• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4606053)   Today's Articles (5408)   Subscriber (49373)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Ramos-Martín M, Ríos-Lombardía N, González-Sabín J, García-Garrido SE, Concellón C, Presa Soto A, Del Amo V, García-Álvarez J. FeIII -Based Eutectic Mixtures as Multi-task and Reusable Reaction Media for Efficient and Selective Conversion of Alkynes into Carbonyl Compounds. Chemistry 2023;29:e202301736. [PMID: 37439586 DOI: 10.1002/chem.202301736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/14/2023]
2
Mao X, Liu Y, Zeng J, Wang X, Islam MM, Chen M, Chen Q, Feng X. Synthesis and Photophysical Properties of Quinoxaline-Based Blue Aggregation-Induced Emission Molecules. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
3
Sharma A, Kaur G, Singh D, Gupta VK, Banerjee B. A General Method for the Synthesis of 11H-Indeno[1,2-B]Quinoxalin- 11-Ones and 6H-Indeno[1,2-B]Pyrido[3,2-E]Pyrazin-6-One Derivatives Using Mandelic Acid as an Efficient Organo-Catalyst at Room Temperature. CURRENT ORGANOCATALYSIS 2021. [DOI: 10.2174/2213337208666210825112301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
4
Hebade MJ, Deshmukh TR, Dhumal ST. Silica supported dodecatungstophosphoric acid (DTP/SiO2): An efficient and recyclable heterogeneous catalyst for rapid synthesis of quinoxalines. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1939060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
5
Malamiri F, Khaksar S, Badri R, Tahanpesar E. Organocatalytic Combinatorial Synthesis of Quinazoline, Quinoxaline and Bis(indolyl)methanes. Comb Chem High Throughput Screen 2021;23:83-88. [PMID: 31838991 DOI: 10.2174/1386207323666191213123026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/24/2019] [Accepted: 11/29/2019] [Indexed: 11/22/2022]
6
Alipour M, Hossaini Z, Khaksar S, Rostami-Charati F. An Efficient and Green Procedure for the Synthesis of Quinoxaline Derivatives using 3,5-Bis(trifluoromethyl)phenylammonium triflate (BFPAT) Organocatalyst. LETT ORG CHEM 2021. [DOI: 10.2174/1570178617666200313105049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
7
Kaur G, Singh A, Kaur N, Banerjee B. A general method for the synthesis of structurally diverse quinoxalines and pyrido-pyrazine derivatives using camphor sulfonic acid as an efficient organo-catalyst at room temperature. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1873383] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
8
Khatoon H, Abdulmalek E. Novel Synthetic Routes to Prepare Biologically Active Quinoxalines and Their Derivatives: A Synthetic Review for the Last Two Decades. Molecules 2021;26:molecules26041055. [PMID: 33670436 PMCID: PMC7923122 DOI: 10.3390/molecules26041055] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022]  Open
9
Gujjarappa R, Vodnala N, Kandpal A, Roy L, Gupta S, Malakar CC. Csp–Csp bond cleavage and fragment coupling: a transition metal-free “extrusion and recombination” approach towards synthesis of 1,2-diketones. Org Chem Front 2021. [DOI: 10.1039/d1qo00848j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
10
Gujjarappa R, Vodnala N, Reddy VG, Malakar CC. A Facile C‐H Insertion Strategy using Combination of HFIP and Isocyanides: Metal‐Free Access to Azole Derivatives. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
11
Malamiri F, Khaksar S, Badri R, Tahanpesar E. Solvent-mediated Highly Efficient Synthesis of [1,2,4]triazolo/benzimidazoloquinazolinone Derivatives. Curr Org Synth 2020;16:1185-1190. [PMID: 31984925 DOI: 10.2174/1570179416666191018145142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/03/2019] [Accepted: 10/01/2019] [Indexed: 11/22/2022]
12
Gujjarappa R, Vodnala N, Putta V, Ganga Reddy V, Malakar CC. Conversion of alkynes into 1,2-diketones using HFIP as sacrificial hydrogen donor and DMSO as dihydroxylating agent. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
