1
|
Li P, Zhu X, Huang C, Tian S, Li Y, Qiao Y, Liu M, Su J, Tian D. Effects of obesity on aging brain and cognitive decline: A cohort study from the UK Biobank. IBRO Neurosci Rep 2025; 18:148-157. [PMID: 39896714 PMCID: PMC11786748 DOI: 10.1016/j.ibneur.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/19/2024] [Accepted: 01/04/2025] [Indexed: 02/04/2025] Open
Abstract
Objective To investigate the impact of obesity on brain structure and cognition using large neuroimaging and genetic data. Methods Associations between body mass index (BMI), gray matter volume (GMV), whiter matter hyper-intensities (WMH), and fluid intelligence score (FIS) were estimated in 30283 participants from the UK Biobank. Longitudinal data analysis was conducted. Genome-wide association studies were applied to explore the genetic loci associations among BMI, GMV, WMH, and FIS. Mendelian Randomization analyses were applied to further estimate the effects of obesity on changes in the brain and cognition. Results The observational analysis revealed that BMI was negatively associated with GMV (r = -0.15, p < 1 × 10-24) and positively associated with WMH (r = 0.08, p < 1 × 10-16). The change in BMI was negatively associated with the change in GMV (r = -0.04, p < 5 × 10-5). Genetic overlap was observed among BMI, GMV, and FIS at SBK1 (rs2726032), SGF29 (rs17707300), TUFM (rs3088215), AKAP6 (rs1051695), IL27 (rs4788084), and SPI1 (rs3740689 and rs935914). The MR analysis provided evidence that higher BMI was associated with lower GMV (β=-1119.12, p = 5.77 ×10-6), higher WMH (β=42.76, p = 6.37 ×10-4), and lower FIS (β=-0.081, p = 1.92 ×10-23). Conclusions The phenotypic and genetic association between obesity and aging brain and cognitive decline suggested that weight control could be a promising strategy for slowing the aging brain.
Collapse
Affiliation(s)
- Panlong Li
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xirui Zhu
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Chun Huang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Shan Tian
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuna Li
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Qiao
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Liu
- Department of Hypertension, Henan Provincial People’s Hospital & Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Jingjing Su
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dandan Tian
- Department of Hypertension, Henan Provincial People’s Hospital & Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
2
|
Wang J, Wang Y, Li S, Fang X, Zhang C, Wang Z, Zheng Y, Deng H, Xu S, Mi Y. Exploring acetylation-related gene markers in polycystic ovary syndrome: insights into pathogenesis and diagnostic potential using machine learning. Gynecol Endocrinol 2024; 40:2427202. [PMID: 39585802 DOI: 10.1080/09513590.2024.2427202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/20/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024] Open
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is a prevalent cause of menstrual irregularities and infertility in women, impacting quality of life. Despite advancements, current understanding of PCOS pathogenesis and treatment remains limited. This study uses machine learning-based data mining to identify acetylation-related genetic markers associated with PCOS, aiming to enhance diagnostic precision and therapeutic efficacy. METHODS Advanced machine learning techniques were used to improve the precision of key gene identification and reveal their biological mechanisms. Validation on an independent dataset (GSE48301) confirmed their diagnostic value, assessed through ROC curves and nomograms for PCOS risk prediction. Molecular mechanisms of acetylation-related gene regulation in PCOS were further examined through clustering, immune-environmental, and gene network analyses. RESULTS Our analysis identified 15 key acetylation-regulated genes differentially expressed in PCOS, including SGF29, NOL6, KLF15, and INO80D, which are relevant to PCOS pathogenesis. ROC curve analyses on training and validation datasets confirmed the model's high diagnostic accuracy. Additionally, these genes were associated with immune cell infiltration, offering insights into the inflammatory aspect of PCOS. CONCLUSION The identified acetylation gene markers offer novel insights into the molecular mechanisms underlying PCOS and hold promise for enhancing the development of precise diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Jiqing Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shanshan Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoqin Fang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaoyue Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zuqing Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Zheng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanzhi Deng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shifen Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiqun Mi
