1
|
Gokarn A, Tembhare PR, Syed H, Sanyal I, Kumar R, Parab S, Khanka T, Punatar S, Kedia S, Ghogale SG, Deshpande N, Nikam Y, Girase K, Mirgh S, Jindal N, Bagal B, Chichra A, Nayak L, Bonda A, Rath S, Hiregoudar S, Poojary M, Saha S, Ojha S, Subramanian PG, Khattry N. Long-Term Cryopreservation of Peripheral Blood Stem Cell Harvest Using Low Concentration (4.35%) Dimethyl Sulfoxide with Methyl Cellulose and Uncontrolled Rate Freezing at -80 °C: An Effective Option in Resource-Limited Settings. Transplant Cell Ther 2023; 29:777.e1-777.e8. [PMID: 37678607 DOI: 10.1016/j.jtct.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Long-term cryopreservation of peripheral blood stem cells (PBSCs) is highly useful in the setting of tandem/multiple transplantations or treatment of relapse in the autologous hematopoietic stem cell transplantation (HSCT) setting. Even in allogeneic HSCT, donor lymphocyte infusions may be stored for months to years if excess stem cells are collected from donors. Cryopreservation is a delicate, complex, and costly procedure, and higher concentrations of dimethyl sulfoxide (DMSO), a commonly used cryoprotectant, can be toxic to cells and cause adverse effects in the recipient during infusions. In this study, we examined the effect of long-term cryopreservation using 4.35% DMSO (as final concentration) with methyl cellulose and uncontrolled rate freezing in a mechanical freezer (-80 °C) on the viability and colony-forming ability of CD34+ human PBSCs. For patients undergoing autologous HSCT, PBSCs were cryopreserved using DMSO (final concentration of 4.35%) with methyl cellulose. The post-thaw viability of PBSCs was determined using Trypan blue exclusion and flow cytometry-based 7-amino-actinomycin-D (FC-7AAD) methods. Concentrations of CD34+ stem cells and immune cell subsets in post-thaw PBSC harvest samples were assessed using multicolor flow cytometry, and the clonogenic potential of post-thaw stem cells was studied using a colony-forming unit (CFU) assay. CD34+ stem cell levels were correlated with the prestorage CD34 levels using the Pearson correlation test. The viability results in the Trypan blue dye exclusion method and the flow cytometry-based method were compared using Bland-Altman plots. We studied 26 PBSC harvest samples with a median cryopreservation duration of 6.6 years (range, 3.8 to 11.5 years). The median viability of post-thaw PBSCs was >80% using both methods, with a weak agreement between them (r = .03; P = .5). The median CD34+ stem cell count in the post-thaw samples was 9.13 × 106/kg (range, .44 to 26.27 × 106/kg). The CFU assay yielded a good proliferation and differentiation potential in post-thaw PBSCs, with a weak correlation between granulocyte macrophage CFU and CD34+ stem cell levels (r = .4; P = .05). Two samples that had been cryopreserved for >8 years showed low viability. Cryopreservation of PBSCs using 4.35% DMSO with methyl cellulose and uncontrolled freezing in a mechanical freezer at -80 °C allows the maintenance of long-term viability of PBSC for up to 8 years.
