1
|
Teschke R. Hemochromatosis: Ferroptosis, ROS, Gut Microbiome, and Clinical Challenges with Alcohol as Confounding Variable. Int J Mol Sci 2024; 25:2668. [PMID: 38473913 DOI: 10.3390/ijms25052668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Hemochromatosis represents clinically one of the most important genetic storage diseases of the liver caused by iron overload, which is to be differentiated from hepatic iron overload due to excessive iron release from erythrocytes in patients with genetic hemolytic disorders. This disorder is under recent mechanistic discussion regarding ferroptosis, reactive oxygen species (ROS), the gut microbiome, and alcohol abuse as a risk factor, which are all topics of this review article. Triggered by released intracellular free iron from ferritin via the autophagic process of ferritinophagy, ferroptosis is involved in hemochromatosis as a specific form of iron-dependent regulated cell death. This develops in the course of mitochondrial injury associated with additional iron accumulation, followed by excessive production of ROS and lipid peroxidation. A low fecal iron content during therapeutic iron depletion reduces colonic inflammation and oxidative stress. In clinical terms, iron is an essential trace element required for human health. Humans cannot synthesize iron and must take it up from iron-containing foods and beverages. Under physiological conditions, healthy individuals allow for iron homeostasis by restricting the extent of intestinal iron depending on realistic demand, avoiding uptake of iron in excess. For this condition, the human body has no chance to adequately compensate through removal. In patients with hemochromatosis, the molecular finetuning of intestinal iron uptake is set off due to mutations in the high-FE2+ (HFE) genes that lead to a lack of hepcidin or resistance on the part of ferroportin to hepcidin binding. This is the major mechanism for the increased iron stores in the body. Hepcidin is a liver-derived peptide, which impairs the release of iron from enterocytes and macrophages by interacting with ferroportin. As a result, iron accumulates in various organs including the liver, which is severely injured and causes the clinically important hemochromatosis. This diagnosis is difficult to establish due to uncharacteristic features. Among these are asthenia, joint pain, arthritis, chondrocalcinosis, diabetes mellitus, hypopituitarism, hypogonadotropic hypogonadism, and cardiopathy. Diagnosis is initially suspected by increased serum levels of ferritin, a non-specific parameter also elevated in inflammatory diseases that must be excluded to be on the safer diagnostic side. Diagnosis is facilitated if ferritin is combined with elevated fasting transferrin saturation, genetic testing, and family screening. Various diagnostic attempts were published as algorithms. However, none of these were based on evidence or quantitative results derived from scored key features as opposed to other known complex diseases. Among these are autoimmune hepatitis (AIH) or drug-induced liver injury (DILI). For both diseases, the scored diagnostic algorithms are used in line with artificial intelligence (AI) principles to ascertain the diagnosis. The first-line therapy of hemochromatosis involves regular and life-long phlebotomy to remove iron from the blood, which improves the prognosis and may prevent the development of end-stage liver disease such as cirrhosis and hepatocellular carcinoma. Liver transplantation is rarely performed, confined to acute liver failure. In conclusion, ferroptosis, ROS, the gut microbiome, and concomitant alcohol abuse play a major contributing role in the development and clinical course of genetic hemochromatosis, which requires early diagnosis and therapy initiation through phlebotomy as a first-line treatment.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Germany
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, D-60590 Frankfurt am Main, Germany
| |
Collapse
|
2
|
Banfield LR, Knapp KM, Pilling LC, Melzer D, Atkins JL. Hemochromatosis Genetic Variants and Musculoskeletal Outcomes: 11.5-Year Follow-Up in the UK Biobank Cohort Study. JBMR Plus 2023; 7:e10794. [PMID: 37808392 PMCID: PMC10556271 DOI: 10.1002/jbm4.10794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 10/10/2023] Open