13
Abad N, Hajji M, Ramli Y, Belkhiria M, Moftah H. Elmgirhi S, A. Habib M, Guerfel T, T. Mague J, Essassi EM. A newly synthesized nitrogen‐rich derivative of bicyclic quinoxaline—Structural and conceptual DFT reactivity study. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4055] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
14
Bhargava S, Soni P, Rathore D. An environmentally benign attribute for the expeditious synthesis of quinoxaline and its derivatives. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
15
Synthesis and Antimicrobial Activity of Some New Substituted Quinoxalines. Molecules 2019;24:molecules24224198. [PMID: 31752396 PMCID: PMC6891733 DOI: 10.3390/molecules24224198] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/02/2019] [Accepted: 11/12/2019] [Indexed: 11/22/2022]  Open
16
Takahashi I, Fujita T, Shoji N, Ichikawa J. Brønsted acid-catalysed hydroarylation of unactivated alkynes in a fluoroalcohol–hydrocarbon biphasic system: construction of phenanthrene frameworks. Chem Commun (Camb) 2019;55:9267-9270. [DOI: 10.1039/c9cc04152d] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
17
De S, Subran SK, Ramasamy SK, Banerjee S, Paira P, Kalleshappa AKS. Luminescent Anticancer Acenaphtho[1, 2‐b]quinoxaline: Green Synthesis, DFT and Molecular Docking Studies, Live‐Cell Imaging and Reactivity towards Nucleic Acid and Protein BSA. ChemistrySelect 2018. [DOI: 10.1002/slct.201800487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
18
Baashen M. Quinoxaline-2,3(1H,4H)-dithione: Synthesis and reactions. PHOSPHORUS SULFUR 2018. [DOI: 10.1080/10426507.2018.1424166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
19
El Azab IH, Elkanzi NAA, Gobouri AA. Design and Synthesis of Some New Quinoxaline-Based Heterocycles. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2978] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
20
Ndlovu NT, Nxumalo W. Nucleophilic Substitution on 2-Monosubstituted Quinoxalines Giving 2,3-Disubstituted Quinoxalines: Investigating the Effect of the 2-Substituent. Molecules 2016;21:molecules21101304. [PMID: 27706058 PMCID: PMC6273420 DOI: 10.3390/molecules21101304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/15/2016] [Accepted: 09/23/2016] [Indexed: 11/28/2022]  Open
21
Mohammadi M, Bardajee GR, Pesyan NN. Efficient solvent-free synthesis of pyridopyrazine and quinoxaline derivatives using copper-DiAmSar complex anchored on SBA-15 as a reusable catalyst. CHINESE JOURNAL OF CATALYSIS 2015. [DOI: 10.1016/s1872-2067(15)60845-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
22
Transition metal-free one-pot synthesis of nitrogen-containing heterocycles. Mol Divers 2015;20:185-232. [DOI: 10.1007/s11030-015-9596-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 04/02/2015] [Indexed: 01/22/2023]
23
Fluorinated alcohols: A magic medium for the synthesis of heterocyclic compounds. J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2015.01.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
24
Khaksar S, Radpeyma H. Pentafluorophenylammonium triflate: A highly efficient catalyst for the synthesis of quinoxaline derivatives in water. CR CHIM 2014. [DOI: 10.1016/j.crci.2013.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
25
A highly efficient procedure for the synthesis of quinoxaline derivatives using polyvinylpolypyrrolidone supported triflic acid catalyst (PVPP·OTf). CHINESE CHEM LETT 2014. [DOI: 10.1016/j.cclet.2014.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
26
Khaksar S, Gholami M. An eco-benign and highly efficient access to dihydro-1H-indeno[1,2-b]pyridines in 2,2,2-trifluoroethanol. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.03.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
27
An expedient “on-water” synthesis of quinoxalines. MONATSHEFTE FUR CHEMIE 2014. [DOI: 10.1007/s00706-014-1242-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA