1
|
Nadwa EH, Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Albogami SM, Alorabi M, Batiha GES, De Waard M. Cholinergic dysfunction in COVID-19: frantic search and hoping for the best. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:453-468. [PMID: 36460816 PMCID: PMC9735034 DOI: 10.1007/s00210-022-02346-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
Abstract
A novel coronavirus known as severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is a potential cause of acute respiratory infection called coronavirus disease 2019 (COVID-19). The binding of SARS-CoV-2 with angiotensin-converting enzyme 2 (ACE2) induces a series of inflammatory cellular events with cytopathic effects leading to cell injury and hyperinflammation. Severe SARS-CoV-2 infection may lead to dysautonomia and sympathetic storm due to dysfunction of the autonomic nervous system (ANS). Therefore, this review aimed to elucidate the critical role of the cholinergic system (CS) in SARS-CoV-2 infection. The CS forms a multi-faceted network performing diverse functions in the body due to its distribution in the neuronal and non-neuronal cells. Acetylcholine (ACh) acts on two main types of receptors which are nicotinic receptors (NRs) and muscarinic receptors (MRs). NRs induce T cell anergy with impairment of antigen-mediated signal transduction. Nicotine through activation of T cell NRs inhibits the expression and release of the pro-inflammatory cytokines. NRs play important anti-inflammatory effects while MRs promote inflammation by inducing the release of pro-inflammatory cytokines. SARS-CoV-2 infection can affect the morphological and functional stability of CS through the disruption of cholinergic receptors. SARS-CoV-2 spike protein is similar to neurotoxins, which can bind to nicotinic acetylcholine receptors (nAChR) in the ANS and brain. Therefore, cholinergic receptors mainly nAChR and related cholinergic agonists may affect the pathogenesis of SARS-CoV-2 infection. Cholinergic dysfunction in COVID-19 is due to dysregulation of nAChR by SARS-CoV-2 promoting the central sympathetic drive with the development of the sympathetic storm. As well, nAChR activators through interaction with diverse signaling pathways can reduce the risk of inflammatory disorders in COVID-19. In addition, nAChR activators may mitigate endothelial dysfunction (ED), oxidative stress (OS), and associated coagulopathy in COVID-19. Similarly, nAChR activators may improve OS, inflammatory changes, and cytokine storm in COVID-19. Therefore, nAChR activators like varenicline in virtue of its anti-inflammatory and anti-oxidant effects with direct anti-SARS-CoV-2 effect could be effective in the management of COVID-19.
Collapse
Affiliation(s)
- Eman Hassan Nadwa
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakakah, 72345 Saudi Arabia
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Giza, 12613 Egypt
| | - Hayder M. Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132 Iraq
| | - Ali I. Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132 Iraq
| | - Engy Elekhnawy
- Microbiology and Immunology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Sarah M. Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
| | - Mohammed Alorabi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944 Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| | - Michel De Waard
- Smartox Biotechnology, 6 Rue Des Platanes, 38120 Saint-Egrève, France
- L’Institut du Thorax, INSERM, CNRS, UNIV NANTES, 44007 Nantes, France
- LabEx “Ion Channels, Science & Therapeutics”, Université de Nice Sophia-Antipolis, 06560 Valbonne, France
| |
Collapse
|
3
|
de Oliveira LG, de Souza Angelo Y, Yamamoto P, Carregari VC, Crunfli F, Reis-de-Oliveira G, Costa L, Vendramini PH, Almeida ÉD, Dos Santos NB, Firmino EM, Paiva IM, Almeida GM, Sebollela A, Polonio CM, Zanluqui NG, de Oliveira MG, da Silva P, Gastão Davanzo G, Ayupe MC, Loureiro Salgado C, de Souza Filho AF, de Araújo MV, Silva-Pereira TT, de Almeida Campos AC, Góes LGB, Dos Passos Cunha M, Caldini EG, Lima MRDI, Fonseca DM, de Sá Guimarães AM, Minoprio PC, Munhoz CD, Mori CMC, Moraes-Vieira PM, Cunha TM, Martins-de-Souza D, Peron JPS. SARS-CoV-2 Infection Impacts Carbon Metabolism and Depends on Glutamine for Replication in Syrian Hamster Astrocytes. J Neurochem 2022; 163:113-132. [PMID: 35880385 PMCID: PMC9350388 DOI: 10.1111/jnc.15679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 01/08/2023]
Abstract