Abstract
The iron overload disorder hemochromatosis is primarily caused by the homozygous HFE p.C282Y variant, but the scale of excess related musculoskeletal morbidity is uncertain. We estimated hemochromatosis-genotype associations with clinically diagnosed musculoskeletal outcomes and joint replacement surgeries in the UK Biobank community cohort. A total of 451,143 European ancestry participants (40 to 70 years at baseline) were followed in hospital records (mean 11.5-years). Cox proportional hazards models estimated HFE p.C282Y and p.H63D associations with incident outcomes. Male p.C282Y homozygotes (n = 1294) had increased incidence of osteoarthritis (n = 52, hazard ratio [HR]: 2.12 [95% confidence interval, CI: 1.61 to 2.80]; p = 8.8 × 10-8), hip replacement (n = 88, HR: 1.84 [95% CI: 1.49 to 2.27]; p = 1.6 × 10-8), knee replacement (n = 61, HR: 1.54 [95% CI: 1.20 to 1.98]; p = 8.4 × 10-4), and ankle and shoulder replacement, compared to males with no HFE mutations. Cumulative incidence analysis, using Kaplan-Meier lifetable probabilities demonstrated 10.4% of male homozygotes were projected to develop osteoarthritis and 15.5% to have hip replacements by age 75, versus 5.0% and 8.7% respectively without mutations. Male p.C282Y homozygotes also had increased incidence of femoral fractures (n = 15, HR: 1.72 [95% CI: 1.03 to 2.87]; p = 0.04) and osteoporosis (n = 21, HR: 1.71 [95% CI: 1.11 to 2.64]; p = 0.02), although the latter association was limited to those with liver fibrosis/cirrhosis diagnoses. Female p.C282Y homozygotes had increased incidence of osteoarthritis only (n = 57, HR: 1.46, [95% CI: 1.12 to 1.89]; p = 0.01). Male p.C282Y/p.H63D compound heterozygotes experienced a modest increased risk of hip replacements (n = 234, HR: 1.17 [95% CI: 1.02 to 1.33], p = 0.02), but this did not pass multiple testing corrections. In this large community cohort, the p.C282Y homozygote genotype was associated with substantial excess musculoskeletal morbidity in males. Wider HFE genotype testing may be justified, including in orthopedic clinics serving higher HFE variant prevalence populations. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Lucy R Banfield
- The Department of Health and Care Professions, Faculty of Health and Life Sciences University of Exeter Exeter UK
| | - Karen M Knapp
- The Department of Health and Care Professions, Faculty of Health and Life Sciences University of Exeter Exeter UK
| | - Luke C Pilling
- Epidemiology and Public Health Group, The Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences University of Exeter Exeter UK
| | - David Melzer
- Epidemiology and Public Health Group, The Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences University of Exeter Exeter UK
| | - Janice L Atkins
- Epidemiology and Public Health Group, The Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences University of Exeter Exeter UK
| |
Collapse
|
3
|
Heilmeier U, Burghardt AJ, Tse JJ, Kapoor P, Stok KS, Manske S, Voll RE, Schett G, Finzel S. Analysis of Hand Joint Space Morphology in Women and Men with Hereditary Hemochromatosis. Calcif Tissue Int 2023; 112:440-451. [PMID: 36738308 PMCID: PMC10025180 DOI: 10.1007/s00223-022-01050-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/25/2022] [Indexed: 02/05/2023]
Abstract
Hereditary hemochromatosis (HH) causes unbalanced iron deposition in many organs including the joints leading to severe cartilage loss and bone damage in the metacarpophalangeal joints (MCPJ). High-resolution peripheral quantitative computed tomography (HR-pQCT) and its joint space width (JSW) quantification algorithm quantifies in vivo 3D joint morphology. We therefore aimed to (i) determine feasibility and performance of the JSW algorithm in HH, (ii) quantify joint space morphology, and (iii) investigate the relationship between morphological and clinical parameters in HH. Here, we performed an exploratory study on 24 HH patients and sex- and age-matched controls using HR-pQCT imaging of MCPJ. Mineralized bone structure was automatically segmented from the grayscale image data and periosteal surface bone masks and joint space masks were