1
|
Shah AA, Shah A, Lewis S, Ghate V, Saklani R, Narayana Kalkura S, Baby C, Singh PK, Nayak Y, Chourasia MK. Cyclodextrin based bone regenerative inclusion complex for resveratrol in postmenopausal osteoporosis. Eur J Pharm Biopharm 2021; 167:127-139. [PMID: 34329710 DOI: 10.1016/j.ejpb.2021.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Recent preclinical studies have shown that resveratrol (RSV), is a promising remedy for osteoporosis owing to its estrogenic, anti-inflammatory, and antioxidant properties. However, RSV has met limited success due to its poor oral bioavailability and inefficient systemic delivery. In this study, we prepared the inclusion complex of RSV with sulfo-butyl ether β-cyclodextrin (SBE-β-CD) to enhance the aqueous solubility of RSV. The in-silico docking studies and Physico-chemical characterization assays were performed to understand the interaction of RSV inside the SBE-β-CD cavity. The in vivo safety assessment of RSV-SBE-β-CD inclusion complex (R-CDIC) was performed in healthy Wistar rats. The efficacy of the inclusion complex against postmenopausal osteoporosis was further investigated in ovariectomized (OVX) rat model. The alteration in the bone micro-architectural structure was evaluated by microcomputed tomographic scanning, serum biochemical estimations, biomechanical strength and histopathological investigation. Administration of RSV-SBE-β-CD inclusion complex was found to be safe and significantly improved micro-architectural deterioration induced by estrogen withdrawal. Results of bone morphometry and biomechanics study further emboldened the efficacy claim of the RSV-SBE-β-CD complex. Thus, the present study demonstrated the efficacy of the RSV-SBE-β-CD inclusion complex for treating osteolytic degradation in osteoporosis.
Collapse
Affiliation(s)
- Aarti Abhishek Shah
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka 576104, India
| | - Abhishek Shah
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka 576104, India
| | - Shaila Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka 576104, India
| | - Vivek Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka 576104, India
| | - Ravi Saklani
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226 031, India
| | - S Narayana Kalkura
- Crystal Growth Centre, Anna University, Chennai, Tamil Nadu 600025, India
| | - C Baby
- FT-NMR Lab, Sophisticated Analytical Instrument Facility, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka 576104, India.
| | - Manish K Chourasia
- Pharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow 226 031, India.
| |
Collapse
|
2
|
Li Y, Huang T, Fu Y, Wang T, Zhao T, Guo S, Sun Y, Yang Y, Li C. Antitumor activity of a novel dual functional podophyllotoxin derivative involved PI3K/AKT/mTOR pathway. PLoS One 2019; 14:e0215886. [PMID: 31557166 PMCID: PMC6763125 DOI: 10.1371/journal.pone.0215886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022] Open
Abstract
The progression of cancer through local expansion and metastasis is well recognized, but preventing these characteristic cancer processes is challenging. To this end, a new strategy is required. In this study, we presented a novel dual functional podophyllotoxin derivative, 2-pyridinealdehyde hydrazone dithiocarbamate S-propionate podophyllotoxin ester (PtoxPdp), which inhibited both matrix metalloproteinases and Topoisomerase II. This new podophyllotoxin derivative exhibited significant anti-proliferative, anti-metastatic that correlated with the downregulation of matrix metalloproteinase. In a xenograft animal local expansion model, PtoxPdp was superior to etoposide in tumor repression. A preliminary mechanistic study revealed that PtoxPdp induced apoptosis and autophagy via the PI3K/AKT/mTOR pathway. Furthermore, PtoxPdp could also inhibit epithelial-mesenchymal transition, which was achieved by downregulating both PI3K/AKT/mTOR and NF-κB/Snail pathways. Taken together, our results reveal that PtoxPdp is a promising antitumor drug candidate.
