1
|
Syringic Acid Ameliorates Cardiac, Hepatic, Renal and Neuronal Damage Induced by Chronic Hyperglycaemia in Wistar Rats: A Behavioural, Biochemical and Histological Analysis. Molecules 2022; 27:molecules27196722. [PMID: 36235257 PMCID: PMC9573038 DOI: 10.3390/molecules27196722] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effects of syringic acid (SA) on renal, cardiac, hepatic, and neuronal diabetic complications in streptozotocin-induced neonatal (nSTZ) diabetic rats. STZ (110 mg/kg i.p) was injected into Wistar rat neonates as a split dose (second and third postnatal day). Diabetes mellitus was diagnosed in adults by measuring fasting blood glucose levels, urine volume, and food and water intake. The treatment of SA (25 mg/kg, 50 mg/kg p.o) was given from the 8th to 18th postnatal week. To assess the development of diabetic complications and the effect of therapy, biochemical indicators in serum and behavioural parameters were recorded at specific intervals during the study period. SA (25 mg/kg, 50 mg/kg p.o) treatment reduced hyperglycaemia, polydipsia, polyphagia, polyuria, relative organ weight, cardiac hypertrophic indices, inflammatory markers, cell injury markers, glycated haemoglobin, histopathological score, and oxidative stress, and increased Na/K ATPase activity. These findings suggest that SA might significantly alleviate diabetic complications and/or renal, neuronal, cardiac, and hepatic damage in nSTZ diabetic rats.
Collapse
|
2
|
Khodabakhsh P, Khoie N, Dehpour AR, Abdollahi A, Ghazi-Khansari M, Shafaroodi H. Montelukast suppresses the development of irritable bowel syndrome phenotype possibly through modulating NF-κB signaling in an experimental model. Inflammopharmacology 2022; 30:313-325. [PMID: 35013876 DOI: 10.1007/s10787-021-00907-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022]
Abstract
Irritable bowel syndrome (IBS) is a functional gut disorder with multi-factorial pathophysiology that causes recurring pain or discomfort in the abdomen, as well as altered bowel habits. Montelukast, a well-known cysteinyl leukotriene receptor 1 (CysLT1R) antagonist, is widely used for the anti-inflammatory management of asthma. The present study aimed to evaluate the effects of pharmacological inhibition of CysLT1R on acetic acid-induced diarrhea-predominant IBS (D-IBS) in rats. Behavioral pain responses to noxious mechanical stimulation were decreased in the montelukast-treated rats as compared to the model animals following colorectal distension (CRD)-induced visceral hypersensitivity. Stool frequency decreased dose-dependently by montelukast in IBS rats exposed to restraint stress. A significantly shorter immobility time was also observed in IBS rats who received montelukast vs IBS group in the forced swimming test (depression-like behavior). Furthermore, there were significant decreases in the NF-κB protein expression, inflammatory cytokine (TNF-α, and IL-1ß) levels, and histopathological inflammatory injuries concomitant with increased anti-inflammatory cytokine, IL-10, in montelukast-treated rats compared with the IBS group. Cysteinyl leukotriene production and CysLT1R mRNA expression showed no remarkable differences among the experimental groups. The present results suggest the possible beneficial effects of montelukast in the management of D-IBS symptoms. The molecular mechanism underlying such effects, at least to some extent, might be through modulating CysLT1R-mediated NF-κB signaling. Yet, more studies are required to demonstrate the clinical potential of this drug for IBS therapy.
Collapse
Affiliation(s)
- Pariya Khodabakhsh
- Student Research Committee, Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nilgoon Khoie
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad-Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, School of Medicine, IKHC, Teheran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Shafaroodi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Mechanical effects of load speed on the human colon. J Biomech 2019; 91:102-108. [PMID: 31133391 DOI: 10.1016/j.jbiomech.2019.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/04/2019] [Accepted: 05/11/2019] [Indexed: 12/15/2022]
Abstract
The aim of this study was to examine the mechanical behavior of the colon using tensile tests under different loading speeds. Specimens were taken from different locations of the colonic frame from refrigerated cadavers. The specimens were submitted to uniaxial tensile tests after preconditioning using a dynamic load (1 m/s), intermediate load (10 cm/s), and quasi-static load (1 cm/s). A total of 336 specimens taken from 28 colons were tested. The stress-strain analysis for longitudinal specimens indicated a Young's modulus of 3.17 ± 2.05 MPa under dynamic loading (1 m/s), 1.74 ± 1.15 MPa under intermediate loading (10 cm/s), and 1.76 ± 1.21 MPa under quasi-static loading (1 cm/s) with p < 0.001. For the circumferential specimen, the stress-strain curves indicated a Young's modulus of 3.15 ± 1.73 MPa under dynamic loading (1 m/s), 2.14 ± 1.3 MPa under intermediate loading (10 cm/s), and 0.63 ± 1.25 MPa under quasi-static loading (1 cm/s) with p < 0.001. The curves reveal two types of behaviors of the colon: fast break behavior at high speed traction (1 m/s) and a lower break behavior for lower speeds (10 cm/s and 1 cm/s). The circumferential orientation required greater levels of stress and strain to obtain lesions than the longitudinal orientation. The presence of taeniae coli changed the mechanical response during low-speed loading. Colonic mechanical behavior varies with loading speeds with two different types of mechanical behavior: more fragile behavior under dynamic load and more elastic behavior for quasi-static load.