generated. Mean, minimal, and maximal joint space width (JSW; JSW.MIN; JSW.MAX), JSW heterogeneity (JSW.SD), JSW asymmetry (JSW.AS), and joint space volume (JSV) were computed. Demographics and, for HH patients, disease-specific parameters were recorded. Segmentation of JS was very good with 79.7% of MCPJs successfully segmented at first attempt and 20.3% requiring semi-manual correction. HH men showed larger JSV at all MCPs (+ 25.4% < JSV < + 41.8%, p < 0.05), larger JSW.MAX at MCP 3-4 (+ 14%, 0.006 < p < 0.062), and wider JSW (+ 13%, p = 0.043) at MCP 4 relative to HH women. Compared to controls, both HH men and HH women showed larger JSW.AS and smaller JSW.MIN at all MCP levels, reaching significance for HH men at MCP 2 and 3 (JSW.AS: + 323% < JSW.AS < + 359%, 0.020 < p < 0.043; JSW.MIN: - 216% < JSW.MIN < - 225%, p < 0.043), and for women at MCP 3 (JSW.AS: + 180%, p = 0.025; JSW.MIN: - 41.8%, p = 0.022). Time since HH diagnosis was correlated positively with MCP 4 JSW.AS and JSW.SD (0.463 < ρ < 0.499, p < 0.040), and the number of phlebotomies since diagnosis was correlated with JSW.SD at all MCPs (0.432 < ρ < 0.535, p < 0.050). HR-pQCT-based JSW quantification in MCPJ of HH patients is feasible, performs well even in narrow JS, and allows to define the microstructural joint burden of HH.
Collapse
Affiliation(s)
- Ursula Heilmeier
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg - Medical Center, Hugstetterstraße 55, 79106, Freiburg, Germany.
- Musculoskeletal Quantitative Imaging Research Group, University of California San Francisco, 185 Berry Street, San Francisco, CA, 94158, USA.
| | - Andrew J Burghardt
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry Street, San Francisco, CA, 94158, USA
| | - Justin J Tse
- Department of Radiology, Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Puneet Kapoor
- Musculoskeletal Quantitative Imaging Research Group, University of California San Francisco, 185 Berry Street, San Francisco, CA, 94158, USA
| | - Kathryn S Stok
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Sarah Manske
- Department of Radiology, Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg - Medical Center, Hugstetterstraße 55, 79106, Freiburg, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stephanie Finzel
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg - Medical Center, Hugstetterstraße 55, 79106, Freiburg, Germany
| |
Collapse
|
4
|
Left Ventricular Function and Iron Loading Status in a Tertiary Center Hemochromatosis Cohort-A Cardiac Magnetic Resonance Study. Diagnostics (Basel) 2022; 12:diagnostics12112620. [PMID: 36359463 PMCID: PMC9689750 DOI: 10.3390/diagnostics12112620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Haemochromatosis (HCH), a common genetic disorder with variable penetrance, results in progressive but understudied iron overload. We prospectively evaluated organ iron loading and cardiac function in a tertiary center HCH cohort. Methods: 42 HCH patients (47 ± 14 years) and 36 controls underwent laboratory workup and cardiac magnetic resonance (CMR), including T1 and T2* mapping. Results: Myocardial T2* (myoT2*), myocardial T1 (myoT1) and liver T2* (livT2*) were lower in patients compared to controls (33 ± 4 ms vs. 36 ± 3 ms [p = 0.004], 964 ± 33 ms vs. 979 ± 25 ms [p = 0.028] and 21 ± 10 ms vs. 30 ± 5 ms [p < 0.001], respectively). MyoT2* did not reach the threshold of clinically significant iron overload (<20 ms), in any of the patients. In 22 (52.4%) patients, at least one of the tissue parameters was reduced. Reduced myocardial T2* and/or T1 were found in 10 (23.8%) patients, including 4 pts with normal livT2*. LivT2* was reduced in 18 (42.9%) patients. MyoT1 and livT2* inversely correlated with ferritin (rs = −0.351 [p = 0.028] and rs = −0.602 [p < 0.001], respectively). LivT2* by a dedicated sequence and livT2* by cardiac T2* mapping showed good agreement (ICC = 0.876 p < 0.001). Conclusions: In contemporary hemochromatosis, significant myocardial iron overload is rare. Low myocardial T2* and/or T1 values may warrant closer follow-up for accelerated myocardial iron overload even in patients without overt liver overload. Cardiac T2* mapping sequence allows for liver screening at the time of CMR.
