1
|
Bechtold BJ, Lynch KD, Oyanna VO, Call MR, White LA, Graf TN, Oberlies NH, Clarke JD. Pharmacokinetic Effects of Different Models of Nonalcoholic Fatty Liver Disease in Transgenic Humanized OATP1B Mice. Drug Metab Dispos 2024; 52:355-367. [PMID: 38485280 PMCID: PMC11023818 DOI: 10.1124/dmd.123.001607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/05/2024] [Accepted: 03/07/2023] [Indexed: 03/21/2024] Open
Abstract
Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 (collectively, OATP1B) transporters encoded by the solute carrier organic anion transporter (SLCO) genes mediate uptake of multiple pharmaceutical compounds. Nonalcoholic steatohepatitis (NASH), a severe form of nonalcoholic fatty liver disease (NAFLD), decreases OATP1B abundance. This research characterized the pathologic and pharmacokinetics effects of three diet- and one chemical-induced NAFLD model in male and female humanized OATP1B mice, which comprises knock-out of rodent Oatp orthologs and insertion of human SLCO1B1 and SLCO1B3. Histopathology scoring demonstrated elevated steatosis and inflammation scores for all NAFLD-treatment groups. Female mice had minor changes in SLCO1B1 expression in two of the four NAFLD treatment groups, and pitavastatin (PIT) area under the concentration-time curve (AUC) increased in female mice in only one of the diet-induced models. OATP1B3 expression decreased in male and female mice in the chemical-induced NAFLD model, with a coinciding increase in PIT AUC, indicating the chemical-induced model may better replicate changes in OATP1B3 expression and OATP substrate disposition observed in NASH patients. This research also tested a reported multifactorial pharmacokinetic interaction between NAFLD and silymarin, an extract from milk thistle seeds with notable OATP-inhibitory effects. Males showed no change in PIT AUC, whereas female PIT AUC increased 1.55-fold from the diet alone and the 1.88-fold from the combination of diet with silymarin, suggesting that female mice are more sensitive to pharmacokinetic changes than male mice. Overall, the humanized OATP1B model should be used with caution for modeling NAFLD and multifactorial pharmacokinetic interactions. SIGNIFICANCE STATEMENT: Advanced stages of NAFLD cause decreased hepatic OATP1B abundance and increase systemic exposure to OATP substrates in human patients. The humanized OATP1B mouse strain may provide a clinically relevant model to recapitulate these observations and predict pharmacokinetic interactions in NAFLD. This research characterized three diet-induced and one drug-induced NAFLD model in a humanized OATP1B mouse model. Additionally, a multifactorial pharmacokinetic interaction was observed between silymarin and NAFLD.
Collapse
Affiliation(s)
- Baron J Bechtold
- Department of Pharmaceutical Sciences (B.J.B., K.D.L., V.O.O., M.R.C., J.D.C.) and Washington Animal Disease Diagnostic Laboratory (L.A.W.), Washington State University, Pullman, Washington; and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.H.O.)
| | - Katherine D Lynch
- Department of Pharmaceutical Sciences (B.J.B., K.D.L., V.O.O., M.R.C., J.D.C.) and Washington Animal Disease Diagnostic Laboratory (L.A.W.), Washington State University, Pullman, Washington; and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.H.O.)
| | - Victoria O Oyanna
- Department of Pharmaceutical Sciences (B.J.B., K.D.L., V.O.O., M.R.C., J.D.C.) and Washington Animal Disease Diagnostic Laboratory (L.A.W.), Washington State University, Pullman, Washington; and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.H.O.)
| | - M Ridge Call
- Department of Pharmaceutical Sciences (B.J.B., K.D.L., V.O.O., M.R.C., J.D.C.) and Washington Animal Disease Diagnostic Laboratory (L.A.W.), Washington State University, Pullman, Washington; and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.H.O.)
