Said MI, El-Said AI, Aly AAM, Abou-Taleb A. Ultrasound assisted facile synthesis of Mn(II) and Cu(II) coordination polymers and their use as precursors for α-Mn
3O
4 and CuO nanoparticles: Synthesis, characterization and catalytic properties.
ULTRASONICS SONOCHEMISTRY 2018;
46:68-78. [PMID:
29739514 DOI:
10.1016/j.ultsonch.2018.04.001]
[Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/02/2018] [Accepted: 04/07/2018] [Indexed: 05/09/2023]
Abstract
A self-assembly of pyridine-2,6-dicarboxylate with Cu(II) and Mn(II) under ultrasonic and microwave irradiation gave the two coordination polymers [Cu(PDA)(H2O)1.5]n (1) and [Mn(PDA)(H2O)1.5]n (2). Their structures were characterized using IR, elemental analysis, X-ray diffraction (XRD) and spectroscopic methods. The corresponding α-Mn3O4 and CuO nanoparticles were synthesized by calcination of 1 and 2 in air at 600 °C. Transmission electron microscopy (TEM) reveals a sphere-like morphology for the Mn3O4 nanoparticles. Shrinkage of the particle size from 90 nm (by conventional synthesis of the precursor) to 19 nm (ultrasonic-assisted) takes place, indicating the great effect of ultrasonication. CuO nanoparticles were of semispherical (conventional and ultrasonic-assisted methods) and hexagonal shapes (microwave irradiation) with an average diameter of 7, 15 and 25 nm, respectively. The catalytic performance of the coordination polymers towards degradation of methylene blue and methyl orange in the presence of hydrogen peroxide was studied. Using the same dose, catalyst 1 proved to be more efficient in color removal of both MB and MO than catalyst 2 did. Recycling test for 2 showed that it is a recyclable catalyst with no structural changes over three recycling experiments.
Collapse