Collapse
|
5
|
Arora EK, Sharma V. Iron metabolism: pathways and proteins in homeostasis. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Iron is essential to human survival. The biological role and trafficking of this trace essential inorganic element which is also a potential toxin is constantly being researched and unfolded. Vital for oxygen transport, DNA synthesis, electron transport, neurotransmitter biosynthesis and present in numerous other heme and non-heme enzymes the physiological roles are immense. Understanding the molecules and pathways that regulate this essential element at systemic and cellular levels are of importance in improving therapeutic strategies for iron related disorders. This review highlights the progress in understanding the metabolism and trafficking of iron along with the pathophysiology of iron related disorders.
Collapse
Affiliation(s)
- Ekta Kundra Arora
- Chemistry Department, St. Stephen’s College , University of Delhi , Delhi 110007 , India
| | - Vibha Sharma
- Chemistry Department, St. Stephen’s College , University of Delhi , Delhi 110007 , India
| |
Collapse
|
6
|
Andersson L, Powell LW, Ramm LE, Ramm GA, Olynyk JK. Arthritis Prediction of Advanced Hepatic Fibrosis in HFE Hemochromatosis. Mayo Clin Proc 2022; 97:1649-1655. [PMID: 35422339 DOI: 10.1016/j.mayocp.2022.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/23/2022] [Accepted: 02/14/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To evaluate whether arthritis predicts the likelihood of advanced hepatic fibrosis in HFE hemochromatosis. PATIENTS AND METHODS We conducted a retrospective, cross-sectional analysis of 112 well-characterized patients with HFE hemochromatosis and liver biopsy-validated fibrosis staging recruited between January 1, 1983, and December 31, 2013. Complete clinical, biochemical, hematologic, and noninvasive serum biochemical indices (aspartate aminotransferase to platelet ratio index [APRI] and fibrosis 4 index [FIB4]) were available. Scheuer fibrosis stages 3 and 4, APRI greater than 0.44, or FIB4 greater than 1.1 were used to define advanced hepatic fibrosis. Comparisons between groups were performed using categorical analysis, unpaired or paired t test. RESULTS Male (n=76) and female (n=36) patients were similar in age. Nineteen patients had advanced hepatic fibrosis, and 47 had hemochromatosis arthritis. Arthritis was significantly associated with the presence of advanced hepatic fibrosis as determined by liver biopsy (sensitivity, 84%, [95% CI, 62% to 95%]; negative predictive value, 95% [95% CI, 87% to 99%]; relative risk, 7.4 [95% CI, 2.5 to 23]; P<.001), APRI (sensitivity, 75% [95% CI, 55% to 88%]; negative predictive value, 91% [95% CI, 81% to 96%]; relative risk, 4.5 [95% CI, 2.0 to 10.2]; P<.001), or FIB4 (sensitivity, 61% [95% CI, 41% to 78%]; negative predictive value, 67% [95% CI, 68% to 90%]; relative risk, 2.2 [95% CI, 1.1 to 4.6]; P=.03). Mean cell volume values were significantly higher pretreatment in patients with F3-4 fibrosis (96.7±1.1 fL) compared with F0-2 fibrosis (93.4±0.5 fL; P=.004) and declined following treatment (F3-4, 93.2±0.9 fL, P=.01; F0-2, 91.7±0.6 fL, P=.01). CONCLUSION Advanced hepatic fibrosis is strongly associated with arthritis in HFE hemochromatosis. The absence of arthritis predicts a low likelihood of advanced hepatic fibrosis, supporting its use as a clinical marker for advanced hepatic fibrosis in HFE hemochromatosis.