| | - Laura A White
- Department of Pharmaceutical Sciences (B.J.B., K.D.L., V.O.O., M.R.C., J.D.C.) and Washington Animal Disease Diagnostic Laboratory (L.A.W.), Washington State University, Pullman, Washington; and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.H.O.)
| | - Tyler N Graf
- Department of Pharmaceutical Sciences (B.J.B., K.D.L., V.O.O., M.R.C., J.D.C.) and Washington Animal Disease Diagnostic Laboratory (L.A.W.), Washington State University, Pullman, Washington; and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.H.O.)
| | - Nicholas H Oberlies
- Department of Pharmaceutical Sciences (B.J.B., K.D.L., V.O.O., M.R.C., J.D.C.) and Washington Animal Disease Diagnostic Laboratory (L.A.W.), Washington State University, Pullman, Washington; and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.H.O.)
| | - John D Clarke
- Department of Pharmaceutical Sciences (B.J.B., K.D.L., V.O.O., M.R.C., J.D.C.) and Washington Animal Disease Diagnostic Laboratory (L.A.W.), Washington State University, Pullman, Washington; and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.H.O.)
| |
Collapse
|
2
|
Kovalska M, Hnilicova P, Kalenska D, Adamkov M, Kovalska L, Lehotsky J. Alzheimer's Disease-like Pathological Features in the Dorsal Hippocampus of Wild-Type Rats Subjected to Methionine-Diet-Evoked Mild Hyperhomocysteinaemia. Cells 2023; 12:2087. [PMID: 37626897 PMCID: PMC10453870 DOI: 10.3390/cells12162087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Multifactorial interactions, including nutritional state, likely participate in neurodegeneration's pathogenesis and evolution. Dysregulation in methionine (Met) metabolism could lead to the development of hyperhomocysteinaemia (hHcy), playing an important role in neuronal dysfunction, which could potentially lead to the development of Alzheimer's disease (AD)-like pathological features. This study combines proton magnetic resonance spectroscopy (1H MRS) with immunohistochemical analysis to examine changes in the metabolic ratio and histomorphological alterations in the dorsal rat hippocampus (dentate gyrus-DG) subjected to a high Met diet. Male Wistar rats (420-480 g) underwent hHcy evoked by a Met-enriched diet (2 g/kg of weight/day) lasting four weeks. Changes in the metabolic ratio profile and significant histomorphological alterations have been found in the DG of hHcy rats. We have detected increased morphologically changed neurons and glial cells with increased neurogenic markers and apolipoprotein E positivity parallel with a diminished immunosignal for the N-Methyl-D-Aspartate receptor 1 in hHcy animals. A Met diet induced hHcy, likely via direct Hcy neurotoxicity, an interference with one carbon unit metabolism, and/or epigenetic regulation. These conditions lead to the progression of neurodegeneration and the promotion of AD-like pathological features in the less vulnerable hippocampal DG, which presents a plausible therapeutic target.
Collapse
Affiliation(s)
- Maria Kovalska
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.K.); (M.A.)
| | - Petra Hnilicova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dagmar Kalenska
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.K.); (M.A.)