Collapse
Affiliation(s)
- Yongli Li
- College of Basic Medical Science, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, P. R. China
- * E-mail: (CL); (YL)
| | - Tengfei Huang
- College of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, P. R. China
| | - Yun Fu
- College of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, P. R. China
| | - Tingting Wang
- College of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, P. R. China
| | - Tiesuo Zhao
- College of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, P. R. China
| | - Sheng Guo
- College of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, P. R. China
| | - Yanjie Sun
- Experimental Teaching Center of Biology and Basic Medicine, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, P. R. China
| | - Yun Yang
- College of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, P. R. China
| | - Changzheng Li
- College of Basic Medical Science, Xinxiang Medical University, Xinxiang, Henan, P. R. China
- Experimental Teaching Center of Biology and Basic Medicine, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, P. R. China
- * E-mail: (CL); (YL)
| |
Collapse
|
3
|
Sun P, Song Y, Liu D, Liu G, Mao X, Dong B, Braicu EI, Sehouli J. Potential role of the HOXD8 transcription factor in cisplatin resistance and tumour metastasis in advanced epithelial ovarian cancer. Sci Rep 2018; 8:13483. [PMID: 30194340 PMCID: PMC6128852 DOI: 10.1038/s41598-018-31030-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 08/08/2018] [Indexed: 12/18/2022] Open
Abstract
Few studies have examined the potential transcription factor (TF) simultaneously associated with cisplatin resistance and metastasis in ovarian cancer. To assess a related mechanism, a 345-channel protein/DNA array and transcriptional activity ELISA were performed to compare the TF activities in the cisplatin-sensitive SKOV3 and cisplatin-resistant SKOV3-DDP cells and in HO-8910 and the homologous highly metastatic HO-8910PM cells. In SKOV3-DDP vs. SKOV3 cells, 43 TFs were up-regulated, while 31 were down-regulated. In HO-8910PM vs. HO-8910 cells, 13 TFs were up-regulated, while 18 were down-regulated. In these two models, 4 TFs (HOXD8(1), HOXD8(2), RB, RFX1/2/3) were simultaneously up-regulated, and 9 TFs (SRE, FKHR, Angiotensinogen ANG-IRE, Pax2, CD28RC/NF-IL2B, HLF, CPE, CBFB and c-Ets-1) were down-regulated. HOXD8 mRNA and protein expression levels measured by reverse transcription polymerase chain reaction and ELISA, respectively, were significantly higher in SKOV3-DDP and HO-8910PM than in their corresponding cell lines (both p < 0.05). In 52 cases of different ovarian disease, the patients with recurrent and cisplatin-resistant ovarian cancer had higher expression levels of HOXD8 than patients with primary malignant tumours (p = 0.018, p = 0.001) or benign tumours (p = 0.001, p < 0.001). Taken together, these results suggest that HOXD8 is potentially associated with both cisplatin resistance and metastasis in advanced ovarian cancer.
Collapse
Affiliation(s)
- PengMing Sun
- Laboratory of Gynaecologic Oncology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, No 18. Dao Shan Road, 350001, Fuzhou, Fujian Province, P.R. China. .,Department of Gynaecology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, No 18. Dao Shan Road, 350001, Fuzhou, Fujian Province, P.R. China.