Collapse
Affiliation(s)
- Lauren Andersson
- Department of Gastroenterology and Hepatology, Fiona Stanley Fremantle Hospital Group, Murdoch, Western Australia, Australia
| | - Lawrie W Powell
- Faculty of Medicine, The University of Queensland, Herston, Brisbane, Queensland, Australia
| | - Louise E Ramm
- Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Grant A Ramm
- Faculty of Medicine, The University of Queensland, Herston, Brisbane, Queensland, Australia; Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - John K Olynyk
- Department of Gastroenterology and Hepatology, Fiona Stanley Fremantle Hospital Group, Murdoch, Western Australia, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.
| |
Collapse
|
7
|
Zoller H, Schaefer B, Vanclooster A, Griffiths B, Bardou-Jacquet E, Corradini E, Porto G, Ryan J, Cornberg M. EASL Clinical Practice Guidelines on haemochromatosis. J Hepatol 2022; 77:479-502. [PMID: 35662478 DOI: 10.1016/j.jhep.2022.03.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022]
Abstract
Haemochromatosis is characterised by elevated transferrin saturation (TSAT) and progressive iron loading that mainly affects the liver. Early diagnosis and treatment by phlebotomy can prevent cirrhosis, hepatocellular carcinoma, diabetes, arthropathy and other complications. In patients homozygous for p.Cys282Tyr in HFE, provisional iron overload based on serum iron parameters (TSAT >45% and ferritin >200 μg/L in females and TSAT >50% and ferritin >300 μg/L in males and postmenopausal women) is sufficient to diagnose haemochromatosis. In patients with high TSAT and elevated ferritin but other HFE genotypes, diagnosis requires the presence of hepatic iron overload on MRI or liver biopsy. The stage of liver fibrosis and other end-organ damage should be carefully assessed at diagnosis because they determine disease management. Patients with advanced fibrosis should be included in a screening programme for hepatocellular carcinoma. Treatment targets for phlebotomy are ferritin <50 μg/L during the induction phase and <100 μg/L during the maintenance phase.
Collapse
|
8
|
Karim A, Bajbouj K, Qaisar R, Hall AC, Hamad M. The role of disrupted iron homeostasis in the development and progression of arthropathy. J Orthop Res 2022; 40:1243-1250. [PMID: 35289955 DOI: 10.1002/jor.25323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 03/13/2022] [Indexed: 02/04/2023]
Abstract
Arthropathy or joint disease leads to significant pain and disability irrespective of etiology. Clinical and experimental evidence point to the presence of considerable links between arthropathy and iron overload. Previous work has suggested that iron accumulation in the joints is often associated with increased oxidative stress, disrupted matrix metabolism, and cartilage degeneration. However, key issues regarding the role of iron overload in the pathogenesis of arthropathy remain ambiguous. For example, significant gaps in our knowledge of the primary cellular targets of iron overload-induced damage and the exact molecular mechanism through which disrupted iron homeostasis leads to joint damage still exist. The exact signaling pathway that links iron metabolism and cellular damage in arthropathy also remains largely unmapped. In this review, we focus on the relationship between iron overload and arthropathy with special emphasis on the adversarial relationship between iron that accumulates in the joints over time and cartilage homeostasis. A better understanding of the mechanisms and pathways underlying iron-induced cartilage degeneration may help in defining new prognostic markers and therapeutic targets in arthropathy.
Collapse
Affiliation(s)
- Asima Karim
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Andrew C Hall
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Mawieh Hamad
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
9
|
|
10
|
Cai C, Hu W, Chu T. Interplay Between Iron Overload and Osteoarthritis: Clinical Significance and Cellular Mechanisms. Front Cell Dev Biol 2022; 9:817104. [PMID: 35096841 PMCID: PMC8795893 DOI: 10.3389/fcell.2021.817104] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/28/2021] [Indexed: 01/15/2023] Open
Abstract
There are multiple diseases or conditions such as hereditary hemochromatosis, hemophilia, thalassemia, sickle cell disease, aging, and estrogen deficiency that can cause iron overload in the human body. These diseases or conditions are frequently associated with osteoarthritic phenotypes, such as progressive cartilage degradation, alterations in the microarchitecture and biomechanics of the subchondral bone, persistent joint inflammation, proliferative synovitis, and synovial pannus. Growing evidences suggest that the conditions of pathological iron overload are associated with these osteoarthritic phenotypes. Osteoarthritis (OA) is an important complication in patients suffering from iron overload-related diseases and conditions. This review aims to summarize the findings and observations made in the field of iron overload-related OA while conducting clinical and basic research works. OA is a whole-joint disease that affects the articular cartilage lining surfaces of bones, subchondral bones, and synovial tissues in the joint cavity. Chondrocytes, osteoclasts, osteoblasts, and synovial-derived cells are involved in the disease. In this review, we will elucidate the cellular and molecular mechanisms associated with iron overload and the negative influence that iron overload has on joint homeostasis. The promising value of interrupting the pathologic effects of iron overload is also well discussed for the development of improved therapeutics that can be used in the field of OA.
