1
|
Meher P, Parida SK, Mahapatra SK, Roy L, Murarka S. Overriding Cage Effect in Electron Donor-Acceptor Photoactivation of Diaryliodonium Reagents: Synthesis of Chalcogenides. Chemistry 2024; 30:e202402969. [PMID: 39183717 DOI: 10.1002/chem.202402969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 08/27/2024]
Abstract
In recent times, diaryliodonium reagents (DAIRs) have witnessed a resurgence as arylating reagents, especially under photoinduced conditions. However, reactions proceeding through electron donor-acceptor (EDA) complex formation with DAIRs are restricted to electron-rich reacting partners serving as donors due to the well-known cage effect. We discovered a practical and high-yielding visible-light-induced EDA platform to generate aryl radicals from the corresponding DAIRs and use them to synthesize key chalcogenides. In this process, an array of DAIRs and dichalcogenides react in the presence of 1,4 diazabicyclo[2.2.2]octane (DABCO) as a cheap and readily available donor, furnishing a variety of di(hetero)aryl and aryl/alkyl chalcogenides in good yields. The method is scalable, features a broad scope with good yields, and operates under open-to-air conditions. The photoinduced chalcogenation technology is suitable for late-stage functionalizations and disulfide bioconjugations and facilitates access to biologically relevant thioesters, dithiocarbamates, sulfoximines, and sulfones. Moreover, the method applies to synthesizing diverse pharmaceuticals, such as vortioxetine, promazine, mequitazine, and dapsone, under amenable conditions.
Collapse
Affiliation(s)
- Prahallad Meher
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India
| | - Sushanta Kumar Parida
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India
| | - Sanat Kumar Mahapatra
- IOC Odisha Campus Bhubaneswar, Institute of Chemical Technology Mumbai, Bhubaneswar, 751013, India
| | - Lisa Roy
- IOC Odisha Campus Bhubaneswar, Institute of Chemical Technology Mumbai, Bhubaneswar, 751013, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India
| |
Collapse
|
2
|
Xu YX, Huang YY, Song RR, Ren YL, Chen X, Zhang C, Mao F, Li XK, Zhu J, Ni SS, Wan J, Li J. Development of disulfide-derived fructose-1,6-bisphosphatase (FBPase) covalent inhibitors for the treatment of type 2 diabetes. Eur J Med Chem 2020; 203:112500. [PMID: 32711108 DOI: 10.1016/j.ejmech.2020.112500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
Fructose-1,6-bisphosphatase (FBPase), as a key rate-limiting enzyme in the gluconeogenesis (GNG) pathway, represents a practical therapeutic strategy for type 2 diabetes (T2D). Our previous work first identified cysteine residue 128 (C128) was an important allosteric site in the structure of FBPase, while pharmacologically targeting C128 attenuated the catalytic ability of FBPase. Herein, ten approved cysteine covalent drugs were selected for exploring FBPase inhibitory activities, and the alcohol deterrent disulfiram displayed superior inhibitory efficacy among those drugs. Based on the structure of lead compound disulfiram, 58 disulfide-derived compounds were designed and synthesized for investigating FBPase inhibitory activities. Optimal compound 3a exhibited significant FBPase inhibition and glucose-lowering efficacy in vitro and in vivo. Furthermore, 3a covalently modified the C128 site, and then regulated the N125-S124-S123 allosteric pathway of FBPase in mechanism. In summary, 3a has the potential to be a novel FBPase inhibitor for T2D therapy.
Collapse
Affiliation(s)
- Yi-Xiang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Yun-Yuan Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China; Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Rong-Rong Song
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yan-Liang Ren
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Xin Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Chao Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Xiao-Kang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Jin Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Shuai-Shuai Ni
- Cancer Institute, Longhua Hospital Shanghai University of Traditional Chinese Medicine, 725 South Wan Ping Road, Shanghai, 200032, China.
| | - Jian Wan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China.
| |
Collapse
|
4
|
Eshghi H, Bakavoli M, Moradi H, Davoodnia A. Fe(HSO4)3 and Fe(HSO4)3/DMSO as Efficient, Heterogeneous, and Reusable Catalyst Systems for the Oxidative Coupling of Thiols. PHOSPHORUS SULFUR 2009. [DOI: 10.1080/10426500802704654] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- H. Eshghi
- a Department of Chemistry, School of Sciences , Ferdowsi University of Mashhad , Mashhad, Iran
| | - M. Bakavoli
- a Department of Chemistry, School of Sciences , Ferdowsi University of Mashhad , Mashhad, Iran
| | - H. Moradi
- a Department of Chemistry, School of Sciences , Ferdowsi University of Mashhad , Mashhad, Iran
| | - A. Davoodnia
- b Department of Chemistry, School of Sciences , Islamic Azad University, Mashhad Branch , Mashhad, Iran
| |
Collapse
|