COVID‐19 causes more than million deaths worldwide. Although much is understood about the immunopathogenesis of the lung disease, a lot remains to be known on the neurological impact of COVID‐19. Here we evaluated immunometabolic changes using astrocytes in vitro and dissected brain areas of SARS‐CoV‐2 infected Syrian hamsters. We show that SARS‐CoV‐2 alters proteins of carbon metabolism, glycolysis, and synaptic transmission, many of which are altered in neurological diseases. Real‐time respirometry evidenced hyperactivation of glycolysis, further confirmed by metabolomics, with intense consumption of glucose, pyruvate, glutamine, and alpha ketoglutarate. Consistent with glutamine reduction, the blockade of glutaminolysis impaired viral replication and inflammatory response in vitro. SARS‐CoV‐2 was detected in vivo in hippocampus, cortex, and olfactory bulb of intranasally infected animals. Our data evidence an imbalance in important metabolic molecules and neurotransmitters in infected astrocytes. We suggest this may correlate with the neurological impairment observed during COVID‐19, as memory loss, confusion, and cognitive impairment.
Collapse
Affiliation(s)
- Lilian Gomes de Oliveira
- Neuroimmune Interactions Laboratory, Institute of Biomedical Science, Department of Immunology, University of São Paulo, São Paulo, SP, Brazil.,Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur, University of São Paulo, São Paulo, SP, Brazil
| | - Yan de Souza Angelo
- Neuroimmune Interactions Laboratory, Institute of Biomedical Science, Department of Immunology, University of São Paulo, São Paulo, SP, Brazil.,Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur, University of São Paulo, São Paulo, SP, Brazil
| | - Pedro Yamamoto
- Neuroimmune Interactions Laboratory, Institute of Biomedical Science, Department of Immunology, University of São Paulo, São Paulo, SP, Brazil.,Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur, University of São Paulo, São Paulo, SP, Brazil
| | - Victor Corasolla Carregari
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Lícia Costa
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Pedro Henrique Vendramini
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Érica Duque Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Barreto Dos Santos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Egidi Mayara Firmino
- Center for Research in Inflammatory Diseases (CRID); Department of Pharmacology - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Isadora Marques Paiva
- Center for Research in Inflammatory Diseases (CRID); Department of Pharmacology - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Glaucia Maria Almeida
- Department of Biocehmistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Adriano Sebollela
- Department of Biocehmistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carolina Manganeli Polonio
- Neuroimmune Interactions Laboratory, Institute of Biomedical Science, Department of Immunology, University of São Paulo, São Paulo, SP, Brazil.,Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur, University of São Paulo, São Paulo, SP, Brazil
| | - Nagela Ghabdan Zanluqui
- Neuroimmune Interactions Laboratory, Institute of Biomedical Science, Department of Immunology, University of São Paulo, São Paulo, SP, Brazil.,Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur, University of São Paulo, São Paulo, SP, Brazil
| | - Marília Garcia de Oliveira
- Neuroimmune Interactions Laboratory, Institute of Biomedical Science, Department of Immunology, University of São Paulo, São Paulo, SP, Brazil
| | - Patrick da Silva
- Neuroimmune Interactions Laboratory, Institute of Biomedical Science, Department of Immunology, University of São Paulo, São Paulo, SP, Brazil.,Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur, University of São Paulo, São Paulo, SP, Brazil
| | - Gustavo Gastão Davanzo
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marina Caçador Ayupe
- Laboratory of Mucosal Immunology, Department of Immunology - Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Caio Loureiro Salgado
- Laboratory of Mucosal Immunology, Department of Immunology - Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Antônio Francisco de Souza Filho
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marcelo Valdemir de Araújo
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Taiana Tainá Silva-Pereira
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | - Elia Garcia Caldini
- Laboratory of Cellular Biology (LIM 59), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | - Denise Morais Fonseca
- Laboratory of Mucosal Immunology, Department of Immunology - Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Ana Márcia de Sá Guimarães