| | - YiYi Song
- Department of Gynaecology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, No 18. Dao Shan Road, 350001, Fuzhou, Fujian Province, P.R. China
| | - DaBin Liu
- Department of Gynaecology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, No 18. Dao Shan Road, 350001, Fuzhou, Fujian Province, P.R. China
| | - GuiFen Liu
- Laboratory of Gynaecologic Oncology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, No 18. Dao Shan Road, 350001, Fuzhou, Fujian Province, P.R. China
| | - XiaoDan Mao
- Laboratory of Gynaecologic Oncology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, No 18. Dao Shan Road, 350001, Fuzhou, Fujian Province, P.R. China
| | - BinHua Dong
- Laboratory of Gynaecologic Oncology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, No 18. Dao Shan Road, 350001, Fuzhou, Fujian Province, P.R. China
| | - Elena Ioana Braicu
- Department of Gynaecologic Oncology and Gynaecology, Charité/Campus Virchow-Klinikum, European Competence Centre for Ovarian Cancer University of Berlin, 13353, Berlin, Germany
| | - Jalid Sehouli
- Department of Gynaecologic Oncology and Gynaecology, Charité/Campus Virchow-Klinikum, European Competence Centre for Ovarian Cancer University of Berlin, 13353, Berlin, Germany
| |
Collapse
|
4
|
Chandra A, Ghate MV, Aithal KS, Lewis SA. In silico prediction coupled with in vitro experiments and absorption modeling to study the inclusion complex of telmisartan with modified beta-cyclodextrin. J INCL PHENOM MACRO 2018. [DOI: 10.1007/s10847-018-0797-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Huang T, Li C, Sun X, Zhu Z, Fu Y, Liu Y, Yuan Y, Li S, Li C. The antitumor mechanism of di-2-pyridylketone 2-pyridine carboxylic acid hydrazone and its copper complex in ROS generation and topoisomerase inhibition, and hydrazone involvement in oxygen-catalytic iron mobilization. Int J Oncol 2015; 47:1854-62. [PMID: 26398524 DOI: 10.3892/ijo.2015.3158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/10/2015] [Indexed: 11/06/2022] Open
Abstract
Iron depletion and stimulation of iron-dependent free radical damage is a rapidly developing field for chelation therapy, but the iron mobilization from ferritin by chelators has received less attention. In this study, the di-2-pyridylketone 2-pyridine carboxylic acid hydrazone (DPPCAH) and its copper complex was prepared and characterized by NMR and MS spectra. The proliferation inhibition assay showed that both DPPCAH and its copper complex exhibited selectively proliferation inhibition for HepG2 (IC50, 4.6 ± 0.2 µM for DPPACH and 1.3 ± 0.2 µM for its copper complex), but less inhibition for HCT-116 cell line (IC50, >100 µM for DPPACH and 7.8 ± 0.4 µM for its copper complex). The mechanistic studies revealed that DPPACH could remove iron from ferritin in a oxygen-catalytic manner, and contributed to redox activity of labile iron pool (LIP), that is less reported for the chelators that possess significant biological activity. The reactive oxygen species (ROS) generation and DNA cleavage assay in vitro and in vivo showed that both DPPACH-Fe(II) and DPPACH-Cu were redox-active species, indicating that ROS may mediate their antitumor activity. Further study revealed that both DPPACH and its copper complex displayed certain degree of inhibition of type II topoisomerase (Top) which contributed to their antitumor activity. Thus, the mechanism that iron mobilization by DPPACH from ferritin contributed to LIP was proposed, and both DPPACH and its copper complex were involved in ROS generation and Top II inhibition for their antitumor activities.
Collapse
Affiliation(s)
- Tengfei Huang
- Department of Molecular Biology and Biochemistry, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Cuiping Li
- Department of Molecular Biology and Biochemistry, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xingzhi Sun
- Department of Molecular Biology and Biochemistry, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhenfu Zhu
- Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yun Fu
- Department of Molecular Biology and Biochemistry, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Youxun Liu
- Department of Molecular Biology and Biochemistry, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yanbin Yuan
- Department of Surgery, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Shaoshan Li
- Department of Surgery, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Changzheng Li
- Department of Molecular Biology and Biochemistry, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
6
|
Fu Y, Yang Y, Zhou S, Liu Y, Yuan Y, Li S, Li C. Ciprofloxacin containing Mannich base and its copper complex induce antitumor activity via different mechanism of action. Int J Oncol 2014; 45:2092-100. [PMID: 25174498 DOI: 10.3892/ijo.2014.2611] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 08/01/2014] [Indexed: 11/06/2022] Open
Abstract
The Mannich base containing ciprofloxacin and kojic acid structural units was prepared and evaluated in antitumor activity. The enhancement in antitumor activity was observed both from the Mannich base (IC(50): 103.3±5.0 µM for HepG2, 87.9±8.0 µM for HCT-116 cell) and its copper complex (IC(50): 11.5±1.8 µM for HepG2, 44.4±2.5 µM for HCT-116 cell) compared to the ciprofloxacin and kojic acid. The mechanistic studies via RT-PCR, cell cycle analysis, mitochondrial membrane potential measurement, inhibition of topoisomerase and molecular docking indicated that there is a different molecular mechanism between the Mannich base and its copper complex. The cytotoxicity of the Mannich base was involved in apoptosis, cell cycle arrest, depolarization of mitochondrial membrane and weaker topoisomerase II inhibition, but the copper complex exerted its cytotoxicity mainly through dual topoisomerase inhibition, especially stabilizing the intermediate of cleavage DNA-topoisomerase complex.
