1
|
Hegde D, Suprabha BS, Rao A. Organic antibacterial modifications of high-viscosity glass ionomer cement for atraumatic restorative treatment: A review. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:22-31. [PMID: 38188639 PMCID: PMC10767272 DOI: 10.1016/j.jdsr.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
High viscosity glass ionomer cement (HVGIC) has been employed as a restorative material for Atraumatic Restorative Treatment (ART). As residual caries persist after caries removal in ART, the antibacterial activity of HVGIC gains importance. Organic and inorganic substances with antibacterial properties have been incorporated into HVGIC over the years, and their effects on the antibacterial and physical properties have been studied. The objective of this paper is to review the various alterations made to HVGIC using organic compounds, their effect on the antibacterial activity, and the physical properties of the cement. Various in vitro investigations have been conducted by adding antiseptics, antibiotics, and naturally occurring antibacterial substances. Most of these compounds render superior antibacterial properties to HVGIC, but higher concentrations affect physical properties in a dose-dependent manner. However, some naturally occurring antibacterial substances, such as chitosan, improve the physical properties of HVGIC, as they enhance cross-linking and polysalt bridging. There is potential for clinical benefits to be gained from the addition of organic antibacterial compounds to HVGIC. In-depth research is required to determine the optimum concentration at which the antibacterial effect is maximum without affecting the physical properties of the cement.
Collapse
Affiliation(s)
- Damodar Hegde
- Department of Pediatric and Preventive Dentistry, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Baranya Shrikrishna Suprabha
- Department of Pediatric and Preventive Dentistry, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Arathi Rao
- Department of Pediatric and Preventive Dentistry, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
2
|
da Silva MER, de Sena MD, Colombo NH, Pereira JA, Chrisostomo DA, de Aguiar SMHCÁ, Cunha RF, Duque C. Short-term Clinical and Microbiological Performance of Resin-modified Glass Ionomer Cement Containing Chlorhexidine for Atraumatic Restorative Treatment. Int J Clin Pediatr Dent 2023; 16:S27-S32. [PMID: 37663206 PMCID: PMC10474391 DOI: 10.5005/jp-journals-10005-2612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Aim This study evaluated the short-term clinical and microbiological performance of resin-modified glass ionomer cement (RM-GIC) cement containing chlorhexidine (CHX) for atraumatic restorative treatment (ART) in primary teeth. Materials and methods The clinical trial was conducted in 36 children that received ART in primary molars either with GIC (group I, n = 18) or GIC containing 1.25% CHX (group II, n = 18). The survival rate of restorations was checked 7 days, 3, and 6 months after their application when saliva and biofilm were collected for microbiological assessment of mutans streptococci (MS) counts. Data were analyzed using the Kruskal-Wallis/Mann-Whitney U tests for clinical analysis and microbiological evaluations (p < 0.05). Results The survival rate of restorations was similar comparing groups I with II. Microbiological analysis showed a significant reduction in MS levels 7 days after the treatment in both saliva and biofilm of children treated with RM-GIC containing CHX (group II); however, MS counts at 3 and 6 months did not differ from the initial counts. Conclusion A total of 1.25% CHX improved the microbiological properties of GIC in the short term without impairing the clinical performance of ART restorations. Clinical significance Glass ionomer cement (GIC) containing CHX could be an alternative in ART procedures with the objective of promoting an additional antimicrobial effect, which is interesting for children with high counts of MS during the initial phase of adaptation to dental treatment. How to cite this article da Silva ME, de Sena MD, Colombo NH, et al. Short-term Clinical and Microbiological Performance of Resin-modified Glass Ionomer Cement Containing Chlorhexidine for Atraumatic Restorative Treatment. Int J Clin Pediatr Dent 2023;16(S-1):S27-S32.
Collapse
Affiliation(s)
- Márjully ER da Silva
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Marina D de Sena
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Natália H Colombo
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Jesse A Pereira
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Daniela A Chrisostomo
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Sandra MHCÁ de Aguiar
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Robson F Cunha
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Cristiane Duque
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| |
Collapse
|
3
|
Paulraj J, Nagar P. Antimicrobial Efficacy of Triphala and Propolis-modified Glass Ionomer Cement: An In Vitro Study. Int J Clin Pediatr Dent 2020; 13:457-462. [PMID: 33623328 PMCID: PMC7887177 DOI: 10.5005/jp-journals-10005-1806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The antimicrobial activity of restorative materials has a major role in preventing recurrent caries. Aim To assess the antimicrobial activity of triphala and propolis-modified glass ionomer cement (GIC) against Streptococcus mutans and Lactobacillus. Materials and methods The samples were prepared using cylindrical molds (6 mm in diameter and 2 mm in thickness). A total of 30 samples were prepared containing 10 samples in each group. Group I, 10 samples of glass ionomer with aqueous extract of triphala were prepared; group II, 10 samples of glass ionomer with 50% of ethanolic extract of propolis (EEP); and group III as control consisting of 10 samples of glass ionomer. The samples were placed in to agar plates containing inoculum of S. mutans and Lactobacillus and incubated at 37°C for 48 hours and using a digital caliper, zones of inhibition formed around specimens were measured. Results Data obtained were analyzed using nonparametric Kruskal-Wallis test followed by pairwise comparison was done using Dunn-Bonferroni test. Group I and group II showed highest antimicrobial efficacy against S. mutans and Lactobacillus with no statistical significant difference, i.e., (p value > 0.05) but in both groups I and II, there was a statistical significant difference when comparing with group III i.e., (p < 0.05). Conclusion Thus, triphala and propolis-modified GIC provided higher antibacterial effect with increased level of inhibition against the S. mutans and Lactobacillus; hence, it can be used as a choice of restorative material to treat dental caries. Further studies are required to determine the physical and mechanical characteristics of the material. How to cite this article Paulraj J, Nagar P. Antimicrobial Efficacy of Triphala and Propolis-modified Glass Ionomer Cement: An In Vitro Study. Int J Clin Pediatr Dent 2020;13(5):457-462.
Collapse
Affiliation(s)
- Jessy Paulraj
- Department of Pedodontics and Preventive Dentistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Priya Nagar
- Department of Pedodontics and Preventive Dentistry, Krishnadevaraya College of Dental Sciences and Hospital, Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Tüzüner T, Dimkov A, Nicholson JW. The effect of antimicrobial additives on the properties of dental glass-ionomer cements: a review. ACTA BIOMATERIALIA ODONTOLOGICA SCANDINAVICA 2019; 5:9-21. [PMID: 30652117 PMCID: PMC6327935 DOI: 10.1080/23337931.2018.1539623] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022]
Abstract
Aim: The aim of this article is to review the literature on the use of antimicrobial additives in glass-ionomer dental cements. Method: An electronic search between 1987 and the end of 2017 was performed using PubMed, Web of Science and Google search engines with the terms glass-ionomer, glass polyalkenoate, antibacterial and antimicrobial as the key words. The search was refined by excluding the majority of references concerned with cement antimicrobial properties only. Extra papers already known to the authors were added to those considered. Results: A total of 92 relevant articles have been cited in the review of which 55 are specifically concerned with the enhancement of antibacterial properties of glass-ionomers, both conventional and resin-modified, with additives. In addition, information is included on the uses of glass-ionomers and the biological properties of the antibacterial additives employed. There are several reports that show that additives are typically released by diffusion, and that a high proportion is usually left behind, trapped in the cement. Additives generally increase setting times of cements, and reduce mechanical properties. However, smaller amounts of additive have only slight effects and the longer-term durability of cements appears unaffected. Conclusion: Modified glass-ionomer cements seem to be acceptable for clinical use, especially in the Atraumatic Restorative Treatment (ART) technique.