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Carolina Demarchi Munhoz
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cláudia Madalena Cabrera Mori
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo, SP, Brazil
| | - Pedro Manoel Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Thiago Mattar Cunha
- Center for Research in Inflammatory Diseases (CRID); Department of Pharmacology - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil.,D'Or Institute for Research and Education (IDOR), São Paulo, SP, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, SP, Brazil
| | - Jean Pierre Schatzmann Peron
- Neuroimmune Interactions Laboratory, Institute of Biomedical Science, Department of Immunology, University of São Paulo, São Paulo, SP, Brazil.,Neuroimmunology of Arboviruses Laboratory, Scientific Platform Pasteur, University of São Paulo, São Paulo, SP, Brazil.,Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Zhang Y, Wang M, Zhang X, Jiang Z, Zhang Y, Fu X, Li Y, Cao D, Han J, Tong J. Helicid Improves Lipopolysaccharide-Induced Apoptosis of C6 Cells by Regulating SH2D5 DNA Methylation via the CytC/Caspase9/Caspase3 Signaling Pathway. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:9242827. [PMID: 35173561 PMCID: PMC8820944 DOI: 10.1155/2022/9242827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022]
Abstract
DNA methylation is reportedly associated with stress responses and depression. Treatment with antidepressants can regulate DNA methylation and, subsequently, gene expression in the hippocampus. Hence, DNA methylation is a potential target for treatment of depression. Screening of high-throughput data of a rat model of chronic unpredictable mild stress revealed relatively low expression of SH2 domain-containing 5 (SH2D5). SH2D5 can be overexpressed by treatment with helicid. Therefore, in order to further explore the role of SH2D5 in depression and whether helicid mediates the DNA methylation of SH2D5 as a potential antidepressant role, SH2D5 was overexpressed in C6 cells as a lipopolysaccharides (LPS)-induced model of depression. The expression levels of Bax, Bcl-2, Bad, and Daxx, and changes to the CytC/caspase9/caspase3 signal pathway were detected by qRT-PCR and Western blot analyses. After treatment with helicid or silencing of SH2D5, the above indices were detected. The results showed that helicid regulated the CytC/caspase9/caspase3 signaling pathway and improved the apoptosis indices of C6 cells through the overexpression of SH2D5. Interestingly, silencing of SH2D5 reversed the effects of helicid on the above indices. Then, in order to study the underlying mechanism, the cells were administered to helicid or 5-aza-2'-deoxycytidine (5-AzaD) and expression of SH2D5 was detected by qRT-PCR and Western blot analyses, while to assess the DNA methylation level of SH2D5 using bisulfite sequencing/PCR. The results showed that SH2D5 was hypermethylated with low expression in LPS-induced C6 cells, which was reversed by helicid and 5-AzaD. These results suggest that helicid may affect the CytC/caspase9/caspase3 apoptosis signaling pathway and improve the apoptosis indices by mediating DNA methylation of SH2D5.
Collapse
Affiliation(s)
- Yuan Zhang
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, Anhui, China
- Wannan Medical College, Wuhu 241002, Anhui, China
| | - Mei Wang
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, Anhui, China
- Wannan Medical College, Wuhu 241002, Anhui, China
| | - Xiaotong Zhang
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, Anhui, China
- Wannan Medical College, Wuhu 241002, Anhui, China
| | - Zhenyi Jiang
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, Anhui, China
- Wannan Medical College, Wuhu 241002, Anhui, China
| | | | - Xiangjun Fu
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, Anhui, China
- Wannan Medical College, Wuhu 241002, Anhui, China
| | - Yanna Li
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, Anhui, China
- Wannan Medical College, Wuhu 241002, Anhui, China
| | - Danping Cao
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, Anhui, China
- Wannan Medical College, Wuhu 241002, Anhui, China
| | - Jun Han
- Wannan Medical College, Wuhu 241002, Anhui, China
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines, Southern Anhui, Wuhu 241002, Anhui, China
| | - Jiucui Tong
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, Anhui, China
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines, Southern Anhui, Wuhu 241002, Anhui, China
| |
Collapse
|