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Heydari R, Jangravi Z, Maleknia S, Seresht-Ahmadi M, Bahari Z, Salekdeh GH, Meyfour A. Y chromosome is moving out of sex determination shadow. Cell Biosci 2022; 12:4. [PMID: 34983649 PMCID: PMC8724748 DOI: 10.1186/s13578-021-00741-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/21/2021] [Indexed: 01/05/2023] Open
Abstract
Although sex hormones play a key role in sex differences in susceptibility, severity, outcomes, and response to therapy of different diseases, sex chromosomes are also increasingly recognized as an important factor. Studies demonstrated that the Y chromosome is not a 'genetic wasteland' and can be a useful genetic marker for interpreting various male-specific physiological and pathophysiological characteristics. Y chromosome harbors male‑specific genes, which either solely or in cooperation with their X-counterpart, and independent or in conjunction with sex hormones have a considerable impact on basic physiology and disease mechanisms in most or all tissues development. Furthermore, loss of Y chromosome and/or aberrant expression of Y chromosome genes cause sex differences in disease mechanisms. With the launch of the human proteome project (HPP), the association of Y chromosome proteins with pathological conditions has been increasingly explored. In this review, the involvement of Y chromosome genes in male-specific diseases such as prostate cancer and the cases that are more prevalent in men, such as cardiovascular disease, neurological disease, and cancers, has been highlighted. Understanding the molecular mechanisms underlying Y chromosome-related diseases can have a significant impact on the prevention, diagnosis, and treatment of diseases.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Jangravi
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Samaneh Maleknia
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrshad Seresht-Ahmadi
- Department of Basic Science and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Zahra Bahari
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
4
|
Huang LY, Hsu DW, Pears CJ. Methylation-directed acetylation of histone H3 regulates developmental sensitivity to histone deacetylase inhibition. Nucleic Acids Res 2021; 49:3781-3795. [PMID: 33721015 PMCID: PMC8053100 DOI: 10.1093/nar/gkab154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 01/26/2023] Open
Abstract
Hydroxamate-based lysine deacetylase inhibitors (KDACis) are approved for clinical use against certain cancers. However, intrinsic and acquired resistance presents a major problem. Treatment of cells with hydroxamates such as trichostatin A (TSA) leads to rapid preferential acetylation of histone H3 already trimethylated on lysine 4 (H3K4me3), although the importance of this H3K4me3-directed acetylation in the biological consequences of KDACi treatment is not known. We address this utilizing Dictyostelium discoideum strains lacking H3K4me3 due to disruption of the gene encoding the Set1 methyltransferase or mutations in endogenous H3 genes. Loss of H3K4me3 confers resistance to TSA-induced developmental inhibition and delays accumulation of H3K9Ac and H3K14Ac. H3K4me3-directed H3Ac is mediated by Sgf29, a subunit of the SAGA acetyltransferase complex that interacts with H3K4me3 via a tandem tudor domain (TTD). We identify an Sgf29 orthologue in Dictyostelium with a TTD that specifically recognizes the H3K4me3 modification. Disruption of the gene encoding Sgf29 delays accumulation of H3K9Ac and abrogates H3K4me3-directed H3Ac. Either loss or overexpression of Sgf29 confers developmental resistance to TSA. Our results demonstrate that rapid acetylation of H3K4me3 histones regulates developmental sensitivity to TSA. Levels of H3K4me3 or Sgf29 will provide useful biomarkers for sensitivity to this class of chemotherapeutic drug.