Collapse
Affiliation(s)
- Tamer Tüzüner
- Department of Paediatric Dentistry, Faculty of Dentistry, Karadeniz Technical University, Trabzon, Turkey
| | - Aleksandar Dimkov
- Department of Paediatric and Preventive Dentistry, Faculty of Dental Medicine, St Cyril and St Methodius University, Skopje, Macedonia
| | - John W. Nicholson
- Bluefield Centre for Biomaterials, London, United Kingdom
- Dental Physical Sciences, Institute of Dentistry, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
5
|
Duque C, Aida KL, Pereira JA, Teixeira GS, Caldo-Teixeira AS, Perrone LR, Caiaffa KS, Negrini TDC, Castilho ARFD, Costa CADS. In vitro and in vivo evaluations of glass-ionomer cement containing chlorhexidine for Atraumatic Restorative Treatment. J Appl Oral Sci 2017; 25:541-550. [PMID: 29069152 PMCID: PMC5804391 DOI: 10.1590/1678-7757-2016-0195] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 01/29/2017] [Indexed: 11/22/2022] Open
Abstract
Objectives: Addition of chlorhexidine has enhanced the antimicrobial effect of glass ionomer cement (GIC) indicated to Atraumatic Restorative Treatment (ART); however, the impact of this mixture on the properties of these materials and on the longevity of restorations must be investigated. The aim of this study was to evaluate the effects of incorporating chlorhexidine (CHX) in the in vitro biological and chemical-mechanical properties of GIC and in vivo clinical/ microbiological follow-up of the ART with GIC containing or not CHX. Material and Methods: For in vitro studies, groups were divided into GIC, GIC with 1.25% CHX, and GIC with 2.5% CHX. Antimicrobial activity of GIC was analyzed using agar diffusion and anti-biofilm assays. Cytotoxic effects, compressive tensile strength, microhardness and fluoride (F) release were also evaluated. A randomized controlled trial was conducted on 36 children that received ART either with GIC or GIC with CHX. Saliva and biofilm were collected for mutans streptococci (MS) counts and the survival rate of restorations was checked after 7 days, 3 months and one year after ART. ANOVA/Tukey or Kruskal-Wallis/ Mann-Whitney tests were performed for in vitro tests and in vivo microbiological analysis. The Kaplan-Meier method and Log rank tests were applied to estimate survival percentages of restorations (p<0.05). Results: Incorporation of 1.25% and 2.5% CHX improved the antimicrobial/anti-biofilm activity of GIC, without affecting F release and mechanical characteristics, but 2.5% CHX was cytotoxic. Survival rate of restorations using GIC with 1.25% CHX was similar to GIC. A significant reduction of MS levels was observed for KM+CHX group in children saliva and biofilm 7 days after treatment. Conclusions: The incorporation of 1.25% CHX increased the in vitro antimicrobial activity, without changing chemical-mechanical properties of GIC and odontoblast-like cell viability. This combination improved the in vivo short-term microbiological effect without affecting clinical performance of ART restorations.