| | - Libusa Kovalska
- Clinic of Stomatology and Maxillofacial Surgery, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Jan Lehotsky
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
3
|
Xia Z, Xu J, Lu E, He W, Deng S, Gong AY, Strass-Soukup J, Martins GA, Lu G, Chen XM. m 6A mRNA Methylation Regulates Epithelial Innate Antimicrobial Defense Against Cryptosporidial Infection. Front Immunol 2021; 12:705232. [PMID: 34295340 PMCID: PMC8291979 DOI: 10.3389/fimmu.2021.705232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/22/2021] [Indexed: 12/28/2022] Open
Abstract
Increasing evidence supports that N6-methyladenosine (m6A) mRNA modification may play an important role in regulating immune responses. Intestinal epithelial cells orchestrate gastrointestinal mucosal innate defense to microbial infection, but underlying mechanisms are still not fully understood. In this study, we present data demonstrating significant alterations in the topology of host m6A mRNA methylome in intestinal epithelial cells following infection by Cryptosporidium parvum, a coccidian parasite that infects the gastrointestinal epithelium and causes a self-limited disease in immunocompetent individuals but a life-threatening diarrheal disease in AIDS patients. Altered m6A methylation in mRNAs in intestinal epithelial cells following C. parvum infection is associated with downregulation of alpha-ketoglutarate-dependent dioxygenase alkB homolog 5 and the fat mass and obesity-associated protein with the involvement of NF-кB signaling. Functionally, m6A methylation statuses influence intestinal epithelial innate defense against C. parvum infection. Specifically, expression levels of immune-related genes, such as the immunity-related GTPase family M member 2 and interferon gamma induced GTPase, are increased in infected cells with a decreased m6A mRNA methylation. Our data support that intestinal epithelial cells display significant alterations in the topology of their m6A mRNA methylome in response to C. parvum infection with the involvement of activation of the NF-кB signaling pathway, a process that modulates expression of specific immune-related genes and contributes to fine regulation of epithelial antimicrobial defense.
Collapse
Affiliation(s)
- Zijie Xia
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States
| | - Jihao Xu
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States
| | - Eugene Lu
- Department of Biology, School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, NE, United States
| | - Wei He
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States
| | - Silu Deng
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States.,Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Ai-Yu Gong
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States.,Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Juliane Strass-Soukup
- Department of Chemistry, Creighton University College of Arts & Sciences, Omaha, NE, United States
| | - Gislaine A Martins
- Department of Medicine and Biomedical Sciences, Research Division of Immunology Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Guoqing Lu
- Department of Biology, School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, NE, United States
| | - Xian-Ming Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States.,Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
4
|
Precision Nutrition for Alzheimer's Prevention in ApoE4 Carriers. Nutrients 2021; 13:nu13041362. [PMID: 33921683 PMCID: PMC8073598 DOI: 10.3390/nu13041362] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
The ApoE4 allele is the most well-studied genetic risk factor for Alzheimer’s disease, a condition that is increasing in prevalence and remains without a cure. Precision nutrition targeting metabolic pathways altered by ApoE4 provides a tool for the potential prevention of disease. However, no long-term human studies have been conducted to determine effective nutritional protocols for the prevention of Alzheimer’s disease in ApoE4 carriers. This may be because relatively little is yet known about the precise mechanisms by which the genetic variant confers an increased risk of dementia. Fortunately, recent research is beginning to shine a spotlight on these mechanisms. These new data open up the opportunity for speculation as to how carriers might ameliorate risk through lifestyle and nutrition. Herein, we review recent discoveries about how ApoE4 differentially impacts microglia and inflammatory pathways, astrocytes and lipid metabolism, pericytes and blood–brain barrier integrity, and insulin resistance and glucose metabolism. We use these data as a basis to speculate a precision nutrition approach for ApoE4 carriers, including a low-glycemic index diet with a ketogenic option, specific Mediterranean-style food choices, and a panel of seven nutritional supplements. Where possible, we integrate basic scientific mechanisms with human observational studies to create a more complete and convincing rationale for this precision nutrition approach. Until recent research discoveries can be translated into long-term human studies, a mechanism-informed practical clinical approach may be useful for clinicians and patients with ApoE4 to adopt a lifestyle and nutrition plan geared towards Alzheimer’s risk reduction.