Collapse
Affiliation(s)
- Chenhui Cai
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenhui Hu
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tongwei Chu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
11
|
Adams PC, Richard L, Weir M, Speechley M. Survival and development of health conditions after iron depletion therapy in C282Y-linked hemochromatosis patients. CANADIAN LIVER JOURNAL 2021; 4:381-390. [PMID: 35989887 PMCID: PMC9235120 DOI: 10.3138/canlivj-2021-0016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 09/29/2023]
Abstract
BACKGROUND We report long-term survival and development of selected health conditions in Ontario-based referred and screened C282Y homozygotes for hemochromatosis treated by phlebotomy compared with an untreated control group known to be without HFE mutations. METHODS Patient characteristics and outcomes (all-cause mortality, liver cancer, diabetes, cirrhosis, hip or knee joint replacement, and osteoarthritis) were ascertained using a linked health administrative database held at ICES. Outcomes were assessed between groups without the outcome at baseline using Cox proportional hazards regression adjusted for age and sex. All C282Y homozygotes with elevated serum ferritin were treated by phlebotomy to reach serum ferritin of 50 µg/L. Our cohort included 527 C282Y homozygotes (311 men, 216 women, mean age 48 years) and 12,879 control participants (5,667 men and 7,212 women). RESULTS C282Y homozygotes had an increased risk of all-cause mortality (aHR 1.44 [1.19-1.75], p <0.001); hepatocellular carcinoma (aHR 8.30 [3.97-17.34], p <0.001); hip or knee joint replacement (aHR 3.06 [2.46-3.81], p <0.001); osteoarthritis (aHR 1.72 [1.47-2.01], p <0.001); and cirrhosis (aHR 3.87 [3.05-4.92], p <0.001). C282Y homozygotes did not have an increased risk for diagnosis of diabetes) (aHR 0.84 [0.67-1.07], p = 0.16) during follow-up (median 17.7 y). CONCLUSIONS C282Y homozygotes experience higher death and complication rates than individuals without HFE mutations, despite treatment by phlebotomy. Diabetes did not increase after phlebotomy therapy.
Collapse
Affiliation(s)
- Paul C Adams
- Department of Medicine, Western University, London, Ontario, Canada
| | | | - Matthew Weir
- Department of Medicine, Western University, London, Ontario, Canada
- ICES Western, London, Ontario, Canada
| | - Mark Speechley
- Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
| |
Collapse
|
12
|
Kesler AM, Kröner PT, Wijarnpreecha K, Palmer WC. Increased rates of spinal fusion surgery in patients with hereditary hemochromatosis: a five-year propensity matched cohort analysis. Eur J Gastroenterol Hepatol 2021; 33:899-904. [PMID: 32568803 DOI: 10.1097/meg.0000000000001810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECT Spinal arthropathy is associated with hereditary hemochromatosis and has been linked to calcium pyrophosphate dehydrate crystal deposition (CPPD) which resembles ankylosing spondylitis on radiograph, yet lacks clinical findings of inflammatory spinal arthritis. The aim of our study was to assess the use of spinal surgery and its outcomes in the US inpatient population with hereditary hemochromatosis from 2012 to 2016 by using the US Nationwide Inpatient Sample (NIS) database. METHODS The observational retrospective cohort study uses the NIS 2012 to 2016. All patients with hereditary hemochromatosis were included using International Classification of Diseases 9th and 10th revisions, Clinical Modification codes. The cohort was stratified according to having undergone spinal surgery and substratified by the type of surgery. The primary outcome was determining the use of spinal surgery in patients with hereditary hemochromatosis. Secondary outcomes were determining length of hospital stay and total hospital charges and costs. RESULTS A total of 39 780 patients with hereditary hemochromatosis were identified and propensity matched to nonhereditary hemochromatosis controls. The mean patient age was 61 years, and 65% were females. For the primary outcome patients with hereditary hemochromatosis underwent significantly more spinal fusion surgery compared to patients without hereditary hemochromatosis odds of 2.13 (P = 0.05). While there was no difference in mean LOS, or costs, patients with hereditary hemochromatosis had higher hospital charges. CONCLUSION Hereditary hemochromatosis is associated with higher odds of spinal fusion. It is a major complication not improved by phlebotomy, and there are currently no therapies to prevent this joint disease.