Collapse
Affiliation(s)
- Cristiane Duque
- Univ. Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba, Departamento de Odontologia Infantil e Social, Araçatuba, SP, Brasil
| | - Kelly Limi Aida
- Univ. Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba, Departamento de Odontologia Infantil e Social, Araçatuba, SP, Brasil
| | - Jesse Augusto Pereira
- Univ. Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba, Departamento de Odontologia Infantil e Social, Araçatuba, SP, Brasil
| | - Gláucia Schuindt Teixeira
- Universidade Federal Fluminense (UFF), Instituto de Saúde de Nova Friburgo, Departamento de Odontologia, Nova Friburgo, RJ, Brasil
| | - Angela Scarparo Caldo-Teixeira
- Universidade Federal Fluminense (UFF), Instituto de Saúde de Nova Friburgo, Departamento de Odontologia, Nova Friburgo, RJ, Brasil
| | - Luciana Rodrigues Perrone
- Universidade Federal Fluminense (UFF), Instituto de Saúde de Nova Friburgo, Departamento de Odontologia, Nova Friburgo, RJ, Brasil
| | - Karina Sampaio Caiaffa
- Univ. Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba, Departamento de Odontologia Infantil e Social, Araçatuba, SP, Brasil
| | - Thais de Cássia Negrini
- Universidade Federal do Rio Grande do Sul (UFRGS), Faculdade de Odontologia, Departamento de Odontologia Conservadora, Porto Alegre, RS, Brasil
| | - Aline Rogéria Freire de Castilho
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Odontologia de Piracicaba, Departamento de Odontologia Infantil, Piracicaba, SP, Brasil
| | - Carlos Alberto de Souza Costa
- Univ. Estadual Paulista (UNESP), Faculdade de Odontologia de Araraquara, Departamento de Fisiologia e Patologia, Araraquara, SP, Brasil
| |
Collapse
|
6
|
Yan H, Yang H, Li K, Yu J, Huang C. Effects of Chlorhexidine-Encapsulated Mesoporous Silica Nanoparticles on the Anti-Biofilm and Mechanical Properties of Glass Ionomer Cement. Molecules 2017; 22:molecules22071225. [PMID: 28753997 PMCID: PMC6152133 DOI: 10.3390/molecules22071225] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 01/13/2023] Open
Abstract
One of the primary causes for the failure of glass ionomer cement (GIC) is secondary caries. To enhance the anti-microbial performance of GIC without affecting its mechanical properties, chlorhexidine (CHX) was encapsulated in expanded-pore mesoporous silica nanoparticles (pMSN) to synthesize CHX@pMSN. CHX@pMSN was added at three mass fractions (1%, 5%, and 10% (w/w)) to GIC powder as the experimental groups. Pure GIC was set as the control group. The mechanical and anti-biofilm properties of GIC from each group were tested. The results demonstrated that CHX was successfully encapsulated on/into pMSN, and the encapsulating efficiency of CHX was 44.62% in CHX@pMSN. The anti-biofilm ability was significantly enhanced in all experimental groups (p < 0.001) compared with that in the control group. CHX was continuously released, and anti-biofilm ability was maintained up to 30 days. In addition, the mechanical properties (compressive strength, surface hardness, elastic modulus, water sorption, and solubility) of 1% (w/w) group were maintained compared with those in the control group (p > 0.05). In conclusion, adding 1% (w/w) CHX@pMSN to GIC led to conspicuous anti-biofilm ability and had no adverse effect on the mechanical properties of this restorative material. This study proposes a new strategy for preventing secondary caries by using CHX@pMSN-modified GIC.
Collapse
Affiliation(s)
- Huiyi Yan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Kang Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Jian Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
7
|
Pinheiro SL, Azenha GR, DE Milito F, Democh YM. Antimicrobial Capacity of Casein Phosphopeptide/Amorphous Calcium Phosphate and Enzymes in Glass Ionomer Cement in Dentin Carious Lesions. Acta Stomatol Croat 2016; 49:104-11. [PMID: 27688392 DOI: 10.15644/asc49/2/3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE To evaluate the ability of casein phosphopeptide/amorphous calcium phosphate (CPP/ACP) and lysozyme, lactoferrin, and lactoperoxidase (LLL) added to glass ionomer cement (GIC) to inhibit the growth of S. mutans in a caries model. MATERIAL AND METHODS Eighty permanent third molars were selected. The dentin of these teeth was exposed and flattened. Except for the coronal dentin, the specimens were waterproofed, autoclaved, and submitted to cariogenic challenge with standard strain of S. mutans. The carious lesions were sealed as follows: group 1 (n=20): GIC without additives; group 2 (n=20): GIC + CPP/ACP; group 3 (n=20): GIC + LLL; group 4 (n=20): GIC + CPP/ACP + LLL. S. mutans counts were performed before the caries were sealed (n=5), after 24 hours (n=5), at 1 month (n=5), and at 6 months (n=5). The results were analyzed using descriptive statistical analysis and the Kruskal-Wallis test (Student-Newman-Keuls test). RESULTS GIC + LLL caused a significant reduction of S. mutans 1 month after sealing (p<0.01); however, there was a significant growth of S. mutans 6 months after sealing. GIC, GIC + CPP/ACP, and GIC + CPP/ACP + LLL showed similar behavior with significant reduction of S. mutans after 24 hours (p<0.05) and increase after 1 and 6 months. CONCLUSION The addition of LLL to GIC increases the antimicrobial action of GIC on S. mutans. This leads to control of bacterial biofilm for 1 month, thus stopping the progression of carious lesions.