Collapse
Affiliation(s)
- Anant Gokarn
- Department of Medical Oncology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Prashant R Tembhare
- Homi Bhabha National Institute, Mumbai, India; Hematopathology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Hasan Syed
- Homi Bhabha National Institute, Mumbai, India; Hasan Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Isha Sanyal
- Hematopathology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Rohit Kumar
- Hasan Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Sarika Parab
- Department of Transfusion Medicine, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Twinkle Khanka
- Hematopathology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Sachin Punatar
- Department of Medical Oncology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Shweta Kedia
- Hematopathology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Sitaram G Ghogale
- Hematopathology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Nilesh Deshpande
- Hematopathology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Yuvraj Nikam
- Hasan Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Karishma Girase
- Hematopathology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Sumeet Mirgh
- Department of Medical Oncology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Nishant Jindal
- Department of Medical Oncology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Bhausaheb Bagal
- Department of Medical Oncology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Akanksha Chichra
- Department of Medical Oncology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Lingaraj Nayak
- Department of Medical Oncology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Avinash Bonda
- Department of Medical Oncology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Sushmita Rath
- Department of Medical Oncology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Sumathi Hiregoudar
- Homi Bhabha National Institute, Mumbai, India; Department of Transfusion Medicine, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Minal Poojary
- Homi Bhabha National Institute, Mumbai, India; Department of Transfusion Medicine, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Suryatapa Saha
- Homi Bhabha National Institute, Mumbai, India; Department of Transfusion Medicine, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Shashank Ojha
- Homi Bhabha National Institute, Mumbai, India; Department of Transfusion Medicine, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Papagudi G Subramanian
- Homi Bhabha National Institute, Mumbai, India; Hematopathology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India
| | - Navin Khattry
- Department of Medical Oncology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Center, Navi Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
2
|
Benjamin CL, Desai S, Pereira D, Beitinjaneh A, Jimenez A, Goodman M, Lekakis L, Spiegel J, Komanduri KV, Wang TP. Cryopreservation and storage patterns of hematopoietic progenitor stem cells for multiple myeloma. Transfus Apher Sci 2023; 62:103731. [PMID: 37236900 PMCID: PMC10657907 DOI: 10.1016/j.transci.2023.103731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Autologous hematopoietic stem cell transplantation (HCT) has been a standard of care treatment for eligible patients with newly diagnosed multiple myeloma (MM). Guidelines generally recommend hematopoietic progenitor cell (HPC) harvest for two potential HCT. There is a paucity of data reporting use of such collections in the era of novel approved therapies. In this single-center retrospective study, our goal was to determine the HPC utilization rate and costs associated with leukocytapheresis, collection, storage, and disposal to guide future HPC collection planning. We included 613 patients with MM who underwent HPC collection over a nine-year period. The patients were separated into four groups based on HPC utilization: 1) patients who never proceeded to HCT, or Harvest and Hold (14.8 %), 2) patients who proceeded to one HCT with banked HPC remaining (76.8 %), 3) patients who proceeded to one HCT without HPC remaining (5.1 %), and 4) patients who proceeded to two HCTs (3.3 %). After collection, 73.9 % of patients underwent HCT within 30 days. Of patients with banked HPC, defined as not undergoing HCT within 30 days of leukocytapheresis, the overall utilization rate was 14.9 %. At 2- and 5-years post HPC collection, utilization rate was 10.4 % and 11.5 %, respectively. In conclusion, our results suggest very low utilization of stored HPC, raising into question the current HPC collection targets. Given advances in MM therapy, as well as significant costs associated with harvest and storage, collection for unplanned future use warrants reconsideration. As a result of our analysis, our institution has reduced our HPC collection targets.
Collapse
Affiliation(s)
- Cara L Benjamin
- Division of Transplantation and Cellular Therapy, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shreena Desai
- Department of Medicine, University of Miami Miller School of Medicine/Jackson Memorial Hospital, Miami, FL, USA
| | - Denise Pereira
- Division of Transplantation and Cellular Therapy, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Amer Beitinjaneh
- Division of Transplantation and Cellular Therapy, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Antonio Jimenez
- Division of Transplantation and Cellular Therapy, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mark Goodman
- Division of Transplantation and Cellular Therapy, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lazaros Lekakis
- Division of Transplantation and Cellular Therapy, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jay Spiegel
- Division of Transplantation and Cellular Therapy, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Krishna V Komanduri
- Department of Medicine, Division of Hematology Oncology, University of California San Francisco, USA
| | - Trent P Wang
- Division of Transplantation and Cellular Therapy, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|