Collapse
|
5
|
Francis JH, Diamond EL, Chi P, Jaben K, Hyman DM, Abramson DH. MEK Inhibitor-Associated Central Retinal Vein Occlusion Associated with Hyperhomocysteinemia and MTHFR Variants. Ocul Oncol Pathol 2019; 6:159-163. [PMID: 32509759 DOI: 10.1159/000501155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/16/2019] [Indexed: 02/04/2023] Open
Abstract
Background Central retinal vein occlusion (CRVO) is a visually threatening event that has rarely been observed in patients taking MEK1/2 inhibitors and that may necessitate permanent discontinuation of a potentially efficacious therapy. We investigated the clinical characteristics of CRVO in patients on mitogen-activated protein kinase kinase (MEK) inhibition to better understand their predisposing factors and clinical course. Case Series This was a single-center, retrospective cohort study (between December 2006 and September 2018). Three of 546 patients enrolled in 46 prospective trials involving treatment with MEK inhibitors at Memorial Sloan Kettering Cancer Center were identified as having CRVO. Clinical examination and course, multimodal ophthalmic imaging, and serum laboratory results (including homocysteine levels and genetic variants of methylene tetrahydrofolate reductase [MTHFR]) were reviewed for the 3 affected patients. All 3 patients with MEK inhibitor-associated CRVO had elevated serum homocysteine and gene variants of MTHFR (1 homozygous for A1298C, 1 heterozygous for A1298C, and 1 homozygous for C677T). Following intravitreous injections of anti-VEGF and discontinuation of drug, all patients regained vision to their baseline. Discussion MEK inhibitor-associated CRVO is a rare event which can exhibit visual recovery after drug cessation and intravitreous anti-VEGF injections. In this cohort, it was associated with hyperhomocysteinemia and genetic mutations in MTHFR, suggesting a potential role for hyperhomocysteinemia screening prior to initiation of MEK inhibitor therapy.
Collapse
Affiliation(s)
- Jasmine H Francis
- Ophthalmic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell Medical Center, New York, New York, USA
| | - Eli L Diamond
- Weill Cornell Medical Center, New York, New York, USA.,Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ping Chi
- Weill Cornell Medical Center, New York, New York, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Korey Jaben
- Ophthalmic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - David M Hyman
- Weill Cornell Medical Center, New York, New York, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - David H Abramson
- Ophthalmic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Weill Cornell Medical Center, New York, New York, USA
| |
Collapse
|
6
|
D'Cunha NM, Georgousopoulou EN, Boyd L, Veysey M, Sturm J, O'Brien B, Lucock M, McKune AJ, Mellor DD, Roach PD, Naumovski N. Relationship Between B-Vitamin Biomarkers and Dietary Intake with Apolipoprotein E є4 in Alzheimer's Disease. J Nutr Gerontol Geriatr 2019; 38:173-195. [PMID: 30924734 DOI: 10.1080/21551197.2019.1590287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The potential for B-vitamins to reduce plasma homocysteine (Hcy) and reduce the risk of Alzheimer's disease (AD) has been described previously. However, the role of Apolipoprotein E є4 (APOE4) in this relationship has not been adequately addressed. This case-control study explored APOE4 genotype in an Australian sample of 63 healthy individuals (female = 38; age = 76.9 ± 4.7 y) and 63 individuals with AD (female = 35, age = 77.1 ± 5.3 y). Findings revealed 55 of 126 participants expressed the APOE4 genotype with 37 of 126 having both AD and the APOE4 genotype. Analysis revealed an increased likelihood of AD when Hcy levels are >11.0 µmol/L (p = 0.012), cysteine levels were <255 µmol/L (p = 0.033) and serum folate was <22.0 nmol/L (p = 0.003; in males only). In females, dietary intake of total folate <336 µg/day (p=0.001), natural folate <270 µg/day (p = 0.011), and vitamin B2 < 1.12 mg/day (p = 0.028) was associated with an increased AD risk. These results support Hcy, Cys, and SF as useful biomarkers for AD, irrespective of APOE4 genotype and as such should be considered as part of screening and managing risk of AD.