Collapse
Affiliation(s)
- Li-Yao Huang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Duen-Wei Hsu
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Catherine J Pears
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
5
|
Sun G, Wang C, Wang S, Sun H, Zeng K, Zou R, Lin L, Liu W, Sun N, Song H, Liu W, Zhou T, Jin F, Shan Z, Zhao Y. An H3K4me3 reader, BAP18 as an adaptor of COMPASS-like core subunits co-activates ERα action and associates with the sensitivity of antiestrogen in breast cancer. Nucleic Acids Res 2020; 48:10768-10784. [PMID: 32986841 PMCID: PMC7641737 DOI: 10.1093/nar/gkaa787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 08/19/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022] Open
Abstract
Estrogen receptor alpha (ERα) signaling pathway is essential for ERα-positive breast cancer progression and endocrine therapy resistance. Bromodomain PHD Finger Transcription Factor (BPTF) associated protein of 18kDa (BAP18) has been recognized as a crucial H3K4me3 reader. However, the whole genomic occupation of BAP18 and its biological function in breast cancer is still elusive. Here, we found that higher expression of BAP18 in ERα-positive breast cancer is positively correlated with poor prognosis. ChIP-seq analysis further demonstrated that the half estrogen response elements (EREs) and the CCCTC binding factor (CTCF) binding sites are the significant enrichment sites found in estrogen-induced BAP18 binding sites. Also, we provide the evidence to demonstrate that BAP18 as a novel co-activator of ERα is required for the recruitment of COMPASS-like core subunits to the cis-regulatory element of ERα target genes in breast cancer cells. BAP18 is recruited to the promoter regions of estrogen-induced genes, accompanied with the enrichment of the lysine 4-trimethylated histone H3 tail (H3K4me3) in the presence of E2. Furthermore, BAP18 promotes cell growth and associates the sensitivity of antiestrogen in ERα-positive breast cancer. Our data suggest that BAP18 facilitates the association between ERα and COMPASS-like core subunits, which might be an essential epigenetic therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Ge Sun
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City 110122, Liaoning Province, China
| | - Chunyu Wang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City 110122, Liaoning Province, China
| | - Shengli Wang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City 110122, Liaoning Province, China
| | - Hongmiao Sun
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City 110122, Liaoning Province, China
| | - Kai Zeng
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City 110122, Liaoning Province, China
| | - Renlong Zou
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City 110122, Liaoning Province, China
| | - Lin Lin
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City 110122, Liaoning Province, China
| | - Wei Liu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City 110122, Liaoning Province, China
| | - Ning Sun
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City 110122, Liaoning Province, China
| | - Huijuan Song
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City 110122, Liaoning Province, China
| | - Wensu Liu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City 110122, Liaoning Province, China
| | - Tingting Zhou
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City 110122, Liaoning Province, China
| | - Feng Jin
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang City 110001, Liaoning Province, China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, The First Affiliated Hospital of China Medical University, ShenyangCity110001, Liaoning Province, China
| | - Yue Zhao
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City 110122, Liaoning Province, China.,Department of Endocrinology and Metabolism, Institute of Endocrinology, The First Affiliated Hospital of China Medical University, ShenyangCity110001, Liaoning Province, China
| |
Collapse
|
6
|
Hyun K, Jeon J, Park K, Kim J. Writing, erasing and reading histone lysine methylations. Exp Mol Med 2017; 49:e324. [PMID: 28450737 PMCID: PMC6130214 DOI: 10.1038/emm.2017.11] [Citation(s) in RCA: 801] [Impact Index Per Article: 100.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 02/08/2023] Open
Abstract
Histone modifications are key epigenetic regulatory features that have important roles in many cellular events. Lysine methylations mark various sites on the tail and globular domains of histones and their levels are precisely balanced by the action of methyltransferases ('writers') and demethylases ('erasers'). In addition, distinct effector proteins ('readers') recognize specific methyl-lysines in a manner that depends on the neighboring amino-acid sequence and methylation state. Misregulation of histone lysine methylation has been implicated in several cancers and developmental defects. Therefore, histone lysine methylation has been considered a potential therapeutic target, and clinical trials of several inhibitors of this process have shown promising results. A more detailed understanding of histone lysine methylation is necessary for elucidating complex biological processes and, ultimately, for developing and improving disease treatments. This review summarizes enzymes responsible for histone lysine methylation and demethylation and how histone lysine methylation contributes to various biological processes.
