developmental Biology Program, Emory University, Atlanta, Georgia 30322, United States
| | - Christian M. Beusch
- Department
of Pathology and Laboratory Medicine, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| | - Robert B. Jones
- Department
of Radiation Oncology, Winship Cancer Institute
of Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Ashish K. Verma
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Celina Y. Jones
- Department
of Biology, Emory College of Arts and Sciences, Atlanta, Georgia 30322, United States
| | - Maryam Foroozani
- Department
of Biology, Emory College of Arts and Sciences, Atlanta, Georgia 30322, United States
| | - Monica Reeves
- Department
of Cell Biology, Emory University, Atlanta, Georgia 30322, United States
| | - Kiran K. Parwani
- Department
of Radiation Oncology, Winship Cancer Institute
of Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Cancer
Biology Program, Emory University, Atlanta, Georgia 30322, United States
| | - Pritha Bagchi
- Emory Integrated
Proteomics Core, Emory University, Atlanta, Georgia 30322, United States
| | - Roger B. Deal
- Department
of Biology, Emory College of Arts and Sciences, Atlanta, Georgia 30322, United States
| | - David J. Katz
- Department
of Cell Biology, Emory University, Atlanta, Georgia 30322, United States
| | - Anita H. Corbett
- Department
of Biology, Emory College of Arts and Sciences, Atlanta, Georgia 30322, United States
| | - David E. Gordon
- Department
of Pathology and Laboratory Medicine, Emory
University School of Medicine, Atlanta, Georgia 30322, United States
| | - Monika Raj
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M. Spangle
- Department
of Radiation Oncology, Winship Cancer Institute
of Emory University School of Medicine, Atlanta, Georgia 30322, United States
| |
Collapse
|
2
|
Cao M, Nguyen T, Song J, Zheng YG. Biomedical effects of protein arginine methyltransferase inhibitors. J Biol Chem 2025; 301:108201. [PMID: 39826691 PMCID: PMC11871472 DOI: 10.1016/j.jbc.2025.108201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025] Open
Abstract
Protein arginine methyltransferases (PRMTs) are enzymes that catalyze the methylation of arginine residues in eukaryotic proteins, playing critical roles in modulating diverse cellular processes. The importance of PRMTs in the incidence and progression of a wide range of diseases, particularly cancers, such as breast, liver, lung, colorectal cancer, lymphoma, leukemia, and acute myeloid leukemia is increasingly recognized. This underscores the critical need for the development of effective PRMT inhibitors as therapeutic intervention. The field of PRMT inhibitors is in the rapidly growing phase and it is necessary to conduct a summative review of how the so-far developed inhibitors impact PRMT functions and cellular physiology. Our review aims to summarize molecular action mechanisms of these PRMT inhibitors and particularly elaborate their triggered biomedical effects. We describe the cellular phenotype consequences of select PRMT inhibitors across various disease models, thereby providing an understanding of the pharmacological mechanisms underpinning PRMT inhibition. The promising effects of PRMT5 inhibitors in targeted therapy of methylthioadenosine phosphorylase-deleted cancers are particularly highlighted. At last, we provide a perspective on the challenges and further opportunities of developing and applying novel PRMT inhibitors for clinical advancement.
Collapse
Affiliation(s)
- Mengtong Cao
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, United States
| | - Terry Nguyen
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, United States
| | - Jiabao Song
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, United States
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, United States.
| |
Collapse
|
3
|
Bae AA, Zheng YG. Hetero-oligomeric interaction as a new regulatory mechanism for protein arginine methyltransferases. Biochem Soc Trans 2024; 52:2193-2201. [PMID: 39324605 PMCID: PMC11624628 DOI: 10.1042/bst20240242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024]
Abstract
Protein arginine methylation is a versatile post-translational protein modification that has notable cellular roles such as transcriptional activation or repression, cell signaling, cell cycle regulation, and DNA damage response. However, in spite of their extensive significance in the biological system, there is still a significant gap in understanding of the entire function of the protein arginine methyltransferases (PRMTs). It has been well-established that PRMTs form homo-oligomeric complexes to be catalytically active, but in recent years, several studies have showcased evidence that different members of PRMTs can have cross-talk with one another to form hetero-oligomeric complexes. Additionally, these heteromeric complexes have distinct roles separate from their homomeric counterparts. Here, we review and highlight the discovery of the heterodimerization of PRMTs and discuss the biological implications of these hetero-oligomeric interactions.