Collapse
Affiliation(s)
- Nathan M D'Cunha
- a Faculty Health , University of Canberra , Canberra, ACT , Australia.,b Collaborative Research in Bioactives and Biomarkers (CRIBB) Group , Canberra , ACT , Australia
| | - Ekavi N Georgousopoulou
- a Faculty Health , University of Canberra , Canberra, ACT , Australia.,b Collaborative Research in Bioactives and Biomarkers (CRIBB) Group , Canberra , ACT , Australia.,c Department of Nutrition-Dietetics, School of Health and Education , Harokopio University , Athens , Greece
| | - Lyndell Boyd
- d School of Environmental and Life Sciences , University of Newcastle , NSW , Australia
| | - Martin Veysey
- d School of Environmental and Life Sciences , University of Newcastle , NSW , Australia.,e Hull York Medical School , University of York Heslington , York , UK
| | - Jonathan Sturm
- d School of Environmental and Life Sciences , University of Newcastle , NSW , Australia.,f Neurology Department , Central Coast Local Health District , New South Wales , Australia
| | - Bill O'Brien
- d School of Environmental and Life Sciences , University of Newcastle , NSW , Australia.,f Neurology Department , Central Coast Local Health District , New South Wales , Australia
| | - Mark Lucock
- d School of Environmental and Life Sciences , University of Newcastle , NSW , Australia
| | - Andrew J McKune
- a Faculty Health , University of Canberra , Canberra, ACT , Australia.,b Collaborative Research in Bioactives and Biomarkers (CRIBB) Group , Canberra , ACT , Australia.,g Research Institute for Sport and Exercise , University of Canberra , Canberra , Australia.,h University of Canberra Health Research Institute (UC-HRI), University of Canberra , Canberra , ACT , Australia
| | - Duane D Mellor
- a Faculty Health , University of Canberra , Canberra, ACT , Australia.,b Collaborative Research in Bioactives and Biomarkers (CRIBB) Group , Canberra , ACT , Australia.,h University of Canberra Health Research Institute (UC-HRI), University of Canberra , Canberra , ACT , Australia.,i School of Life Sciences , Coventry University , Coventry , UK
| | - Paul D Roach
- d School of Environmental and Life Sciences , University of Newcastle , NSW , Australia
| | - Nenad Naumovski
- a Faculty Health , University of Canberra , Canberra, ACT , Australia.,b Collaborative Research in Bioactives and Biomarkers (CRIBB) Group , Canberra , ACT , Australia.,d School of Environmental and Life Sciences , University of Newcastle , NSW , Australia.,h University of Canberra Health Research Institute (UC-HRI), University of Canberra , Canberra , ACT , Australia
| |
Collapse
|
7
|
Forero DA, López-León S, González-Giraldo Y, Dries DR, Pereira-Morales AJ, Jiménez KM, Franco-Restrepo JE. APOE gene and neuropsychiatric disorders and endophenotypes: A comprehensive review. Am J Med Genet B Neuropsychiatr Genet 2018; 177:126-142. [PMID: 27943569 DOI: 10.1002/ajmg.b.32516] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022]
Abstract
The Apolipoprotein E (APOE) gene is one of the main candidates in neuropsychiatric genetics, with hundreds of studies carried out in order to explore the possible role of polymorphisms in the APOE gene in a large number of neurological diseases, psychiatric disorders, and related endophenotypes. In the current article, we provide a comprehensive review of the structural and functional aspects of the APOE gene and its relationship with brain disorders. Evidence from genome-wide association studies and meta-analyses shows that the APOE gene has been significantly associated with several neurodegenerative disorders. Cellular and animal models show growing evidence of the key role of APOE in mechanisms of brain plasticity and behavior. Future analyses of the APOE gene might find a possible role in other neurological diseases and psychiatric disorders and related endophenotypes. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Diego A Forero
- Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia.,PhD Program in Health Sciences, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | | | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Daniel R Dries
- Chemistry Department, Juniata College, Huntingdon, Pennsylvania
| | - Angela J Pereira-Morales
- Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Karen M Jiménez
- Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Juan E Franco-Restrepo
- PhD Program in Health Sciences, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| |
Collapse
|