Collapse
Affiliation(s)
- Kwangbeom Hyun
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jongcheol Jeon
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kihyun Park
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jaehoon Kim
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
7
|
Ma JE, Lang QQ, Qiu FF, Zhang L, Li XG, Luo W, Wang J, Wang X, Lin XR, Liu WS, Nie QH, Zhang XQ. Negative Glucocorticoid Response-Like Element from the First Intron of the Chicken Growth Hormone Gene Represses Gene Expression in the Rat Pituitary Tumor Cell Line. Int J Mol Sci 2016; 17:ijms17111863. [PMID: 27834851 PMCID: PMC5133863 DOI: 10.3390/ijms17111863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 12/29/2022] Open
Abstract
The effects of introns, especially the first intron, on the regulation of gene expression remains unclear. Therefore, the objective of the present study was to investigate the transcriptional regulatory function of intron 1 on the chicken growth hormone (cGH) gene in the rat pituitary tumor cell line (GH4-C1). Transient transfection using first-intron-inserted cGH complete coding sequences (CDSs) and non-intron-inserted cGH CDS plasmids, quantitative RT-PCR (qRT-PCR) and western blot assays were used to detect the expression of cGH. The reporter gene assay was also used to investigate the effect of a series of fragments in the first intron of cGH on gene expression in GH4-C1. All of the results revealed that a 200-bp fragment located in the +485/+684 region of intron 1 was essential for repressing the expression of cGH. Further informatics analysis showed that there was a cluster of 13 transcriptional factor binding sites (TFBSs) in the +485/+684 region of the cGH intron 1. Disruption of a glucocorticoid response-like element (the 19-nucleotide sequence 5'-AGGCTTGACAGTGACCTCC-3') containing a T-box motif (TGACCT) located within this DNA fragment increased the expression of the reporter gene in GH4-C1. In addition, an electrophoretic mobility shift assay (EMSA) revealed a glucocorticoid receptor (GR) protein of rat binding to the glucocorticoid response-like element. Together, these results indicate that there is a negative glucocorticoid response-like element (nGRE) located in the +591/+609 region within the first intron of cGH, which is essential for the down-regulation of cGH expression.
Collapse
Affiliation(s)
- Jing-E Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qian-Qian Lang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Feng-Fang Qiu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Li Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xiang-Guang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Juan Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xing Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xi-Ran Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Wen-Sheng Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qing-Hua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Xi-Quan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
- Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Lopes JAG, Borges-Canha M, Pimentel-Nunes P. Innate immunity and hepatocarcinoma: Can toll-like receptors open the door to oncogenesis? World J Hepatol 2016; 8:162-182. [PMID: 26839640 PMCID: PMC4724579 DOI: 10.4254/wjh.v8.i3.162] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocarcinoma (HCC) is a highly prevalent cancer worldwide and its inflammatory background was established long ago. Recent studies have shown that innate immunity is closely related to the HCC carcinogenesis. An effective innate immunity response relies on the toll-like receptors (TLR) found in several different liver cells which, through different ligands and many signaling pathways can elicit, not only a pro-inflammatory but also an oncogenic or anti-oncogenic response. Our aim was to study the role of TLRs in the liver oncogenesis and as a consequence their value as potential therapeutic targets. We performed a systematic review of PubMed searching for original articles studying the relationship between HCC and TLRs until March 2015. TLR2 appears to be a fundamental stress-sensor as its absence reveals an augmented tendency to accumulate DNA-damages and to cell survival. However, pathways are still not fully understood as TLR2 up-regulation was also associated to enhanced tumorigenesis. TLR3 has a well-known protective role influencing crucial processes like angiogenesis, cell growth or proliferation. TLR4 works as an interesting epithelial-mesenchymal transition’s inducer and a promoter of cell survival probably inducing HCC carcinogenesis even though an anti-cancer role has already been observed. TLR9’s influence on carcinogenesis is also controversial and despite a potential anti-cancer capacity, a pro-tumorigenic role is more likely. Genetic polymorphisms in some TLRs have been found and its influence on the risk of HCC has been reported. As therapeutic targets, TLRs are already in use and have a great potential. In conclusion, TLRs have been shown to be an interesting influence on the HCC’s microenvironment, with TLR3 clearly determining an anti-tumour influence. TLR4 and TLR9 are considered to have a positive relationship with tumour development even though, in each of them anti-tumorigenic signals have been described. TLR2 presents a more ambiguous role, possibly depending on the stage of the inflammation-HCC axis.
Collapse
|