Collapse
Affiliation(s)
| | - Paul T Kröner
- Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| | - Karn Wijarnpreecha
- Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| | - William C Palmer
- Departments of Medicine
- Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
13
|
Musculoskeletal complications associated with pathological iron toxicity and its molecular mechanisms. Biochem Soc Trans 2021; 49:747-759. [PMID: 33929529 DOI: 10.1042/bst20200672] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
Iron is fundamental for several biological functions, but when in excess can lead to the development of toxic events. Some tissues and cells are more susceptible than others, but systemic iron levels can be controlled by treating patients with iron-chelating molecules and phlebotomy. An early diagnostic can be decisive to limit the progression of musculoskeletal complications like osteoarthritis and osteoporosis because of iron toxicity. In iron-related osteoarthritis, aggravation can be associated to a few events that can contribute to joints articular cartilage exposure to high iron concentrations, which can promote articular degeneration with very little chance of tissue regeneration. In contrast, bone metabolism is much more dynamic than cartilage, but progressive iron accumulation and ageing can be decisive factors for bone health. The iron overload associated with hereditary diseases like hemochromatosis, hemophilias, thalassemias and other hereditary anaemias increase the negative impact of iron toxicity in joints and bone, as well as in life quality, even when iron levels can be controlled. The molecular mechanisms by which iron can compromise cartilage and bone have been illusive and only in the last 20 years studies have started to shed some light into the molecular mechanisms associated with iron toxicity. Ferroptosis and the regulation of intracellular iron levels is instrumental in the balance between detoxification and induced cell death. In addition, these complications are accompanied with multiple susceptibility factors that can aggravate iron toxicity and should be identified. Therefore, understanding tissues microenvironment and cell communication is fundamental to contextualize iron toxicity.
Collapse
|
14
|
Kiely PDW, Lloyd ME. Ankle arthritis - an important signpost in rheumatologic practice. Rheumatology (Oxford) 2021; 60:23-33. [PMID: 33097958 PMCID: PMC7785314 DOI: 10.1093/rheumatology/keaa531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022] Open
Abstract
Ankle arthritis is a useful clinical signpost to differential diagnosis in rheumatic disease. Biomechanical features and differences in cartilage physiology compared with the knee may confer protection of the ankle joint from factors predisposing to certain arthritides. The prevalence of ankle OA is low, and usually secondary to trauma. Primary OA of the ankle should be investigated for underlying causes, especially haemochromatosis. New presentations of inflammatory mono/oligo arthritis involving the ankle are more likely due to undifferentiated arthritis or spondyloarthritis than RA, and gout over CPPD. The ankle is often involved in bacterial and viral causes of septic arthritis, especially bacterial, chikungunya and HIV infection, but rarely tuberculosis. Periarticular hind foot swelling can be confused with ankle arthritis, exemplified by Lofgren’s syndrome and hypertrophic osteoarthropathy where swelling is due to subcutaneous oedema and osteitis respectively, and the ankle joint is rarely involved.