Collapse
|
4
|
Barragán-Bonilla MI, Mendoza-Bello JM, Aguilera P, Parra-Rojas I, Illades-Aguiar B, Ramírez M, Espinoza-Rojo M. Combined Administration of Streptozotocin and Sucrose Accelerates the Appearance of Type 2 Diabetes Symptoms in Rats. J Diabetes Res 2019; 2019:3791061. [PMID: 31355292 PMCID: PMC6637680 DOI: 10.1155/2019/3791061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/06/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes is a disease with a high global prevalence, characterized by chronic hyperglycemia, insulin resistance, polyphagia, polydipsia, polyuria, and changes in body weight. Animal models have been very useful for the study of this disease and to search for new therapeutic targets that delay, attenuate, or avoid diabetic complications. The purpose of this work was to establish a model of type 2 diabetes and exhibit the majority of the characteristics of the disease. Two-day-old male and female Wistar rats were treated once with streptozotocin (70 or 90 mg/kg body weight). After weaning, they were given a sucrose-sweetened beverage (SSB; sucrose at 10 or 30%) during 7 or 11 weeks; their body weight and food intake were measured daily. With the rats at 14 weeks of age, we determined the following: (a) fasting blood glucose, (b) oral glucose tolerance, and (c) insulin tolerance. We found that the supplementation of sucrose at 10% for 7 weeks in male rats which had previously been given streptozotocin (70 mg/kg) at neonatal stage leads to the appearance of the signs and symptoms of the characteristic of type 2 diabetes in adulthood.
Collapse
Affiliation(s)
- Martha Isela Barragán-Bonilla
- Laboratorio de Biología Molecular y Genómica de la Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Chilpancingo de los Bravo, Gro. 39090, Mexico
| | - Juan Miguel Mendoza-Bello
- Laboratorio de Biología Molecular y Genómica de la Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Chilpancingo de los Bravo, Gro. 39090, Mexico
| | - Penélope Aguilera
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Av. Insurgentes Sur 3877, Mexico City 14269, Mexico
| | - Isela Parra-Rojas
- Laboratorio de Obesidad y Diabetes de la Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N Ciudad Universitaria, Chilpancingo de los Bravo, Gro. 39090, Mexico
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular de la Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Chilpancingo de los Bravo, Gro. 39090, Mexico
| | - Mónica Ramírez
- CONACYT-Universidad Autónoma de Guerrero, Av. Javier Méndez Aponte No. 1, Fracc. Servidor Agrario, Chilpancingo de los Bravo, Gro. 39070, Mexico
| | - Mónica Espinoza-Rojo
- Laboratorio de Biología Molecular y Genómica de la Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Chilpancingo de los Bravo, Gro. 39090, Mexico
| |
Collapse
|
5
|
Lee SM, Kim N, Jo HJ, Park JH, Nam RH, Lee HS, Kim HJ, Lee MY, Kim YS, Lee DH. Comparison of Changes in the Interstitial Cells of Cajal and Neuronal Nitric Oxide Synthase-positive Neuronal Cells With Aging Between the Ascending and Descending Colon of F344 Rats. J Neurogastroenterol Motil 2017; 23:592-605. [PMID: 28774159 PMCID: PMC5628993 DOI: 10.5056/jnm17061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/20/2017] [Accepted: 07/09/2017] [Indexed: 12/22/2022] Open
Abstract
Background/Aims Neuronal degeneration and changes in interstitial cells of Cajal (ICCs) are important mechanisms of age-related constipation. This study aims to compare the distribution of ICCs and neuronal nitric oxide synthase (nNOS) with regard to age-related changes between the ascending colon (AC) and descending colon (DC) in 6-, 31-, and 74-week old and 2-year old male Fischer-344 rats. Methods The amount of fecal pellet and the bead expulsion times were measured. Fat proportion in the muscle layer of the colon was analyzed by hematoxylin and eosin staining. Proto-oncogene receptor tyrosine kinase (KIT) and neuronal nitric oxide synthase (nNOS) expression were analyzed with Western blotting and immunohistochemistry. Isovolumetric contractile measurements and electrical field stimulation were used to assess smooth muscle contractility. Results Colon transit and bead expulsion slowed with senescence. Fat in the muscle layer accumulated with age in the AC, but not in the DC. The proportion of KIT-immunoreactive ICCs in the submucosal and myenteric plexus was higher in the DC than in the AC, and it declined with age, especially in the AC. In contrast, the proportion of NOS-immunoreactive neurons in the myenteric plexus was higher in the AC than in the DC, and both decreased in older rats. Nitric oxide levels declined with age in the DC. Muscle strip experiments showed that the inhibitory response mediated by nitric oxide in the circular direction of the DC was reduced in 2-year old rats. Conclusion The AC and DC differ in their distribution of ICCs and nNOS, and age-related loss of nitrergic neurons more severely affects the DC than the AC.