Collapse
Affiliation(s)
- Sérgio Luiz Pinheiro
- Catholic Pontifical University of Campinas - PUC-Campinas, School of Dentistry, Department of Cosmetic Dentistry and Pediatric Dentistry
| | - Giuliana Rodrigues Azenha
- Catholic Pontifical University of Campinas - PUC-Campinas, School of Dentistry, Department of Cosmetic Dentistry and Pediatric Dentistry
| | - Flávia DE Milito
- Catholic Pontifical University of Campinas - PUC-Campinas, School of Dentistry, Department of Cosmetic Dentistry and Pediatric Dentistry
| | - Yasmin Marialva Democh
- Catholic Pontifical University of Campinas - PUC-Campinas, School of Dentistry, Department of Cosmetic Dentistry and Pediatric Dentistry
| |
Collapse
|
8
|
Somani R, Jaidka S, Singh DJ, Sibal GK. Comparative Evaluation of Shear Bond Strength of Various Glass Ionomer Cements to Dentin of Primary Teeth: An in vitro Study. Int J Clin Pediatr Dent 2016; 9:192-196. [PMID: 27843248 PMCID: PMC5086004 DOI: 10.5005/jp-journals-10005-1362] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/28/2016] [Indexed: 11/24/2022] Open
Abstract
Aim To evaluate and compare shear bond strength of various glass ionomer cements (GICs) to dentin of primary teeth. Materials and methods Sample size taken for the study was 72 deciduous molars with intact buccal or lingual surfaces. Samples were randomly divided into three groups, i.e., groups A, B, and C and were restored with conventional type II GIC, type II light cure (LC) GIC, and type IX GIC respectively. Thermocycling was done to simulate oral conditions. After 24 hours, shear bond strength was determined using Instron Universal testing Machine at crosshead speed of 0.5 mm/ minute until fracture. Results were tabulated and statistically analyzed. Results It was found that the shear bond strength was highest in group B (LC GIC) 9.851 ± 1.620 MPa, followed by group C (type IX GIC) 7.226 ± 0.877 MPa, and was lowest in group A (conventional GIC) 4.931 ± 0.9735 MPa. Conclusion Light cure GIC was significantly better than type IX GIC and conventional GIC in terms of shear bond strength. How to cite this article Somani R, Jaidka S, Singh DJ, Sibal GK. Comparative Evaluation of Shear Bond Strength of Various Glass Ionomer Cements to Dentin of Primary Teeth: An in vitro Study. Int J Clin Pediatr Dent 2016;9(3):192-196.
Collapse
Affiliation(s)
- Rani Somani
- Head, Department of Pedodontics and Preventive Dentistry, DJ College of Dental Sciences and Research, Modinagar, Uttar Pradesh, India
| | - Shipra Jaidka
- Professor, Department of Pedodontics and Preventive Dentistry, DJ College of Dental Sciences and Research, Modinagar, Uttar Pradesh, India
| | - Deepti J Singh
- Reader, Department of Pedodontics and Preventive Dentistry, DJ College of Dental Sciences and Research, Modinagar, Uttar Pradesh, India
| | - Gurleen K Sibal
- Student, Department of Pedodontics and Preventive Dentistry, DJ College of Dental Sciences and Research, Modinagar, Uttar Pradesh, India
| |
Collapse
|