Collapse
Affiliation(s)
- Angela A Bae
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, U.S.A
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, U.S.A
| |
Collapse
|
4
|
Rossi V, Nielson SE, Ortolano A, Lonardo I, Haroldsen E, Comer D, Price OM, Wallace N, Hevel JM. Oligomerization of protein arginine methyltransferase 1 and its effect on methyltransferase activity and substrate specificity. Protein Sci 2024; 33:e5118. [PMID: 39022984 PMCID: PMC11255602 DOI: 10.1002/pro.5118] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Proper protein arginine methylation by protein arginine methyltransferase 1 (PRMT1) is critical for maintaining cellular health, while dysregulation is often associated with disease. How the activity of PRMT1 is regulated is therefore paramount, but is not clearly understood. Several studies have observed higher order oligomeric species of PRMT1, but it is unclear if these exist at physiological concentrations and there is confusion in the literature about how oligomerization affects activity. We therefore sought to determine which oligomeric species of PRMT1 are physiologically relevant, and quantitatively correlate activity with specific oligomer forms. Through quantitative western blotting, we determined that concentrations of PRMT1 available in a variety of human cell lines are in the sub-micromolar to low micromolar range. Isothermal spectral shift binding data were modeled to a monomer/dimer/tetramer equilibrium with an EC50 for tetramer dissociation of ~20 nM. A combination of sedimentation velocity and Native polyacrylamide gel electrophoresis experiments directly confirmed that the major oligomeric species of PRMT1 at physiological concentrations would be dimers and tetramers. Surprisingly, the methyltransferase activity of a dimeric PRMT1 variant is similar to wild type, tetrameric PRMT1 with some purified substrates, but dimer and tetramer forms of PRMT1 show differences in catalytic efficiencies and substrate specificity for other substrates. Our results define an oligomerization paradigm for PRMT1, show that the biophysical characteristics of PRMT1 are poised to support a monomer/dimer/tetramer equilibrium in vivo, and suggest that the oligomeric state of PRMT1 could be used to regulate substrate specificity.
Collapse
Affiliation(s)
- Vincent Rossi
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | - Sarah E. Nielson
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | - Ariana Ortolano
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | - Isabella Lonardo
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | - Emeline Haroldsen
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | - Drake Comer
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | - Owen M Price
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| | | | - Joan M. Hevel
- Department of Chemistry and BiochemistryUtah State UniversityLoganUtahUSA
| |
Collapse
|
5
|
Hobble HV, Schaner Tooley CE. Intrafamily heterooligomerization as an emerging mechanism of methyltransferase regulation. Epigenetics Chromatin 2024; 17:5. [PMID: 38429855 PMCID: PMC10908127 DOI: 10.1186/s13072-024-00530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/10/2024] [Indexed: 03/03/2024] Open
Abstract
Protein and nucleic acid methylation are important biochemical modifications. In addition to their well-established roles in gene regulation, they also regulate cell signaling, metabolism, and translation. Despite this high biological relevance, little is known about the general regulation of methyltransferase function. Methyltransferases are divided into superfamilies based on structural similarities and further classified into smaller families based on sequence/domain/target similarity. While members within superfamilies differ in substrate specificity, their structurally similar active sites indicate a potential for shared modes of regulation. Growing evidence from one superfamily suggests a common regulatory mode may be through heterooligomerization with other family members. Here, we describe examples of methyltransferase regulation through intrafamily heterooligomerization and discuss how this can be exploited for therapeutic use.
Collapse
Affiliation(s)
- Haley V Hobble
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
6
|
Wu PY, Van Scoyk M, McHale SS, Chou CF, Riddick G, Farouq K, Hu B, Kraskauskiene V, Koblinski J, Lyons C, Rijal A, Vudatha V, Zhang D, Trevino JG, Shah RD, Nana-Sinkam P, Huang Y, Ma SF, Noth I, Hughes-Halbert C, Seewaldt VL, Chen CY, Winn RA. Cooperation between PRMT1 and PRMT6 drives lung cancer health disparities among Black/African American men. iScience 2024; 27:108858. [PMID: 38303720 PMCID: PMC10830871 DOI: 10.1016/j.isci.2024.108858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/14/2023] [Accepted: 01/07/2024] [Indexed: 02/03/2024] Open
Abstract
Lung cancer is the third most common cancer with Black/AA men showing higher risk and poorer outcomes than NHW men. Lung cancer disparities are multifactorial, driven by tobacco exposure, inequities in care access, upstream health determinants, and molecular determinants including biological and genetic factors. Elevated expressions of protein arginine methyltransferases (PRMTs) correlating with poorer prognosis have been observed in many cancers. Most importantly, our study shows that PRMT6 displays higher expression in lung cancer tissues of Black/AA men compared to NHW men. In this study, we investigated the underlying mechanism of PRMT6 and its cooperation with PRMT1 to form a heteromer as a driver of lung cancer. Disrupting PRMT1/PRMT6 heteromer by a competitive peptide reduced proliferation in non-small cell lung cancer cell lines and patient-derived organoids, therefore, giving rise to a more strategic approach in the treatment of Black/AA men with lung cancer and to eliminate cancer health disparities.
Collapse
Affiliation(s)
- Pei-Ying Wu
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Michelle Van Scoyk
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Stephanie S. McHale
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Chu-Fang Chou
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Gregory Riddick
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Kamran Farouq
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Bin Hu
- Department of Pathology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Vita Kraskauskiene
- Department of Pathology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jennifer Koblinski
- Department of Pathology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Charles Lyons
- Department of Pathology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Arjun Rijal
- Department of Pathology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Vignesh Vudatha
- Division of Surgical Oncology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Dongyu Zhang
- Division of Surgical Oncology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jose G. Trevino
- Division of Surgical Oncology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Rachit D. Shah
- Division of Cardiothoracic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Patrick Nana-Sinkam
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yong Huang
- Division of Pulmonary and Critical Care, University of Virginia, Charlottesville, VA, USA
| | - Shwu-Fan Ma
- Division of Pulmonary and Critical Care, University of Virginia, Charlottesville, VA, USA
| | - Imre Noth
- Division of Pulmonary and Critical Care, University of Virginia, Charlottesville, VA, USA
| | - Chanita Hughes-Halbert
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | | | - Ching-Yi Chen
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Robert A. Winn
- Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|