Collapse
Affiliation(s)
- Patrick D W Kiely
- Department of Rheumatology, St George's University Hospitals NHS Foundation Trust.,Institute of Medical and Biomedical Education, St George's University of London, London
| | - Mark E Lloyd
- Department of Rheumatology, Frimley Health NHS Foundation Trust, Frimley, UK
| |
Collapse
|
15
|
Anderson GJ, Bardou-Jacquet E. Revisiting hemochromatosis: genetic vs. phenotypic manifestations. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:731. [PMID: 33987429 PMCID: PMC8106074 DOI: 10.21037/atm-20-5512] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Iron overload disorders represent an important class of human diseases. Of the primary iron overload conditions, by far the most common and best studied is HFE-related hemochromatosis, which results from homozygosity for a mutation leading to the C282Y substitution in the HFE protein. This disease is characterized by reduced expression of the iron-regulatory hormone hepcidin, leading to increased dietary iron absorption and iron deposition in multiple tissues including the liver, pancreas, joints, heart and pituitary. The phenotype of HFE-related hemochromatosis is quite variable, with some individuals showing little or no evidence of increased body iron, yet others showing severe iron loading, tissue damage and clinical sequelae. The majority of genetically predisposed individuals show at least some evidence of iron loading (increased transferrin saturation and serum ferritin), but a minority show clinical symptoms and severe consequences are rare. Thus, the disorder has a high biochemical penetrance, but a low clinical prevalence. Nevertheless, it is such a common condition in Caucasian populations (1:100–200) that it remains an important clinical entity. The phenotypic variability can largely be explained by a range of environmental, genetic and physiological factors. Men are far more likely to manifest significant disease than women, with the latter losing iron through menstrual blood loss and childbirth. Other forms of blood loss, immune system influences, the amount of bioavailable iron in the diet and lifestyle factors such as high alcohol intake can also contribute to iron loading and disease expression. Polymorphisms in a range of genes have been linked to variations in body iron levels, both in the general population and in hemochromatosis. Some of the genes identified play well known roles in iron homeostasis, yet others are novel. Other factors, including both co-morbidities and genetic polymorphisms, do not affect iron levels per se, but determine the propensity for tissue pathology.
Collapse
Affiliation(s)
- Gregory J Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute and School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Edouard Bardou-Jacquet
- Liver Disease Department, University of Rennes and French Reference Center for Hemochromatosis and Iron Metabolism Disease, Rennes, France
| |
Collapse
|
16
|
Milman NT, Schioedt FV, Junker AE, Magnussen K. Diagnosis and Treatment of Genetic HFE-Hemochromatosis: The Danish Aspect. Gastroenterology Res 2019; 12:221-232. [PMID: 31636772 PMCID: PMC6785287 DOI: 10.14740/gr1206] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022] Open
Abstract
This paper outlines the Danish aspects of HFE-hemochromatosis, which is the most frequent genetic predisposition to iron overload in the five million ethnic Danes; more than 20,000 people are homozygous for the C282Y mutation and more than 500,000 people are compound heterozygous or heterozygous for the HFE-mutations. The disorder has a long preclinical stage with gradually increasing body iron overload and eventually 30% of men will develop clinically overt disease, presenting with symptoms of fatigue, arthralgias, reduced libido, erectile dysfunction, cardiac disease and diabetes. Subsequently the disease may progress into irreversible arthritis, liver cirrhosis, cardiomyopathy, pancreatic fibrosis and osteoporosis. The effective standard treatment is repeated phlebotomies, which in the preclinical and early clinical stages ensures a normal survival rate. Early detection of the genetic predisposition to the disorder is therefore important to reduce the overall burden of clinical disease. Population screening seems to be cost-effective and should be considered.
Collapse
Affiliation(s)
- Nils Thorm Milman
- Digestive Disease Center K, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Frank Vinholt Schioedt
- Digestive Disease Center K, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anders Ellekaer Junker
- Gastrounit, Medical Division, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Karin Magnussen
- Department of Blood Center and Medical Biochemistry, Innlandet Hospital Trust, Lillehammer, Norway
| |
Collapse
|
17
|
Chehade S, Adams PC. Severe Hemochromatosis Arthropathy in the Absence of Iron Overload. Hepatology 2019; 70:1064-1065. [PMID: 30562413 DOI: 10.1002/hep.30469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/11/2018] [Indexed: 12/07/2022]
Affiliation(s)
- Samer Chehade
- Department of Medicine, University Hospital, London, ON, Canada
| | - Paul C Adams
- Department of Medicine, University Hospital, London, ON, Canada
| |
Collapse
|