Collapse
Affiliation(s)
- Sun Min Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Jin Jo
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
| | - Hyun Jin Kim
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Jinju, Gyeongsangnam-do, Korea
| | - Moon Young Lee
- Department of Physiology and Institute of Wonkwang Medical Science, Wonkwang University College of Medicine, Iksan, Jeollabuk-do, Korea
| | - Yong Sung Kim
- Division of Gastroenterology and Wonkwang Digestive Disease Research Institute, Department of Internal Medicine, Wonkwang University Sanbon Hospital, Gunpo, Gyeonggi-do, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Korea
| |
Collapse
|
6
|
Hu J, Qin X, Song ZY, Yang PP, Feng Y, Sun Q, Xu GY, Zhang HH. Alpha-lipoic Acid suppresses P2X receptor activities and visceral hypersensitivity to colorectal distention in diabetic rats. Sci Rep 2017; 7:3928. [PMID: 28659591 PMCID: PMC5489513 DOI: 10.1038/s41598-017-04283-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/11/2017] [Indexed: 01/16/2023] Open
Abstract
The present study was designed to investigate the roles of P2X3 receptors in dorsal root ganglion (DRG) neurons in colonic hypersensitivity and the effects of alpha-lipoic acid (ALA) on P2X3 receptor activity and colonic hypersensitivity of diabetic rats. Streptozotocin (STZ) was used to induce diabetic model. Abdominal withdrawal reflex (AWR) responding to colorectal distention (CRD) was recorded as colonic sensitivity. ATP-induced current density of colon-specific DRG (T13-L2 DRGs) neurons was measured with whole-cell patch clamp. The expression of P2X3Rs of T13-L2 DRGs was measured by western blot analysis. The results showed that AWR scores significantly increased after STZ injection. P2X3R expression and ATP current density of T13-L2 DRG neurons were enhanced in diabetic rats. Intraperitoneal injection with ALA once a day for 1 week remarkably reduced P2X3R expression and ATP current density in diabetic rats. Importantly, ALA treatment attenuated colonic hypersensitivity in diabetic rats. Our data suggest that STZ injection increases expression and function of P2X3 receptors of colon-specific DRG neurons, thus contributing to colonic hypersensitivity in diabetic rats. Administration of ALA attenuates diabetic colonic hypersensitivity, which is most likely mediated by suppressing expression and function of P2X3 receptors in DRGs of diabetic rats.
Collapse
Affiliation(s)
- Ji Hu
- Department of Endocrinology, the Second Affiliated Hospital of Soochow University, Suzhou, 215000, P.R. China
| | - Xin Qin
- Department of Endocrinology, Suzhou Science and Technology Town Hospital, Suzhou, 215000, P.R. China
| | - Zhen-Yuan Song
- Department of Endocrinology, the East District of Suzhou Municipal Hospital, Suzhou, 215000, P.R. China
| | - Pan-Pan Yang
- Department of Endocrinology, the Second Affiliated Hospital of Soochow University, Suzhou, 215000, P.R. China
| | - Yu Feng
- Department of Endocrinology, the Second Affiliated Hospital of Soochow University, Suzhou, 215000, P.R. China
| | - Qian Sun
- Department of Endocrinology, the Second Affiliated Hospital of Soochow University, Suzhou, 215000, P.R. China.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215123, P. R. China
| | - Guang-Yin Xu
- Department of Endocrinology, the Second Affiliated Hospital of Soochow University, Suzhou, 215000, P.R. China.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215123, P. R. China
| | - Hong-Hong Zhang
- Department of Endocrinology, the Second Affiliated Hospital of Soochow University, Suzhou, 215000, P.R. China. .,Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215123, P. R. China.
| |
Collapse
|
7
|
Zhao M, Liao D, Zhao J. Diabetes-induced mechanophysiological changes in the small intestine and colon. World J Diabetes 2017; 8:249-269. [PMID: 28694926 PMCID: PMC5483424 DOI: 10.4239/wjd.v8.i6.249] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/05/2017] [Accepted: 05/05/2017] [Indexed: 02/05/2023] Open
Abstract
The disorders of gastrointestinal (GI) tract including intestine and colon are common in the patients with diabetes mellitus (DM). DM induced intestinal and colonic structural and biomechanical remodeling in animals and humans. The remodeling is closely related to motor-sensory abnormalities of the intestine and colon which are associated with the symptoms frequently encountered in patients with DM such as diarrhea and constipation. In this review, firstly we review DM-induced histomorphological and biomechanical remodeling of intestine and colon. Secondly we review motor-sensory dysfunction and how they relate to intestinal and colonic abnormalities. Finally the clinical consequences of DM-induced changes in the intestine and colon including diarrhea, constipation, gut microbiota change and colon cancer are discussed. The final goal is to increase the understanding of DM-induced changes in the gut and the subsequent clinical consequences in order to provide the clinicians with a better understanding of the GI disorders in diabetic patients and facilitates treatments tailored to these patients.
Collapse
|