Collapse
Affiliation(s)
- Yun Fu
- Department of Molecular Biology and Biochemistry, Xinxiang Medical University, Xinxiang, Henan, P.R. China
| | - Yingli Yang
- Department of Molecular Biology and Biochemistry, Xinxiang Medical University, Xinxiang, Henan, P.R. China
| | - Sufeng Zhou
- Clinical Skill Training Center, Xinxiang Medical University, Xinxiang, Henan, P.R. China
| | - Youxun Liu
- Department of Molecular Biology and Biochemistry, Xinxiang Medical University, Xinxiang, Henan, P.R. China
| | - Yanbin Yuan
- Department of Surgery, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, P.R. China
| | - Shaoshan Li
- Department of Surgery, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, P.R. China
| | - Changzheng Li
- Department of Molecular Biology and Biochemistry, Xinxiang Medical University, Xinxiang, Henan, P.R. China
| |
Collapse
|
7
|
The cytotoxicity of benzaldehyde nitrogen mustard-2-pyridine carboxylic acid hydrazone being involved in topoisomerase IIα inhibition. BIOMED RESEARCH INTERNATIONAL 2014; 2014:527042. [PMID: 24995306 PMCID: PMC4066686 DOI: 10.1155/2014/527042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/12/2014] [Indexed: 11/18/2022]
Abstract
The antitumor property of iron chelators and aromatic nitrogen mustard derivatives has been well documented. Combination of the two pharmacophores in one molecule in drug designation is worth to be explored. We reported previously the syntheses and preliminary cytotoxicity evaluation of benzaldehyde nitrogen mustard pyridine carboxyl acid hydrazones (BNMPH) as extended study, more tumor cell lines (IC50 for HepG2: 26.1 ± 3.5 μM , HCT-116: 57.5 ± 5.3 μM, K562: 48.2 ± 4.0 μM, and PC-12: 19.4 ± 2.2 μM) were used to investigate its cytotoxicity and potential mechanism. In vitro experimental data showed that the BNMPH chelating Fe2+ caused a large number of ROS formations which led to DNA cleavage, and this was further supported by comet assay, implying that ROS might be involved in the cytotoxicity of BNMPH. The ROS induced changes of apoptosis related genes, but the TFR1 and NDRG1 metastatic genes were not obviously regulated, prompting that BNMPH might not be able to deprive Fe2+ of ribonucleotide reductase. The BNMPH induced S phase arrest was different from that of iron chelators (G1) and alkylating agents (G2). BNMPH also exhibited its inhibition of human topoisomerase IIα. Those revealed that the cytotoxic mechanism of the BNMPH could stem from both the topoisomerase II inhibition, ROS generation and DNA alkylation.
Collapse
|
8
|
Fu Y, Zhang Y, Zhou S, Liu Y, Wang J, Wang Y, Lu C, Li C. Effects of Substitution of Carboxyl with Hydrazide Group on Position 3 of Ciprofloxacin on its Antimicrobial and Antitumor Activity. INT J PHARMACOL 2013. [DOI: 10.3923/ijp.2013.416.429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|